en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

叶金海,E⁃mail:yjh98001@163.com

中图分类号:R739.8

文献标识码:A

文章编号:1007-4368(2021)04-509-07

DOI:10.7655/NYDXBNS20210406

参考文献 1
RADHIKA T,JEDDY N,NITHYA S,et al.Salivary bio⁃ markers in oral squamous cell carcinoma ⁃ an insight[J].J Oral Biol Craniofac Res,2016,6(Suppl 1):S51-S54
参考文献 2
SALAHSHOURIFAR I,VINCENT ⁃ CHONG V K,KAL⁃ LARAKKAL T G,et al.Genomic DNA copy number alter⁃ ations from precursor oral lesions to oral squamous cell carcinoma[J].Oral Oncol,2014,50(5):404-412
参考文献 3
KRISHNA RAO S V,MEJIA G,ROBERTS ⁃ THOMSON K,et al.Epidemiology of oral cancer in Asia in the past decade⁃⁃an update(2000⁃2012)[J].Asian Pac J Cancer Prev,2013,14(10):5567-5577
参考文献 4
DE MORAIS E F,MAFRA R P,GONZAGA A,et al.Prog⁃ nostic factors of oral squamous cell carcinoma in young patients:a systematic review[J].J Oral Maxillofac Surg,2017,75(7):1555-1566
参考文献 5
GHARAT S A,MOMIN M,BHAVSAR C.Oral squamous cell carcinoma:current treatment strategies and nanotech⁃ nology ⁃ based approaches for prevention and therapy[J].Crit Rev Ther Drug Carrier Syst,2016,33(4):363-400
参考文献 6
MICHLEWSKI G,CÁCERES J F.Post ⁃ transcriptional control of miRNA biogenesis[J].RNA,2019,25(1):1-16
参考文献 7
HATA A,LIEBERMAN J.Dysregulation of microRNA biogenesis and gene silencing in cancer[J].Sci Signal,2015,8(368):re3
参考文献 8
HUIYIN L,HAIQI L,XIAN W,et al.MicroRNAs as po⁃ tential biomarkers in cancer:opportunities and challenges [J].Biomed Res Int,2015,2015:1-17
参考文献 9
KOWAL J,TKACH M,THÉRY C.Biogenesis and secre⁃tion of exosomes[J].Curr Opin Cell Biol,2014,29:116-125
参考文献 10
SALEHI M,SHARIFI M.Exosomal miRNAs as novel can⁃ cer biomarkers:challenges and opportunities[J].J Cell Physiol,2018,233(9):6370-6380
参考文献 11
VALADI H,EKSTRÖM K,BOSSIOS A,et al.Exosome ⁃ mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J].Nat Cell Biol,2007,9(6):654-659
参考文献 12
ZHOU J,LI X L,CHEN Z R,et al.Tumor ⁃ derived exo⁃ somes in colorectal cancer progression and their clinical applications[J].Oncotarget,2017,8(59):100781-100790
参考文献 13
RABINOWITS G,GERCEL⁃TAYLOR C,DAY J M,et al.Exosomal microRNA:a diagnostic marker for lung cancer [J].Clin Lung Cancer,2009,10(1):42-46
参考文献 14
THÉRY C,AMIGORENA S,RAPOSO G,et al.Isolation and characterization of exosomes from cell culture super⁃ natants and biological fluids[J].Curr Protoc Cell Biol,2006,3:3-22
参考文献 15
ZHANG H,WU J,WU J,et al.Exosome⁃mediated target⁃ ed delivery of miR⁃210 for angiogenic therapy after cere⁃ bral ischemia in mice[J].J Nanobiotechnology,2019,17(1):29
参考文献 16
LANGEVIN S,KUHNELL D,PARRY T,et al.Compre⁃ hensive microRNA ⁃sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomark⁃ ers[J].Oncotarget,2017,8(47):82459-82474
参考文献 17
TANG Y T,HUANG Y Y,ZHENG L,et al.Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum[J].Int J Mol Med,2017,40(3):834-844
参考文献 18
LIVSHITS M,KHOMYAKOVA E,EVTUSHENKO E G,et al.Isolation of exosomes by differential centrifugation:theoretical analysis of a commonly used protocol[J].Sci Rep,2015,5:17319
参考文献 19
WITWER K W,BUZÁS E I,BEMIS L T,et al.Standard⁃ ization of sample collection,isolation and analysis meth⁃ ods in extracellular vesicle research[J].J Extracell Vesi⁃ cles,2013,2:2
参考文献 20
SHARIFI M,MORIDNIA A.Apoptosis⁃inducing and anti⁃ proliferative effect by inhibition of miR ⁃ 182 ⁃ 5p through the regulation of CASP9 expression in human breast can⁃ cer[J].Cancer Gene Ther,2017,24(2):75-82
参考文献 21
LI Y,CHEN S,SHAN Z,et al.miR⁃182⁃5p improves the viability,mitosis,migration,and invasion ability of human gastric cancer cells by down ⁃ regulating RAB27A[J].Biosci Rep,2017,37(3):BSR 20170136
参考文献 22
HIRATA H,UENO K,SHAHRYARI V,et al.MicroRNA⁃ 182⁃5p promotes cell invasion and proliferation by down regulating FOXF2,RECK and MTSS1 genes in human prostate cancer[J].PLoS One,2013,8(1):e55502
参考文献 23
SUZUKI R,AMATYA V J,KUSHITANI K,et al.miR ⁃ 182 and miR⁃183 promote cell proliferation and invasion by targeting FOXO1 in mesothelioma[J].Front Oncol,2018,8:446
参考文献 24
GOLBAKHSH M R,BODDOUHI B,HATAMI N,et al.Down ⁃ regulation of microRNA ⁃ 182 and microRNA ⁃ 183 predicts progression of osteosarcoma[J].Arch Med Sci,2017,13(6):1352-1356
参考文献 25
GUO Y,QIAO X,ZHU L,et al.MicroRNA⁃182⁃5p modu⁃ lates oral squamous cell carcinoma migration and inva⁃ sion via targeting MTSS1 gene[J].Pathol Oncol Res,2020,26(2):1007-1013
参考文献 26
EBRAHIMI A,GIL Z,AMIT M,et al.Primary tumor stag⁃ ing for oral cancer and a proposed modification incorporat⁃ ing depth of invasion:an international multicenter retro⁃ spective study[J].JAMA Otolaryngol Head Neck Surg,2014,140:1138-1148
参考文献 27
SIRIWARDENA S,TSUNEMATSU T,QI G,et al.Inva⁃ sion ⁃ related factors as potential diagnostic and therapeu⁃ tic targets in oral squamous cell carcinoma ⁃a review[J].Int J Mol Sci,2018,19(5):1462
参考文献 28
WANG J,WANG W,LI J,et al.miR182 activates the Ras ⁃MEK⁃ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1[J].Onco Targets Ther,2017,10:667-679
参考文献 29
OHNSEN K B,GUDBERGSSON J M,SKOV M N,et al.A comprehensive overview of exosomes as drug delivery vehicles⁃endogenous nanocarriers for targeted cancer ther⁃ apy[J].Biochim Biophys Acta,2014,1846(1):75-87
参考文献 30
VADER P,MOL E A,PASTERKAMP G,et al.Extracellu⁃ lar vesicles for drug delivery[J].Adv Drug Deliv Rev,2016,106(Pt A):148-156
参考文献 31
DIDIOT M C,HALL L M,COLES A H,et al.Exosome ⁃ mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing[J].Mol Ther,2016,24(10):1836-1847
目录contents

