en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

刘卫国,E-mail: wgliunbh@sina.com

中图分类号:R742.5

文献标识码:A

文章编号:1007-4368(2024)12-1708-08

DOI:10.7655/NYDXBNSN240499

参考文献 1
BLOEM B R,OKUN M S,KLEIN C.Parkinson’s dis-ease[J].Lancet,2021,397(10291):2284-2303
参考文献 2
PAJARES M,ROJO A I,MANDA G,et al.Inflammation in Parkinson’s disease:mechanisms and therapeutic im-plications[J].Cells,2020,9(7):1687
参考文献 3
KALIA L V,LANG A E.Parkinson’s disease[J].Lancet,2015,386(9996):896-912
参考文献 4
WEINTRAUB D,AARSLAND D,CHAUDHURI K R,et al.The neuropsychiatry of Parkinson’s disease:advances and challenges[J].Lancet Neurol,2022,21(1):89-102
参考文献 5
JANKOVIC J,TAN E K.Parkinson’s disease:etiopatho-genesis and treatment[J].J Neurol Neurosurg Psychiatry,2020,91(8):795-808
参考文献 6
CONG S R,XIANG C C,ZHANG S,et al.Prevalence and clinical aspects of depression in Parkinson’s disease:a systematic review and meta-analysis of 129 studies[J].Neurosci Biobehav Rev,2022,141:104749
参考文献 7
EVERS L J W,KRIJTHE J H,MEINDERS M J,et al.Measuring Parkinson’s disease over time:the real-world within-subject reliability of the MDS-UPDRS[J].Mov Disord,2019,34(10):1480-1487
参考文献 8
REGNAULT A,BOROOJERDI B,MEUNIER J,et al.Does the MDS-UPDRS provide the precision to assess pro-gression in early Parkinson’s disease?Learnings from the Parkinson’s progression marker initiative cohort[J].J Neurol,2019,266(8):1927-1936
参考文献 9
HELDMAN D A,ESPAY A J,LEWITT P A,et al.Clini-cian versus machine:reliability and responsiveness of mo-tor endpoints in Parkinson’s disease[J].Parkinsonism Relat Disord,2014,20(6):590-595
参考文献 10
MAETZLER W,KLUCKEN J,HORNE M.A clinical view on the development of technology-based tools in manag-ing Parkinson’s disease[J].Mov Disord,2016,31(9):1263-1271
参考文献 11
DOBKIN B H,MARTINEZ C.Wearable sensors to moni-tor,enable feedback,and measure outcomes of activity and practice[J].Curr Neurol Neurosci Rep,2018,18(12):87
参考文献 12
SIGCHA L,PAVÓN I,COSTA N,et al.Automatic resting tremor assessment in Parkinson’s disease using smart-watches and multitask convolutional neural networks[J].Sensors(Basel),2021,21(1):291
参考文献 13
BLOEM B R,MARINUS J,ALMEIDA Q,et al.Measure-ment instruments to assess posture,gait,and balance in Parkinson’s disease:critique and recommendations[J].Mov Disord,2016,31(9):1342-1355
参考文献 14
TOLOSA E,GARRIDO A,SCHOLZ S W,et al.Challeng-es in the diagnosis of Parkinson’s disease[J].Lancet Neurol,2021,20(5):385-397
参考文献 15
卢瑞瑞,李晓晖,陈文武,等.可穿戴设备在帕金森病冻结步态领域的临床应用[J].中华物理医学与康复杂志,2021,43(10):947-949
参考文献 16
沈天毓,王计平,郭立泉,等.利用可穿戴设备对帕金森病患者运动功能进行量化评估[J].生物医学工程学杂志,2018,35(2):206-213
参考文献 17
ESPAY A J,BONATO P,NAHAB F B et al.Movement disorders society task force on technology.Technology in Parkinson’s disease:challenges and opportunities[J].Mov disord,2016,31(9):1272-1282
参考文献 18
ESPAY A J,HAUSDORFF J M,SÁNCHEZ-FERRO Á,et al.A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease ob-tained using mobile health technologies[J].Mov Disord,2019,34(5):657-663
参考文献 19
MESTRE T A,FERESHTEHNEJAD S M,BERG D,et al.Parkinson’s disease subtypes:critical appraisal and rec-ommendations[J].J Parkinsons Dis,2021,11(2):395-404
参考文献 20
BLOEM B R,MARKS W J JR,SILVA DE LIMA A L,et al.The personalized Parkinson project:examining disease progression through broad biomarkers in early Parkinson’s disease[J].BMC Neurol,2019,19(1):160
参考文献 21
RAMIG L,HALPERN A,SPIELMAN J,et al.Speech treatment in Parkinson’s disease:randomized controlled trial(RCT)[J].Mov Disord,2018,33(11):1777-1791
参考文献 22
OOSTERHOF T H,DARWEESH S K L,BLOEM B R,et al.Considerations on how to prevent Parkinson’s disease through exercise[J].J Parkinsons Dis,2024,14(s2):S395-S406
参考文献 23
CAMICIOLI R,MORRIS M E,PIERUCCINI-FARIA F,et al.Prevention of falls in Parkinson’s disease:guide-lines and gaps[J].Mov Disord Clin Pract,2023,10(10):1459-1469
参考文献 24
RAJAN S,KAAS B.Parkinson’s disease:risk factor mod-ification and prevention[J].Semin Neurol,2022,42(5):626-638
参考文献 25
MARTÍNEZ-FERNÁNDEZ R,MÁÑEZ-MIRÓ J U,RO-DRÍGUEZ-ROJAS R,et al.Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease[J].N Engl J Med,2020,383(26):2501-2513
参考文献 26
BRABENEC L,MEKYSKA J,GALAZ Z,et al.Speech disorders in Parkinson’s disease:early diagnostics and ef-fects of medication and brain stimulation[J].J Neural Transm,2017,124(3):303-334
目录contents