    摘要

    目的:探讨血清外泌体中miR⁃182的表达水平及其在口腔鳞状细胞癌浸润中的临床意义。方法:通过TCGA数据库与文献相关研究相结合,筛选出在头颈鳞癌组织及头颈鳞癌细胞株外泌体中均高表达的miRNA;分别运用ExoQuick试剂盒和超速离心法提取血清及HEK293细胞培养上清液中的外泌体,结合透射电子显微镜、纳米粒子追踪分析仪、Western blot实验鉴定外泌体;通过实时定量PCR方法检验筛选出的miRNA在两种口腔癌细胞系HN6、CAL27及口腔癌患者血清外泌体中的表达水平;通过共孵育的方法将miR⁃182 antagomir加载到HEK293细胞外泌体中,CCK⁃8实验检测该外泌体处理的CAL27细胞增殖能力的变化。结果:miR⁃182在头颈鳞癌组织、口腔鳞癌细胞株及头颈鳞癌细胞株外泌体中均显著高表达;口腔癌患者血清外泌体miR⁃182表达水平与对照组相比升高,但差异无统计学意义(P>0.05),肿瘤浸润深度>5 mm的患者血清外泌体内 miR⁃182 含量相对于正常对照组明显升高(P<0.05);加载miR⁃182 antagomir的外泌体处理CAL27细胞后,CAL27细胞的增殖能力显著下降(P<0.05)。结论:miR⁃182在口腔癌中高表达,血清外泌体miR⁃182的表达水平与口腔鳞状细胞癌的肿瘤浸润深度有关, 加载miR⁃182 antagomir的外泌体可以显著抑制CAL27细胞的增殖。

    Abstract

    Objective:To explore the clinical significance of the expression level of miR⁃182 in serum exosomes in the infiltration of oral squamous cell carcinoma. Methods:Combined with the TCGA database and related research in the literature,miRNAs highly expressed in exosomes of head and neck squamous cell carcinoma tissues and cell lines were screened. Exosomes were extracted using ExoQuick kit and ultracentrifugationfrom serum and culture supernatant of HEK293 cells,and identified with transmission electron microscopy,nanoparticle tracking analyzer and Western blot;the expression levels of miR ⁃ 182 in two oral cancer cell lines,HN6, CAL27,and serum exosome were determined by real⁃time quantitative RT⁃PCR . The proliferation of CAL27 cells treated with miR⁃ 182 antagomir loaded HEK293 cell exosomeswas detected by CCK ⁃ 8 experiment. Results:miR ⁃ 182 was highly expressed in the exosomes of head and neck squamous cell carcinoma tissues,oral squamous cell carcinoma cell lines and head and neck squamous cell carcinoma cell lines. The expression levels of serum exosome miR⁃182 in patients with oral cancer increased,compared with those in the control group. However,the differences were statistically insignificant(P > 0.05). The content of miR⁃182 in the serum exosomes of patients with tumor infiltration depth >5 mm was significantly higher than that of the control group(P < 0.05). After CAL27 cells were treated with exosomes loaded with miR ⁃ 182 antagomir,the proliferation ability of CAL27 cells decreased significantly(P < 0.05). Conclusion:miR⁃182 is highly expressed in oral cancer and the expression level of serum exosome miR⁃182 is related to the depth of tumor infiltration of oral squamous cell carcinoma. The exosomes loaded with miR⁃182 antagomir significantly inhibit the proliferation of CAL27 cells.