    摘要

    目的:基于统一帕金森病评分量表(unified Parkinson’s disease rating scale Ⅲ,UPDRSⅢ)的指定动作评估多点可穿戴设备辅助早期帕金森病(Parkinson’s disease,PD)诊断的价值。方法:本研究共纳入 54 例受试者,分为早期 PD 组(n=30, UPDRSⅢ<30分)和正常对照组(n=24),并在多点可穿戴设备下完成UPDRSⅢ要求的指定动作。使用10个惯性传感器收集受试者在完成动作时胸、腰、膝关节、肘关节、踝关节及双足部等部位的角速度、加速度等信息。比较各组间指定动作的运动参数,采用支持向量机和十折交叉验证计算可区分两组的最佳模型并评估其诊断效能。结果:早期PD组与正常对照组完成各 UPDRSⅢ指定动作的可穿戴设备运动参数差异有统计学意义(P < 0.05)。其中言语动作区分两组的准确性最高,为0.907。与上半身动作组相比,下半身动作组与全身动作组的一致性、敏感性及准确性均较高,能特异性地识别早期PD患者的运动障碍。结论:多点可穿戴设备能客观评估早期PD患者运动障碍特征,可作为早期PD辅助诊断和量化评估的工具。

    Abstract

    Objective:To evaluate the potential of using a multi-point wearable device in facilitating early diagnosis of Parkinson’s disease(PD)with the unified Parkinson’s disease rating scale Ⅲ(UPDRSⅢ). Methods:A total of 54 subjects were recruited in this study. They were divided into the early PD group(n=30,UPDRSⅢ<30 points)and the normal control group(n=24). Each subject wore a multi-point wearable device when performing the standard actions required by the UPDRSⅢ. Ten inertial sensors were employed to collect data on angular speed,acceleration,and other parameters from the subject’s chest,waist,knee joints,elbow joints,ankle joints, and both feet. The motor parameters of specific movements were compared between the two groups,and a support vector machine within ten-fold cross-validation was used to calculate the optimal model to distinguish the two groups and assess its diagnostic potentials. Results:There were significant statistical differences in the motion parameters of wearable devices in the early PD group and the normal control group after completing the specified actions of UPDRSⅢ(P < 0.05). The accuracy of speech action between the two groups was the highest,reaching 0.907. Compared to the upper body movements,the lower body movement and the whole body movements had higher consistency,sensitivity and accuracy,allowing for specific identification of motor dysfunction in early PD patients. Conclusion:Multi-point wearable devices can objectively evaluate the characteristics of movement disorders in early PD patients,and can be used as a tool for auxiliary diagnosis and quantitative evaluation of early PD.

  • 帕金森病(Parkinson’s disease,PD)是一种以运动迟缓、肌强直、静止性震颤等运动障碍症状为主要表现的神经退行性疾病,起病隐匿,进程缓慢[1-3]。早期正确诊断并规范治疗是延缓PD进展,推迟中晚期并发症发生,提升患者生活质量的关键举措[4-5]。运动症状是诊断 PD 的核心,统一帕金森病评分量表 (unified Parkinson’s disease rating scale Ⅲ,UPDRSⅢ) 是目前国际公认的定量评估PD患者运动障碍严重程度的重要工具。但最近研究指出,UPDRSⅢ评分识别早期PD敏感度低,早期存在“天花板”效应[6-7]。此外,该方法对评估者临床经验依赖程度较大,评估者间与同一评估者内不同时间点的评分一致性较低,存在较大的主观偏倚[8]。因此,亟需研发可客观定量评估 PD 患者运动症状的评估工具,以早期正确诊断PD患者。

  • 近年来不断成熟的可穿戴设备通过加速度传感器、陀螺仪等运动传感器采集人体运动数据,使定量评估PD患者运动症状成为可能。早期可穿戴设备可通过测量患者手指敲击间隔或肢体运动特征评估PD运动迟缓症状[9-12],或通过安装于运动关键部位的加速度计或陀螺仪高敏感、高特异地识别 PD 静止性震颤症状[13-14]。尽管上述研究均表明可穿戴设备可准确识别 PD 运动症状,但多数研究仅能检测特定的单一或少数动作,难以涵盖UPDRSⅢ 量表要求的全部动作[15-18]。本研究纳入的“早期 PD”是临床医生在使用 Hoehn-Yahr(H-Y)分期及 UPDRSⅢ评分作为界定标准(UPDRSⅢ评分介于 10~30分;H-Y分期≤2.5期)后,筛选出PD患者中病程短、症状轻、服药后可缓解,并且未出现运动并发症,但已经出现了运动症状者作为研究对象,采用多点可穿戴设备定量采集腰、胸、上肢、膝关节、踝关节与足部等10个部位在完成UPDRS Ⅲ量表全套动作时的运动信息,组间比较运动参数后提取 PD 患者运动特征并建立分类模型,以评估多点可穿戴设备在早期PD中的诊断价值。

  • 1 对象和方法

  • 1.1 对象

  • 早期PD患者从南京医科大学附属脑科医院PD 门诊或住院患者中招募,正常对照组受试者来源于患者家属。早期PD组患者入组标准:①经《中国帕金森病的诊断标准(2016版)》诊断为临床确诊的PD; ②UPDRS Ⅲ评分10~30分;H-Y分期≤2.5期(且经过门诊医生筛选出其中病程短,症状轻,服药后可缓解,有运动症状,但未出现运动并发症的患者); ③年龄30~80岁;④无严重认知功能障碍[蒙特利尔认知评估量表(Montreal cognitive assesscnent scale, MOCA)评分>18分]。正常对照组入组标准:①无肢体运动障碍相关性疾病或运动障碍;②年龄30~80 岁;③无严重认知功能障碍(MOCA 评分>18 分)。排除标准:①存在严重神经精神疾病史(如脑血管病、癫痫、脑炎、痴呆、多发性硬化、精神分裂症、抑郁症、物质依赖、颅内肿瘤、头颅外伤手术等),患有严重心、肝、肾、造血系统及内分泌系统基础疾病; ②孕妇、哺乳期及可能妊娠者;③因外伤或其他原因导致的肢体活动受限者。本研究获南京医科大学附属脑科医院医学伦理委员会审批通过(2020-KY194-01),受试者均签署知情同意书。

  • 1.2 方法

  • 1.2.1 多点可穿戴设备惯性传感器

  • 本研究使用“睿评”多点可穿戴设备评估患者运动信息。该设备可通过加速度计和陀螺仪等传感器采集受试者运动时特定部位的加速度与角速度等信息。将10个可穿戴式传感器节点分别穿戴于受试者的腰、胸、双上肢、双膝关节、双踝关节及双侧足部等部位的关节处,以检测受试者完成指定动作时相关部位的运动参数。绑带松紧适度以保证穿戴节点不影响患者的运动且不移位。多点可穿戴设备试验过程中的传感器分布位置如图1所示。