  • 口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)是人体最常见的6大恶性肿瘤之一,时至今日其发病率仍在上升[1-2]。OSCC具有侵袭性生长、局部浸润及远处转移、术后复发率高、预后差的特点,并且通常在中晚期才被诊断[3-4]。OSCC预后较差主要是肿瘤耐药、术后复发和转移所引起的,OS⁃ CC的诊治对临床医生提出了巨大挑战[5]

  • 微小RNA(miRNA)是一种18~25个核苷酸长度的非编码RNA,miRNA可以通过互补相互作用结合其靶mRNA的3′非翻译区(UTR),从而调节基因表达[6]。在人类癌症研究中发现miRNA的失调[7],且miRNA的表达水平与癌症的发展和进程密切相关,因此被认为是诊断癌症的预测性生物标志物之一[8]。外泌体是直径40~150nm的细胞外囊泡,具有双层脂质的膜结构[9],外泌体可以由多种体细胞分泌并广泛存在于各种体液中,如尿液、血清、唾液等[10],外泌体可以介导细胞间mRNA和miRNA的传递,并且在受体细胞中产生相应的作用[11]。研究表明,外泌体中的miRNA与其起源细胞中的miRNA类似,且外泌体可以保护其包含的miRNA免受RNase降解,使其稳定存在于循环中,表明它们可能具有作为疾病诊断标志物及预后评价的潜在价值[12-13]。因此,本实验通过检测OSCC患者血清外泌体中miRNA的表达水平,期望找到与OSCC疾病进展有关的外泌体miRNA,为抑制OSCC转移和复发提供新途径,以改善OSCC患者的生存率。

  • 1 材料和方法

  • 1.1 材料

  • 新鲜的OSCC患者血清样本来源于南京医科大学附属口腔医院口腔颌面外科,常规病理结果均为OSCC,且手术前均未接受任何特殊的抗肿瘤治疗。对照组血清样本均从没有肿瘤疾病的个体获得。本研究经医院伦理委员会批准,所有参与研究者均知情同意。

  • HN6、CAL27、HEK293及HOEC细胞株均购自ATCC细胞库,DMEM/F⁃12培养基、DMEM高糖培养基、青/链霉素双抗、0.25%胰蛋白酶、1×PBS缓冲液 (Gibco公司,美国),胎牛血清(Sciencell公司,美国),miDETECT A TrackTM miRNA qRT ⁃PCR Starter Kit、cel⁃miR⁃39⁃3p标准品及引物、hsa⁃miR⁃182⁃5p引物、U6引物(广州市锐博生物科技有限公司), TRIzol(Invitrogen公司,美国),无水乙醇、三氯甲烷、异丙醇(上海化学试剂有限公司),Dr.GenTLE Pre⁃ cipitation Carrier(北京宝日医生物技术有限公司), ExoQuick Exosome Precipitation Kit(SBI公司,美国),PKH67绿色荧光染料(Sigma公司,美国),超敏ECL发光液(江苏新赛美生物科技有限公司),鼠抗人CD9单克隆抗体、兔抗人钙联蛋白(Calnexin)多克隆抗体(Abcam公司,美国),兔抗人肿瘤易感基因101蛋白(TSG101)单克隆抗体(GeneTex公司,美国),CCK⁃8检测试剂盒(上海东仁化学科技有限公司),Cy3标记的miR⁃182antagomir(上海吉玛基因公司)。

  • 1.2 方法

  • 1.2.1 差异miRNA筛选

  • 登陆TCGA网站https://cancergenome.nih.gov/,下载头颈鳞癌(head and neck squamous cell carcino⁃ ma,HNSCC)的569份miRNA⁃seq三级数据,其中包括44例癌旁组织及525例癌组织。打开R软件, edgeR包进行差异分析,得到包括差异基因异常表达倍数(fold change,FC)及错误发现率(false disco⁃ very rate,FDR)值的列表文件“diffmiSig.xls”,差异筛选的标准为|log2FC|>1、FDR=0.05。

  • 1.2.2 血清样本收集

  • 采集空腹静脉血液5mL于血清分离胶试管中,然后在室温下以3 000r/min离心10min。吸取上层血清,转移分装至灭菌EP管中,于-80℃冰箱中保存。其中OSCC患者组17例,男9例,女8例,年龄 (59.5±10.4)岁;对照组18例,男8例,女10例,年龄 (58.3±13.1)岁。两组在年龄、性别组成上差异无统计学意义(P>0.05)。

  • 1.2.3 细胞培养

  • OSCC细胞株HN6与CAL27使用含10%胎牛血清及1%青链霉素双抗的DMEM/F⁃12培养基培养, HEK293与正常人口腔上皮细胞HOEC使用含10%胎牛血清及1%双抗的DMEM培养基培养,均培养于含5%CO2的37℃恒温培养箱中。

  • 1.2.4 外泌体提取

  • 血清外泌体的提取采用美国SBI公司生产的ExoQuick试剂盒进行提取,根据说明书,4℃解冻300 μL血清样本,然后将血清样本于4℃条件下3 000 g离心15min,弃去沉淀,吸取250 μL血清,加入63 μL ExoQuick试剂,上下颠倒EP管混匀,于4℃冰箱中静置40min后4℃条件下1 500 g 离心30min,弃上清然后同等条件下离心5min,移除残留试剂,最后加入100 μL PBS缓冲液溶解沉淀。