  • 1.2.2 运动数据采集

  • 受试者穿戴多点可穿戴设备后完成14个UPDRSⅢ 量表指定的动作。其中12个动作的运动参数由传感器采集并传递给配套的电脑设备,另2个无法采集运动参数的动作(面部表情与强直)由视频记录评分。同时,视频记录运动数据采集的全过程以备后期查验。本研究中12个可采集运动参数的动作为:①言语(表达):患者先熟悉“四十四只石狮子,一个大花碗扣着一只大花活蛤蟆”这句话,点击开始后,患者将上面这句话完整读出来,不可读错或重复;②面部表情:患者静坐在凳子上,双眼平视摄像头,维持20 s;③手指拍打:患者静坐在凳子上,右手置于右耳边,不遮挡面部的情况下尽可能快而标准地完成拇指与食指的对指动作15次,左手重复该项动作;④手掌运动:患者静坐在凳子上,右手置于右耳边,不遮挡面部的情况下尽可能快而标准地完成握拳后张开的动作15次,左手重复该项动作;⑤前臂回旋:受试者静坐在椅子上,右手平举,尽可能以最快速度和最大幅度翻转手臂15次,左手重复该项动作;⑥脚趾拍地:受试者静坐在凳子上,双脚平放在地,右脚脚后跟不动,脚前掌尽可能抬高后落下,标准情况下尽可能快,重复7次,然后换左脚;⑦跺脚:受试者静坐在凳子上,双脚平放在地,右脚尽可能抬高后落下,标准情况下尽可能快,重复7次,然后换左脚;⑧起立:受试者静坐在凳子上,双脚平放在地,患者双手交叉抱肩起立;⑨5 m折返走(可同时评估步态与步态冻结):受试者站在规定标记点开始行走,行走至5 m标记点时按照箭头方向转身返回,回到起始点处再次转身返回,共进行5次后保持站立姿势;⑩后拉试验:患者双腿分开,站在画定地方框内,医生在受试者身后快速后拉受试者2次,第1 次力度稍小,第2次力度稍大;⑪双手平举:受试者静坐在椅子上,双手平举并保持该姿势15 s;⑫指鼻:受试者静坐在椅子上,伸出右手指向指定点后再指向鼻尖,重复7次后换左手。

  • 图1 多点可穿戴设备试验过程中的规范动作及传感器分布位置

  • Figure1 Standardized actions and sensor distribution locations during multi-point wearable device testing

  • 1.3 统计学方法

  • 统计学处理使用R软件。计量资料以均数±标准差(x-±s)表示,计数资料采用例数(百分率)[n(%)] 表示,非正态分布资料采用中位数(四分位数)[MP25,P75)]表示,数据符合正态分布以及方差齐性时,采用双样本 t 检验比较身高与年龄等人口学信息,采用卡方检验比较组间性别差异。采用Mann-Whitney检验比较各动作运动参数的组间差异。在各动作内提取存在显著组间差异的运动参数,并按 P值升序排列。依序有放回地挑选运动参数,采用支持向量机(support vector machine,SVM)建立二分类器模型。具体为,将挑选的运动参数进行主成分分析(principal components analysis,PCA)处理,同时选择不超过15个主成分建立SVM模型,尝试径向基函数(radial basis function,RBF)作为SVM的核函数并通过网格搜索的方式进行超参数优化,并应用十折交叉检验基于混淆矩阵计算评估模型的诊断性能,包括准确度、一致性、灵敏度、特异度和约登指数。其中准确度最高的模型为最佳模型。进一步将手指拍打、手掌运动、前臂回旋运动和指鼻等4个动作定义为上半身动作组,将脚趾拍地、跺脚、起立、5 m折返走、后拉试验等动作定义为下半身动作组,将全部动作定义为全身动作组,采用上述方法对各动作最佳模型的运动参数建模并计算各组动作模型的诊断性能。P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 样本人口学特征

  • 如表1所示,早期PD组中男20例,女10例,年龄(62.80±9.02)岁,发病年龄(57.70±8.40)岁,身高 (164.40±7.24)cm,H-Y分期为1~2.5期,UPDRSⅢ评分15(12,22)分,MOCA评分(28.75±1.11)分。对照组中男 11 例,女 13 例,年龄(61.71±12.19)岁,身高 (164.25±8.42)cm,UPDRSⅢ评分 0(0,4)分,MOCA 评分(23.07±4.14)分。与对照组比较,早期 PD 组性别与身高差异无统计学意义,UPDRSⅢ评分和 MOCA 评分均显著升高(P均<0.05)。