  • HEK293细胞外泌体提取:将HEK293细胞培养至对数生长期,更换培养基(包含不含外泌体的10%胎牛血清,将胎牛血清以200 000 g离心18h以耗尽外泌体),继续培养48h收集上清液,参考Thery等[14] 的方法进行外泌体的提取,将上清液在4℃下以1 000 g离心30min,然后以10 000 g离心60min,去除死细胞和碎屑,然后使用L⁃80XP超速离心机(贝克曼)在4℃下以140 000 g离心90min。将沉淀重悬于PBS后,再以140 000 g离心90min。最后将外泌体沉淀物重悬于PBS中,使用BCA蛋白定量试剂盒进行定量。

  • 1.2.5 透射电镜及纳米粒子追踪分析(nanoparticle tracking analyzer,NTA)

  • 外泌体样品用1%戊二醛固定,并用1%磷钨酸染色,于透射电子显微镜下观察外泌体并拍摄图片。使用ZetaView系统(Particle Metrix)进行NTA,追踪悬浮在PBS中外泌体的布朗运动,并且通过Stokes⁃Einstein方程生成尺寸分布数据。

  • 1.2.6 Western blot实验

  • 用RIPA裂解液提取细胞及外泌体总蛋白,将等量的蛋白质样品加样并在十二烷基硫酸钠⁃聚丙烯酰胺凝胶进行电泳(血清外泌体上样量为70 μg, HEK293外泌体上样量为20 μg),然后转移到PVDF膜上。用5%的脱脂奶粉溶液封闭1h,将膜与CD9抗体、TSG101抗体、Calnexin抗体一起在4℃下过夜,次日用TBST溶液洗涤3次,将膜在室温下与二抗孵育1h,再用TBST溶液洗涤3次。最后使用ECL发光试剂盒将蛋白条带可视化。

  • 1.2.7 RNA提取和RT⁃qPCR

  • 采用TRIzol法提取细胞及外泌体总RNA,在提取血清外泌体总RNA时加入线虫cel⁃miR⁃39⁃3p标准品作为外参,加入Dr.GenTLETM Precipitation Car⁃ rier提高RNA的回收效率。使用Nanodrop2000检测RNA纯度和浓度。线虫cel⁃miR⁃39⁃3p引物、hsa⁃ miR⁃182⁃5p引物、U6引物均购自广州市锐博生物科技有限公司。采用加尾法试剂盒miDETECT A TrackTM miRNA qRT⁃PCR Starter Kit进行RT⁃qPCR检测。检测细胞中miR⁃182表达水平时以U6作为内参,检测血清外泌体miR⁃182表达水平时以cel⁃miR⁃ 39⁃3p作为参照基因,采用2⁃ΔΔCT法计算miR⁃182的相对表达量。ΔC T(细胞)=CTmiRNA-CTU6,ΔC T(外泌体)=CTmiRNA-CTcel⁃miR⁃39

  • 1.2.8 HEK293细胞外泌体加载miR⁃182 antagomir

  • miR⁃182antagomir是miR⁃182的拮抗剂,在3′ 末端胆固醇基修饰,5′端使用红色荧光Cy3标记,并用2′Ome修饰。miR⁃182antagomir上的胆固醇基可以与外泌体膜相结合从而加载到外泌体中。参考Zhang等[15]的研究,将100nmol/L胆固醇缀合的miR⁃182antagomir与200 μL PBS中的100 μg外泌体在37℃下孵育1h,用PBS重悬外泌体在140 000 g 的条件下离心90min后,将外泌体重悬并在使用前保存在-80℃。

  • 1.2.9 荧光显微镜下观察外泌体加载miR⁃182 antagomir

  • 用250 μL的DiluentC液稀释100 μL外泌体,加入1 μL的绿色荧光染料PKH67,室温孵育4min;然后加入500 μL含有1%牛血清白蛋白的PBS溶液防止过度染色,加入PBS稀释外泌体,再通过140 000 g 离心90min,收集外泌体并用PBS重悬,避光保存。在倒置荧光显微镜下观察miR⁃182antagomir是否加载到外泌体中。

  • 1.2.10 CCK⁃8实验

  • 将CAL27细胞接种于6孔板中(每孔2×105 个细胞),待细胞贴壁后更换为含有加载miR⁃182antagomir外泌体的培养基,对照组的外泌体加载NC (negative control,NC),培养48h。将细胞消化离心计数,接种于96孔板中,每孔2 000个细胞,每组设置3个复孔,37℃、5%CO2条件下培养,分别在24、 48、72h时,向每孔加入10 μL CCK⁃8溶液孵育2h,用酶标仪测定波长450nm处的吸光度。

  • 1.3 统计学方法

  • 所有数据均用SPSS23.0软件进行统计学处理,计量资料以均数±标准差(x- ± s)表示,两组间比较用 t检验,P <0.05为差异具有统计学意义。

  • 2 结果

  • 2.1 miR⁃182在HNSCC癌组织中上调

  • 对TCGA数据库中HNSCC样本的miRNA测序数据进行分析发现,有155个miRNA在HNSCC癌组织中高表达,107个在癌组织中低表达(图1A)。 Langevin等[16] 培养了4种HNSCC细胞系和原代人牙龈上皮细胞,通过超速离心法分离出所培养的细胞上清液中的外泌体,并应用miRNA测序来全面表征其miRNA含量,发现与正常的口腔上皮细胞外泌体相比,HNSCC细胞的外泌体miRNA含量存在巨大差异。我们将筛选出的差异miRNA与Langevin等的研究结果进行比较,发现miR⁃182与miR⁃93在HNSCC组织及4种HNSCC细胞系外泌体中均呈现出高表达状态(表1)。本课题组先前研究发现miR⁃182在OSCC癌组织中显著高表达(P <0.05),而miR⁃93在OSCC癌组织与癌旁组织中的表达水平无显著性差异。因此我们选择miR⁃182进一步研究。