  • 2.2 融合各运动参数的分类模型及其诊断性能

  • 受试者完成各 UPDRSⅢ指定动作时记录的运动参数数目如表2所示,在早期PD组与对照组间表现出显著差异的运动参数数目,采用SVM建模后提取的最佳模型中的运动参数数目及最佳模型的准确度与一致性。

  • SVM建模过程中各数量模型(选取了言语及下半身动作中准确性及一致性较高的4个动作)准确度的统计分析如图2 所示。以实验 1 为例,完成实验 1 动作时 10 个采集点记录的总运动参数数目为 3 824 个,全部纳入分析,表现出显著组间差异的运动参数数目为 209 个,采用 SVM 分析发现,当运动参数数目为40个时,最佳模型的准确度最高,为 0.907,对应的一致性kappa 值为0.817,其他动作以此类推。

  • 表1 早期PD组与对照组基本情况比较

  • Table1 Comparison of basic characteristics between the early PD group and control group

  • 表2 基于UPDRSⅢ各指定动作下的运动参数探索最佳模型并计算其诊断性能

  • Table2 Exploration of the optimal model based on the motor parameters for each specified action of UPDRSⅢ and calcu-lation of its diagnostic performance

  • 上半身动作组、下半身动作组和全身动作组3组最佳分类模型的诊断性能如表3所示,上半身动作组最佳模型的一致性、曲线下面积、特异度、灵敏度、约登指数与准确度在十折交叉验证后的均值分别为 0.64±0.29、0.94±0.11、0.85±0.20、0.80±0.28, 0.65±0.28和0.81±0.16;下半身动作组最佳模型的一致性、曲线下面积、特异度、灵敏度、约登指数与准确度在十折交叉验证后的均值分别为 0.89±0.18、 0.92±0.14、0.92±0.14、0.97±0.11、0.93±0.14、0.90± 0.16和0.94±0.09。全身动作组最佳模型的一致性、曲线下面积、特异度、灵敏度、约登指数与准确度在十折交叉验证后的均值分别为 0.92±0.18、0.97± 0.07、0.95±0.16、0.97±0.11、0.92±0.18 和 0.96±0.08。上半身动作、下半身动作与全身动作最佳模型的受试者工作特征(reciever operating characteristic, ROC)曲线如图3。

  • 图2 各UPDRSⅢ指定动作的运动参数模型

  • Figure2 The motor parameter models for each designated movement in UPDRSⅢ

  • 该多点可穿戴设备设置10个传感器位点,采集包括言语、面部表情、手指拍打、手掌运动、前臂运动、前臂回旋动作、脚趾拍地实验、两脚灵敏度测试、起立、5 m折返走、后拉实验、双手平举、指鼻等动作的数据信息(表4)。其中,言语动作模型、下半身动作中站立、行走、后拉试验等可触发全部传感器位点,上半身的动作只能触发1~2个传感器收集信号,结合表3及表4可发现,动作模型中触发的传感器位点越多,收集的运动参数量越多,其准确性与一致性越高。

  • 表3 上半身、下半身和全身运动模型的诊断性能

  • Table3 Diagnostic performance of upper body,lower bodys and whole body motion models

  • 3 讨论

  • 本研究采用多点可穿戴设备采集早期PD患者与正常对照组完成 UPDRSⅢ量表指定动作时的运动参数显著差异的基础上,进一步采用交叉验证的方法评估上述运动参数在辅助识别早期PD患者中的诊断价值。结果显示,言语动作、行走与站立运动信息的下半身动作模型识别早期PD患者的准确性较高,有望在受试人群中更准确地识别早期 PD 患者。多点可穿戴设备可客观有效地评估早期PD 患者运动障碍特征,克服传统量表评估中主观偏倚的不足,提高早期PD运动症状的诊断准确率,为延缓疾病进展与提高患者的生活质量提供了有力的工具。

  • 图3 上半身动作、下半身动作与全身动作最佳模型的 ROC曲线

  • Figure3 ROC curves for the best models for upper body movements,lower body movements,and whole body movements

  • 表4 指定动作触发的接受信号的传感器数量

  • Table4 The number of sensors that receive signals triggered by specified actions

  • PD中早期患者的运动症状一般难以识别,往往依赖经验丰富的医生或量表进行评估。量表评估存在一定程度的主观偏倚,影响临床 PD 运动症状的正确评估,因此,学者对于PD早期运动诊断的准确性提出了质疑[19-20]。早期PD的运动症状,如果能尽早识别,并及时进行干预治疗,不仅可以延缓PD的病情进展,还能提高PD患者的生活质量[21-24]。因此,本研究纳入了经H-Y、UPDRⅢ及MOCA评分筛选后的临床“早期PD”患者,进行多点可穿戴设备数据采集,研究受试者完成UPDRSⅢ量表指定动作时的运动参数后发现:与正常对照组相比,早期PD组中各动作运动参数存在显著差异,可作为客观评估早期 PD运动障碍的指标之一。

  • 同时,研究发现 PD 患者言语过程中存在动作范围、速度缩减及构音障碍等异常[25-26],该多点可穿戴设备设置10个传感器位点,其中,言语动作模型、下半身动作中站立、行走、后拉试验等可触发全部传感器。根据目前数据采集的特点,未来如果将多点可穿戴设备应用于临床中,除了保证临床应用简单方便外,也需要尽可能多地设计传感器位点,以提高临床诊断的准确性。

  • 与其他可穿戴设备研究相比,本研究具有以下优势:①采用的多点可穿戴设备的穿戴点位数目为 10个,可涵盖UPDRSⅢ量表指定的全套动作。所有动作的运动参数均可通过穿戴设备的传感器记录并转化为信号录入系统后,进行客观统计分析;②该设备通过内置的加速度计和陀螺仪两种传感器可同时采集受试者完成指定动作时移动与转动等数据,更能客观地反映不同受试者的运动特征;③研究在经过专业测量的标准化场地内进行,检测过程中全程有1名评分技术人员和1名医生参与,确保数据采集的真实性和UPDRSⅢ评分的可靠性。然而,本研究也存在一定的局限性,样本量相对较小,未来将继续增加样本数据,并进一步验证与临床诊断的一致性。

  • 参考文献

    • [1] BLOEM B R,OKUN M S,KLEIN C.Parkinson’s dis-ease[J].Lancet,2021,397(10291):2284-2303

    • [2] PAJARES M,ROJO A I,MANDA G,et al.Inflammation in Parkinson’s disease:mechanisms and therapeutic im-plications[J].Cells,2020,9(7):1687

    • [3] KALIA L V,LANG A E.Parkinson’s disease[J].Lancet,2015,386(9996):896-912

    • [4] WEINTRAUB D,AARSLAND D,CHAUDHURI K R,et al.The neuropsychiatry of Parkinson’s disease:advances and challenges[J].Lancet Neurol,2022,21(1):89-102

    • [5] JANKOVIC J,TAN E K.Parkinson’s disease:etiopatho-genesis and treatment[J].J Neurol Neurosurg Psychiatry,2020,91(8):795-808

    • [6] CONG S R,XIANG C C,ZHANG S,et al.Prevalence and clinical aspects of depression in Parkinson’s disease:a systematic review and meta-analysis of 129 studies[J].Neurosci Biobehav Rev,2022,141:104749

    • [7] EVERS L J W,KRIJTHE J H,MEINDERS M J,et al.Measuring Parkinson’s disease over time:the real-world within-subject reliability of the MDS-UPDRS[J].Mov Disord,2019,34(10):1480-1487

    • [8] REGNAULT A,BOROOJERDI B,MEUNIER J,et al.Does the MDS-UPDRS provide the precision to assess pro-gression in early Parkinson’s disease?Learnings from the Parkinson’s progression marker initiative cohort[J].J Neurol,2019,266(8):1927-1936

    • [9] HELDMAN D A,ESPAY A J,LEWITT P A,et al.Clini-cian versus machine:reliability and responsiveness of mo-tor endpoints in Parkinson’s disease[J].Parkinsonism Relat Disord,2014,20(6):590-595

    • [10] MAETZLER W,KLUCKEN J,HORNE M.A clinical view on the development of technology-based tools in manag-ing Parkinson’s disease[J].Mov Disord,2016,31(9):1263-1271

    • [11] DOBKIN B H,MARTINEZ C.Wearable sensors to moni-tor,enable feedback,and measure outcomes of activity and practice[J].Curr Neurol Neurosci Rep,2018,18(12):87

    • [12] SIGCHA L,PAVÓN I,COSTA N,et al.Automatic resting tremor assessment in Parkinson’s disease using smart-watches and multitask convolutional neural networks[J].Sensors(Basel),2021,21(1):291