  • 图1 差异表达miRNA的筛选

  • Fig.1 Screening of differentially expressed miRNAs

  • 2.2 miR⁃182在OSCC细胞中表达上调

  • 通过培养OSCC细胞株HN6、CAL27及人正常口腔上皮细胞株HOEC,运用qPCR检测发现miR⁃182在OSCC细胞株HN6、CAL27中表达显著上调(图2)。

  • 表1 miR⁃182与miR⁃93在头颈鳞癌癌组织相对于癌旁组织的表达量

  • Table1 The expression levels of miR⁃182and miR⁃93in head and neck squamous cell carcinoma tissues relative to paracancer

  • 图2 miR⁃182在CAL27、HN6以及HOEC中的表达情况

  • Fig.2 Expression of miR ⁃ 182in CAL27,HN6,and HOEC

  • 2.3 血清外泌体鉴定

  • 运用ExoQuick试剂盒从OSCC患者及正常人血清中提取外泌体,使用Western blot实验、透射电子显微镜和NTA表征外泌体。Western blot实验显示血清外泌体组检测到外泌体标志性蛋白TSG101和CD9的表达,而血清上清液中没有检测到两者的表达(图3A)。透射电子显微镜观察发现有40~150nm大小的囊泡样结构(图3B)。NTA显示外泌体样本中颗粒物大小分布的峰值是105nm,符合外泌体的粒径分布特点(图3C)。

  • 2.4 miR⁃182在OSCC患者血清外泌体中的表达

  • 使用ExoQuick试剂盒提取17例OSCC患者及18例正常人的血清外泌体。通过qPCR检测发现, OSCC患者血清外泌体内miR⁃182的表达水平有升高趋势,但与对照组无显著性差异(P >0.05,图4A),这可能与样本量较少有关,在病理上肿瘤浸润深度> 5mm的患者血清外泌体内miR⁃182含量相对于对照组有明显升高(P <0.05,图4B)。

  • 2.5 HEK293细胞外泌体鉴定

  • 运用超速离心法从HEK293细胞上清液中提取外泌体。Western blot实验显示外泌体组检测到外泌体标志性蛋白CD9和TSG101的表达,而没有检测到胞浆蛋白Calnexin的表达(图5A)。透射电子显微镜观察发现有40~150nm大小的囊泡样结构(图5B)。NTA显示外泌体样本中颗粒物大小分布的峰值是98nm,符合外泌体的粒径分布特点(图5C)。

  • 2.6 HEK293细胞外泌体加载miR⁃182 antagomir

  • 使用共孵育的方法将Cy3标记的miR⁃182an⁃ tagomir加载到外泌体中,倒置荧光显微镜下观察发现,红色荧光Cy3标记的miR⁃182antagomir(图6A) 与绿色荧光PKH67标记的外泌体(图6B)两者存在共标记,呈黄色(图6C),表明miR⁃182antagomir加载到了外泌体中。

  • 图4 miR⁃182在血清外泌体中的表达情况

  • Fig.4 Expression of miR⁃182in serum exosomes

  • 图5 HEK293细胞外泌体鉴定

  • Fig.5 Characterization of exosomes in HEK293

  • 图6 miR⁃182antagomir有效加载到外泌体中(×400)

  • Fig.6 Efficient loading of exosomes with miR⁃182antagomir(×400)

  • 2.7 加载miR⁃182 antagomir的外泌体抑制CAL27 细胞的增殖

  • 将加载miR ⁃182antagomir的外泌体与CAL27细胞共培养,通过CCK ⁃ 8检测发现,48、72h时CAL27细胞的增殖能力受到了明显抑制(P <0.05,图7)。

  • 3 讨论

  • 外泌体是由细胞分泌的小囊泡,目前其主要的分离方法有差速超速离心法、超滤法、聚合物沉淀法、微流控芯片分离法和免疫亲和法等[17],ExoQuick试剂盒是由美国SBI公司生产的基于聚合物沉淀法的外泌体提取试剂盒,具有操作简单、回收效率高和设备要求低等优点,适合小体积样本的外泌体提取。超速离心法是外泌体分离使用最广泛的方法,但是外泌体的回收效率相对较低[18-19],适用于体积较大外泌体含量较为丰富样本的外泌体分离,我们采用这两种方法分别对血清和HEK293细胞培养上清液中的外泌体进行提取,并通过蛋白免疫印迹实验、TEM和NTA证明成功提取到了外泌体。

  • 图7 exo⁃miR⁃182antagomir对CAL27细胞增殖的影响

  • Fig.7 Effects of exo⁃miR⁃182antagomir on the prolifera⁃ tion of CAL27cells

  • 有研究表明miR⁃182与多种肿瘤的发生发展有关,如miR⁃182⁃5p上调作为前列腺癌、膀胱癌、胃癌和乳腺癌相关的致癌基因[20-24]。Guo等[25] 研究发现miR⁃182⁃5p通过靶向MTSS1基因调节OSCC迁移和侵袭,当OSCC分化程度较低,T和N分期较高时miR⁃182⁃5p表达的增加更为显著。本研究发现当OSCC患者肿瘤浸润深度>5mm时,患者血清外泌体内miR⁃182含量相对于正常人有明显升高(P < 0.05),表明OSCC患者血清外泌体miR⁃182含量与OSCC的疾病进展密切相关。OSCC的浸润深度与生存率密切相关,当肿瘤厚度超过2mm时,常观察到颈部淋巴结转移[26],OSCC细胞的血管和神经周围浸润是导致局部复发以及区域和远处转移的预后因素[27],因此血清外泌体miR⁃182可能成为OSCC的预后标志物之一,但是其作用机制仍需进一步研究。

  • 研究表明miR⁃182可以促进OSCC细胞的增殖、迁移和侵袭,通过转染抗miR⁃182寡核苷酸可以显著抑制OSCC的增殖、迁移和侵袭[2528],但缺乏安全有效的递送系统阻碍了其临床应用。外泌体作为天然的纳米材料,具有免疫原性小,细胞毒性低,可以穿过血⁃脑屏障,能够在血液中稳定存在等特点[29-30],是一种理想的药物递送载体,因此我们采用外泌体递送miR⁃182的拮抗剂用于观察OSCC细胞的增殖实验。通过共孵育的方法将亲脂性修饰的miR⁃182antagomir加载到HEK293细胞外泌体中,在荧光显微镜下观察到药物加载到外泌体中,加载miR⁃182antagomir的外泌体可以显著抑制CAL27细胞的增殖,这与Wang等[28] 研究一致,为口腔癌治疗提供了一种新的途径。Zhang等[15] 的研究发现通过共孵育的方法可以将胆固醇基修饰的miR⁃210加载到外泌体中,并且加载miR⁃210的外泌体可以穿过血脑屏障从而改善小鼠脑缺血损伤,Didiot等[31] 研究发现外泌体介导的寡核苷酸递送可以降低沉默Huntingtin (Htt)mRNA所需的寡核苷酸有效浓度,在最近的一项研究中,需要注入700 μg反义寡核苷酸才能有效沉默Htt mRNA,而Didiot等[31] 研究表明,在1周内 (1 μg/d)仅注入3.5~7.0 μg hsiRNAHTT就足以降低Htt mRNA的水平约35%。上述研究表明,共孵育法是一种简单高效的外泌体加载核酸类药物的方法,也表现出外泌体在疾病治疗领域的巨大潜力。

  • 综上所述,miR⁃182在OSCC中以及肿瘤浸润深度大于5mm的患者的血清外泌体中表达水平均升高,这为OSCC的诊断及预后评估提供了新的标志物。外泌体加载miR⁃182的抑制剂也为口腔癌提供了潜在的治疗方法。

  • 参考文献

    • [1] RADHIKA T,JEDDY N,NITHYA S,et al.Salivary bio⁃ markers in oral squamous cell carcinoma ⁃ an insight[J].J Oral Biol Craniofac Res,2016,6(Suppl 1):S51-S54

    • [2] SALAHSHOURIFAR I,VINCENT ⁃ CHONG V K,KAL⁃ LARAKKAL T G,et al.Genomic DNA copy number alter⁃ ations from precursor oral lesions to oral squamous cell carcinoma[J].Oral Oncol,2014,50(5):404-412

    • [3] KRISHNA RAO S V,MEJIA G,ROBERTS ⁃ THOMSON K,et al.Epidemiology of oral cancer in Asia in the past decade⁃⁃an update(2000⁃2012)[J].Asian Pac J Cancer Prev,2013,14(10):5567-5577

    • [4] DE MORAIS E F,MAFRA R P,GONZAGA A,et al.Prog⁃ nostic factors of oral squamous cell carcinoma in young patients:a systematic review[J].J Oral Maxillofac Surg,2017,75(7):1555-1566

    • [5] GHARAT S A,MOMIN M,BHAVSAR C.Oral squamous cell carcinoma:current treatment strategies and nanotech⁃ nology ⁃ based approaches for prevention and therapy[J].Crit Rev Ther Drug Carrier Syst,2016,33(4):363-400

    • [6] MICHLEWSKI G,CÁCERES J F.Post ⁃ transcriptional control of miRNA biogenesis[J].RNA,2019,25(1):1-16

    • [7] HATA A,LIEBERMAN J.Dysregulation of microRNA biogenesis and gene silencing in cancer[J].Sci Signal,2015,8(368):re3

    • [8] HUIYIN L,HAIQI L,XIAN W,et al.MicroRNAs as po⁃ tential biomarkers in cancer:opportunities and challenges [J].Biomed Res Int,2015,2015:1-17

    • [9] KOWAL J,TKACH M,THÉRY C.Biogenesis and secre⁃tion of exosomes[J].Curr Opin Cell Biol,2014,29:116-125

    • [10] SALEHI M,SHARIFI M.Exosomal miRNAs as novel can⁃ cer biomarkers:challenges and opportunities[J].J Cell Physiol,2018,233(9):6370-6380

    • [11] VALADI H,EKSTRÖM K,BOSSIOS A,et al.Exosome ⁃ mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J].Nat Cell Biol,2007,9(6):654-659

    • [12] ZHOU J,LI X L,CHEN Z R,et al.Tumor ⁃ derived exo⁃ somes in colorectal cancer progression and their clinical applications[J].Oncotarget,2017,8(59):100781-100790

    • [13] RABINOWITS G,GERCEL⁃TAYLOR C,DAY J M,et al.Exosomal microRNA:a diagnostic marker for lung cancer [J].Clin Lung Cancer,2009,10(1):42-46

    • [14] THÉRY C,AMIGORENA S,RAPOSO G,et al.Isolation and characterization of exosomes from cell culture super⁃ natants and biological fluids[J].Curr Protoc Cell Biol,2006,3:3-22

    • [15] ZHANG H,WU J,WU J,et al.Exosome⁃mediated target⁃ ed delivery of miR⁃210 for angiogenic therapy after cere⁃ bral ischemia in mice[J].J Nanobiotechnology,2019,17(1):29