    • [13] BLOEM B R,MARINUS J,ALMEIDA Q,et al.Measure-ment instruments to assess posture,gait,and balance in Parkinson’s disease:critique and recommendations[J].Mov Disord,2016,31(9):1342-1355

    • [14] TOLOSA E,GARRIDO A,SCHOLZ S W,et al.Challeng-es in the diagnosis of Parkinson’s disease[J].Lancet Neurol,2021,20(5):385-397

    • [15] 卢瑞瑞,李晓晖,陈文武,等.可穿戴设备在帕金森病冻结步态领域的临床应用[J].中华物理医学与康复杂志,2021,43(10):947-949

    • [16] 沈天毓,王计平,郭立泉,等.利用可穿戴设备对帕金森病患者运动功能进行量化评估[J].生物医学工程学杂志,2018,35(2):206-213

    • [17] ESPAY A J,BONATO P,NAHAB F B et al.Movement disorders society task force on technology.Technology in Parkinson’s disease:challenges and opportunities[J].Mov disord,2016,31(9):1272-1282

    • [18] ESPAY A J,HAUSDORFF J M,SÁNCHEZ-FERRO Á,et al.A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease ob-tained using mobile health technologies[J].Mov Disord,2019,34(5):657-663

    • [19] MESTRE T A,FERESHTEHNEJAD S M,BERG D,et al.Parkinson’s disease subtypes:critical appraisal and rec-ommendations[J].J Parkinsons Dis,2021,11(2):395-404

    • [20] BLOEM B R,MARKS W J JR,SILVA DE LIMA A L,et al.The personalized Parkinson project:examining disease progression through broad biomarkers in early Parkinson’s disease[J].BMC Neurol,2019,19(1):160

    • [21] RAMIG L,HALPERN A,SPIELMAN J,et al.Speech treatment in Parkinson’s disease:randomized controlled trial(RCT)[J].Mov Disord,2018,33(11):1777-1791

    • [22] OOSTERHOF T H,DARWEESH S K L,BLOEM B R,et al.Considerations on how to prevent Parkinson’s disease through exercise[J].J Parkinsons Dis,2024,14(s2):S395-S406

    • [23] CAMICIOLI R,MORRIS M E,PIERUCCINI-FARIA F,et al.Prevention of falls in Parkinson’s disease:guide-lines and gaps[J].Mov Disord Clin Pract,2023,10(10):1459-1469

    • [24] RAJAN S,KAAS B.Parkinson’s disease:risk factor mod-ification and prevention[J].Semin Neurol,2022,42(5):626-638

    • [25] MARTÍNEZ-FERNÁNDEZ R,MÁÑEZ-MIRÓ J U,RO-DRÍGUEZ-ROJAS R,et al.Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease[J].N Engl J Med,2020,383(26):2501-2513

    • [26] BRABENEC L,MEKYSKA J,GALAZ Z,et al.Speech disorders in Parkinson’s disease:early diagnostics and ef-fects of medication and brain stimulation[J].J Neural Transm,2017,124(3):303-334

  • 参考文献

    • [1] BLOEM B R,OKUN M S,KLEIN C.Parkinson’s dis-ease[J].Lancet,2021,397(10291):2284-2303

    • [2] PAJARES M,ROJO A I,MANDA G,et al.Inflammation in Parkinson’s disease:mechanisms and therapeutic im-plications[J].Cells,2020,9(7):1687

    • [3] KALIA L V,LANG A E.Parkinson’s disease[J].Lancet,2015,386(9996):896-912

    • [4] WEINTRAUB D,AARSLAND D,CHAUDHURI K R,et al.The neuropsychiatry of Parkinson’s disease:advances and challenges[J].Lancet Neurol,2022,21(1):89-102

    • [5] JANKOVIC J,TAN E K.Parkinson’s disease:etiopatho-genesis and treatment[J].J Neurol Neurosurg Psychiatry,2020,91(8):795-808

    • [6] CONG S R,XIANG C C,ZHANG S,et al.Prevalence and clinical aspects of depression in Parkinson’s disease:a systematic review and meta-analysis of 129 studies[J].Neurosci Biobehav Rev,2022,141:104749