    • [16] LANGEVIN S,KUHNELL D,PARRY T,et al.Compre⁃ hensive microRNA ⁃sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomark⁃ ers[J].Oncotarget,2017,8(47):82459-82474

    • [17] TANG Y T,HUANG Y Y,ZHENG L,et al.Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum[J].Int J Mol Med,2017,40(3):834-844

    • [18] LIVSHITS M,KHOMYAKOVA E,EVTUSHENKO E G,et al.Isolation of exosomes by differential centrifugation:theoretical analysis of a commonly used protocol[J].Sci Rep,2015,5:17319

    • [19] WITWER K W,BUZÁS E I,BEMIS L T,et al.Standard⁃ ization of sample collection,isolation and analysis meth⁃ ods in extracellular vesicle research[J].J Extracell Vesi⁃ cles,2013,2:2

    • [20] SHARIFI M,MORIDNIA A.Apoptosis⁃inducing and anti⁃ proliferative effect by inhibition of miR ⁃ 182 ⁃ 5p through the regulation of CASP9 expression in human breast can⁃ cer[J].Cancer Gene Ther,2017,24(2):75-82

    • [21] LI Y,CHEN S,SHAN Z,et al.miR⁃182⁃5p improves the viability,mitosis,migration,and invasion ability of human gastric cancer cells by down ⁃ regulating RAB27A[J].Biosci Rep,2017,37(3):BSR 20170136

    • [22] HIRATA H,UENO K,SHAHRYARI V,et al.MicroRNA⁃ 182⁃5p promotes cell invasion and proliferation by down regulating FOXF2,RECK and MTSS1 genes in human prostate cancer[J].PLoS One,2013,8(1):e55502

    • [23] SUZUKI R,AMATYA V J,KUSHITANI K,et al.miR ⁃ 182 and miR⁃183 promote cell proliferation and invasion by targeting FOXO1 in mesothelioma[J].Front Oncol,2018,8:446

    • [24] GOLBAKHSH M R,BODDOUHI B,HATAMI N,et al.Down ⁃ regulation of microRNA ⁃ 182 and microRNA ⁃ 183 predicts progression of osteosarcoma[J].Arch Med Sci,2017,13(6):1352-1356

    • [25] GUO Y,QIAO X,ZHU L,et al.MicroRNA⁃182⁃5p modu⁃ lates oral squamous cell carcinoma migration and inva⁃ sion via targeting MTSS1 gene[J].Pathol Oncol Res,2020,26(2):1007-1013

    • [26] EBRAHIMI A,GIL Z,AMIT M,et al.Primary tumor stag⁃ ing for oral cancer and a proposed modification incorporat⁃ ing depth of invasion:an international multicenter retro⁃ spective study[J].JAMA Otolaryngol Head Neck Surg,2014,140:1138-1148

    • [27] SIRIWARDENA S,TSUNEMATSU T,QI G,et al.Inva⁃ sion ⁃ related factors as potential diagnostic and therapeu⁃ tic targets in oral squamous cell carcinoma ⁃a review[J].Int J Mol Sci,2018,19(5):1462

    • [28] WANG J,WANG W,LI J,et al.miR182 activates the Ras ⁃MEK⁃ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1[J].Onco Targets Ther,2017,10:667-679

    • [29] OHNSEN K B,GUDBERGSSON J M,SKOV M N,et al.A comprehensive overview of exosomes as drug delivery vehicles⁃endogenous nanocarriers for targeted cancer ther⁃ apy[J].Biochim Biophys Acta,2014,1846(1):75-87

    • [30] VADER P,MOL E A,PASTERKAMP G,et al.Extracellu⁃ lar vesicles for drug delivery[J].Adv Drug Deliv Rev,2016,106(Pt A):148-156

    • [31] DIDIOT M C,HALL L M,COLES A H,et al.Exosome ⁃ mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing[J].Mol Ther,2016,24(10):1836-1847

  • 参考文献

    • [1] RADHIKA T,JEDDY N,NITHYA S,et al.Salivary bio⁃ markers in oral squamous cell carcinoma ⁃ an insight[J].J Oral Biol Craniofac Res,2016,6(Suppl 1):S51-S54

    • [2] SALAHSHOURIFAR I,VINCENT ⁃ CHONG V K,KAL⁃ LARAKKAL T G,et al.Genomic DNA copy number alter⁃ ations from precursor oral lesions to oral squamous cell carcinoma[J].Oral Oncol,2014,50(5):404-412

    • [3] KRISHNA RAO S V,MEJIA G,ROBERTS ⁃ THOMSON K,et al.Epidemiology of oral cancer in Asia in the past decade⁃⁃an update(2000⁃2012)[J].Asian Pac J Cancer Prev,2013,14(10):5567-5577

    • [4] DE MORAIS E F,MAFRA R P,GONZAGA A,et al.Prog⁃ nostic factors of oral squamous cell carcinoma in young patients:a systematic review[J].J Oral Maxillofac Surg,2017,75(7):1555-1566

    • [5] GHARAT S A,MOMIN M,BHAVSAR C.Oral squamous cell carcinoma:current treatment strategies and nanotech⁃ nology ⁃ based approaches for prevention and therapy[J].Crit Rev Ther Drug Carrier Syst,2016,33(4):363-400

    • [6] MICHLEWSKI G,CÁCERES J F.Post ⁃ transcriptional control of miRNA biogenesis[J].RNA,2019,25(1):1-16

    • [7] HATA A,LIEBERMAN J.Dysregulation of microRNA biogenesis and gene silencing in cancer[J].Sci Signal,2015,8(368):re3

    • [8] HUIYIN L,HAIQI L,XIAN W,et al.MicroRNAs as po⁃ tential biomarkers in cancer:opportunities and challenges [J].Biomed Res Int,2015,2015:1-17

    • [9] KOWAL J,TKACH M,THÉRY C.Biogenesis and secre⁃tion of exosomes[J].Curr Opin Cell Biol,2014,29:116-125

    • [10] SALEHI M,SHARIFI M.Exosomal miRNAs as novel can⁃ cer biomarkers:challenges and opportunities[J].J Cell Physiol,2018,233(9):6370-6380

    • [11] VALADI H,EKSTRÖM K,BOSSIOS A,et al.Exosome ⁃ mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J].Nat Cell Biol,2007,9(6):654-659

    • [12] ZHOU J,LI X L,CHEN Z R,et al.Tumor ⁃ derived exo⁃ somes in colorectal cancer progression and their clinical applications[J].Oncotarget,2017,8(59):100781-100790

    • [13] RABINOWITS G,GERCEL⁃TAYLOR C,DAY J M,et al.Exosomal microRNA:a diagnostic marker for lung cancer [J].Clin Lung Cancer,2009,10(1):42-46

    • [14] THÉRY C,AMIGORENA S,RAPOSO G,et al.Isolation and characterization of exosomes from cell culture super⁃ natants and biological fluids[J].Curr Protoc Cell Biol,2006,3:3-22

    • [15] ZHANG H,WU J,WU J,et al.Exosome⁃mediated target⁃ ed delivery of miR⁃210 for angiogenic therapy after cere⁃ bral ischemia in mice[J].J Nanobiotechnology,2019,17(1):29

    • [16] LANGEVIN S,KUHNELL D,PARRY T,et al.Compre⁃ hensive microRNA ⁃sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomark⁃ ers[J].Oncotarget,2017,8(47):82459-82474

    • [17] TANG Y T,HUANG Y Y,ZHENG L,et al.Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum[J].Int J Mol Med,2017,40(3):834-844

    • [18] LIVSHITS M,KHOMYAKOVA E,EVTUSHENKO E G,et al.Isolation of exosomes by differential centrifugation:theoretical analysis of a commonly used protocol[J].Sci Rep,2015,5:17319

    • [19] WITWER K W,BUZÁS E I,BEMIS L T,et al.Standard⁃ ization of sample collection,isolation and analysis meth⁃ ods in extracellular vesicle research[J].J Extracell Vesi⁃ cles,2013,2:2

    • [20] SHARIFI M,MORIDNIA A.Apoptosis⁃inducing and anti⁃ proliferative effect by inhibition of miR ⁃ 182 ⁃ 5p through the regulation of CASP9 expression in human breast can⁃ cer[J].Cancer Gene Ther,2017,24(2):75-82

    • [21] LI Y,CHEN S,SHAN Z,et al.miR⁃182⁃5p improves the viability,mitosis,migration,and invasion ability of human gastric cancer cells by down ⁃ regulating RAB27A[J].Biosci Rep,2017,37(3):BSR 20170136

    • [22] HIRATA H,UENO K,SHAHRYARI V,et al.MicroRNA⁃ 182⁃5p promotes cell invasion and proliferation by down regulating FOXF2,RECK and MTSS1 genes in human prostate cancer[J].PLoS One,2013,8(1):e55502

    • [23] SUZUKI R,AMATYA V J,KUSHITANI K,et al.miR ⁃ 182 and miR⁃183 promote cell proliferation and invasion by targeting FOXO1 in mesothelioma[J].Front Oncol,2018,8:446

    • [24] GOLBAKHSH M R,BODDOUHI B,HATAMI N,et al.Down ⁃ regulation of microRNA ⁃ 182 and microRNA ⁃ 183 predicts progression of osteosarcoma[J].Arch Med Sci,2017,13(6):1352-1356

    • [25] GUO Y,QIAO X,ZHU L,et al.MicroRNA⁃182⁃5p modu⁃ lates oral squamous cell carcinoma migration and inva⁃ sion via targeting MTSS1 gene[J].Pathol Oncol Res,2020,26(2):1007-1013

    • [26] EBRAHIMI A,GIL Z,AMIT M,et al.Primary tumor stag⁃ ing for oral cancer and a proposed modification incorporat⁃ ing depth of invasion:an international multicenter retro⁃ spective study[J].JAMA Otolaryngol Head Neck Surg,2014,140:1138-1148

    • [27] SIRIWARDENA S,TSUNEMATSU T,QI G,et al.Inva⁃ sion ⁃ related factors as potential diagnostic and therapeu⁃ tic targets in oral squamous cell carcinoma ⁃a review[J].Int J Mol Sci,2018,19(5):1462

    • [28] WANG J,WANG W,LI J,et al.miR182 activates the Ras ⁃MEK⁃ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1[J].Onco Targets Ther,2017,10:667-679

    • [29] OHNSEN K B,GUDBERGSSON J M,SKOV M N,et al.A comprehensive overview of exosomes as drug delivery vehicles⁃endogenous nanocarriers for targeted cancer ther⁃ apy[J].Biochim Biophys Acta,2014,1846(1):75-87

    • [30] VADER P,MOL E A,PASTERKAMP G,et al.Extracellu⁃ lar vesicles for drug delivery[J].Adv Drug Deliv Rev,2016,106(Pt A):148-156

    • [31] DIDIOT M C,HALL L M,COLES A H,et al.Exosome ⁃ mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing[J].Mol Ther,2016,24(10):1836-1847