    • [7] EVERS L J W,KRIJTHE J H,MEINDERS M J,et al.Measuring Parkinson’s disease over time:the real-world within-subject reliability of the MDS-UPDRS[J].Mov Disord,2019,34(10):1480-1487

    • [8] REGNAULT A,BOROOJERDI B,MEUNIER J,et al.Does the MDS-UPDRS provide the precision to assess pro-gression in early Parkinson’s disease?Learnings from the Parkinson’s progression marker initiative cohort[J].J Neurol,2019,266(8):1927-1936

    • [9] HELDMAN D A,ESPAY A J,LEWITT P A,et al.Clini-cian versus machine:reliability and responsiveness of mo-tor endpoints in Parkinson’s disease[J].Parkinsonism Relat Disord,2014,20(6):590-595

    • [10] MAETZLER W,KLUCKEN J,HORNE M.A clinical view on the development of technology-based tools in manag-ing Parkinson’s disease[J].Mov Disord,2016,31(9):1263-1271

    • [11] DOBKIN B H,MARTINEZ C.Wearable sensors to moni-tor,enable feedback,and measure outcomes of activity and practice[J].Curr Neurol Neurosci Rep,2018,18(12):87

    • [12] SIGCHA L,PAVÓN I,COSTA N,et al.Automatic resting tremor assessment in Parkinson’s disease using smart-watches and multitask convolutional neural networks[J].Sensors(Basel),2021,21(1):291

    • [13] BLOEM B R,MARINUS J,ALMEIDA Q,et al.Measure-ment instruments to assess posture,gait,and balance in Parkinson’s disease:critique and recommendations[J].Mov Disord,2016,31(9):1342-1355

    • [14] TOLOSA E,GARRIDO A,SCHOLZ S W,et al.Challeng-es in the diagnosis of Parkinson’s disease[J].Lancet Neurol,2021,20(5):385-397

    • [15] 卢瑞瑞,李晓晖,陈文武,等.可穿戴设备在帕金森病冻结步态领域的临床应用[J].中华物理医学与康复杂志,2021,43(10):947-949

    • [16] 沈天毓,王计平,郭立泉,等.利用可穿戴设备对帕金森病患者运动功能进行量化评估[J].生物医学工程学杂志,2018,35(2):206-213

    • [17] ESPAY A J,BONATO P,NAHAB F B et al.Movement disorders society task force on technology.Technology in Parkinson’s disease:challenges and opportunities[J].Mov disord,2016,31(9):1272-1282

    • [18] ESPAY A J,HAUSDORFF J M,SÁNCHEZ-FERRO Á,et al.A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease ob-tained using mobile health technologies[J].Mov Disord,2019,34(5):657-663

    • [19] MESTRE T A,FERESHTEHNEJAD S M,BERG D,et al.Parkinson’s disease subtypes:critical appraisal and rec-ommendations[J].J Parkinsons Dis,2021,11(2):395-404

    • [20] BLOEM B R,MARKS W J JR,SILVA DE LIMA A L,et al.The personalized Parkinson project:examining disease progression through broad biomarkers in early Parkinson’s disease[J].BMC Neurol,2019,19(1):160

    • [21] RAMIG L,HALPERN A,SPIELMAN J,et al.Speech treatment in Parkinson’s disease:randomized controlled trial(RCT)[J].Mov Disord,2018,33(11):1777-1791

    • [22] OOSTERHOF T H,DARWEESH S K L,BLOEM B R,et al.Considerations on how to prevent Parkinson’s disease through exercise[J].J Parkinsons Dis,2024,14(s2):S395-S406

    • [23] CAMICIOLI R,MORRIS M E,PIERUCCINI-FARIA F,et al.Prevention of falls in Parkinson’s disease:guide-lines and gaps[J].Mov Disord Clin Pract,2023,10(10):1459-1469

    • [24] RAJAN S,KAAS B.Parkinson’s disease:risk factor mod-ification and prevention[J].Semin Neurol,2022,42(5):626-638

    • [25] MARTÍNEZ-FERNÁNDEZ R,MÁÑEZ-MIRÓ J U,RO-DRÍGUEZ-ROJAS R,et al.Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease[J].N Engl J Med,2020,383(26):2501-2513

    • [26] BRABENEC L,MEKYSKA J,GALAZ Z,et al.Speech disorders in Parkinson’s disease:early diagnostics and ef-fects of medication and brain stimulation[J].J Neural Transm,2017,124(3):303-334