en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

金文杰,E⁃mail:kinwj210@126.com

中图分类号:R742

文献标识码:A

文章编号:1007-4368(2021)04-516-06

DOI:10.7655/NYDXBNS20210407

参考文献 1
JAKARIA M,KIM J,KARTHIVASHAN G,et al.Emerg⁃ ing signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases[J].J Ginseng Res,2019,43(2):163-171
参考文献 2
YANG Q Q,ZHOU J W.Neuroinflammation in the cen⁃ tral nervous system:symphony of glial cells[J].Glia,2019,67(6):1017-1035
参考文献 3
SUBHRAMANYAM C S,WANG C,HU Q,et al.Microg⁃ lia⁃mediated neuroinflammation in neurodegenerative dis⁃ eases[J].Semin Cell Dev Biol,2019,94:112-120
参考文献 4
KINNEY J W,BEMILLER S M,MURTISHAW A S,et al.Inflammation as a central mechanism in Alzheimer’s dis⁃ ease[J].Alzheimers Dement(N Y),2018,4:575-590
参考文献 5
XU L,HE D,BAI Y.Microglia⁃Mediated inflammation and neurodegenerative disease[J].Mol Neurobiol,2016,53(10):6709-6715
参考文献 6
CHEON S Y,KIM E J,KIM J M,et al.Regulation of mi⁃ croglia and macrophage polarization via apoptosis signal ⁃ regulating kinase 1 silencing after ischemic/hypoxic injury [J].Front Mol Neurosci,2017,10:261
参考文献 7
PANULA P,SUNDVIK M,KARLSTEDT K.Developmen⁃ tal roles of brain histamine[J].Trends Neurosci,2014,37(3):159-168
参考文献 8
HAAS H L,SERGEEVA O A,SELBACH O.Histamine in the nervous system[J].Physiol Rev,2008,88(3):1183-1241
参考文献 9
BARATA ⁃ANTUNES S,CRISTÓVÃO A C,PIRES J,et al.Dual role of histamine on microglia ⁃induced neurode⁃ generation[J].Biochim Biophys Acta Mol Basis Dis,2017,1863(3):764-769
参考文献 10
CACABELOS R,TORRELLAS C,FERNÁNDEZ⁃NOVOA L,et al.Histamine and immune biomarkers in CNS disor⁃ ders[J].Mediators Inflamm,2016,2016:1924603
参考文献 11
DONG H,ZHANG W,ZENG X,et al.Histamine induces upregulated expression of histamine receptors and increas⁃ es release of inflammatory mediators from microglia[J].Mol Neurobiol,2014,49(3):1487-1500
参考文献 12
KAUSHIK A,JAYANT R D,BHARDWAJ V,et al.Per⁃ sonalized nanomedicine for CNS diseases[J].Drug Dis⁃ cov Today,2018,23(5):1007-1015
参考文献 13
DE LUCA C,COLANGELO A M,ALBERGHINA L,et al.Neuro ⁃ immune hemostasis:homeostasis and diseases in the central nervous system[J].Front Cell Neurosci,2018,12:459
参考文献 14
ORIHUELA R,MCPHERSON C A,HARRY G J.Microg⁃ lial M1/M2 polarization and metabolic states[J].Br J Pharmacol,2016,173(4):649-665
参考文献 15
FRICK L,RAPANELLI M,ABBASI E,et al.Histamine regulation of microglia:gene ⁃ environment interaction in the regulation of central nervous system inflammation[J].Brain Behav Immun,2016,57:326-337
参考文献 16
RANSOHOFF R M,EL KHOURY J.Microglia in health and disease[J].Cold Spring Harb Perspect Biol,2015,8(1):a020560
参考文献 17
DONG H,WANG Y,ZHANG X,et al.Stabilization of brain mast cells alleviates LPS ⁃ induced neuroinflamma⁃tion by inhibiting microglia activation[J].Front Cell Neu⁃ rosci,2019,13:191
参考文献 18
VIZUETE M L,MERINO M,VENERO J L,et al.Hista⁃ mine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substan⁃ tia nigra[J].J Neurochem,2000,75(2):540-552
参考文献 19
PARK S M,CHOI M S,SOHN N W,et al.Ginsenoside Rg3 attenuates microglia activation following systemic li⁃ popolysaccharide treatment in mice[J].Biol Pharm Bull,2012,35(9):1546-1552
参考文献 20
WANG Y,SHA H,ZHOU L,et al.The mast cell is an ear⁃ ly activator of lipopolysaccharide⁃induced neuroinflamma⁃ tion and blood⁃brain barrier dysfunction in the hippocam⁃ pus[J].Mediators Inflamm,2020,2020:8098439
参考文献 21
WOHLEB E S,FENN A M,PACENTA A M,et al.Periph⁃ eral innate immune challenge exaggerated microglia acti⁃ vation,increased the number of inflammatory CNS macro⁃ phages,and prolonged social withdrawal in socially de⁃ feated mice[J].Psychoneuroendocrinology,2012,37(9):1491-1505
参考文献 22
NORDEN D M,TROJANOWSKI P J,VILLANUEVA E,et al.Sequential activation of microglia and astrocyte cyto⁃ kine expression precedes increased Iba⁃1 or GFAP immu⁃ noreactivity following systemic immune challenge[J].Glia,2016,64(2):300-316
参考文献 23
KOHMAN R A,NEUROGENESIS R J.Inflammation and behavior[J].Brain Behav Immun,2013,27(1):22-32
目录contents

    摘要

    目的:在体探究组氨酸脱羧酶抑制剂α⁃FMH对脂多糖(lipopolysaccharide,LPS)引起的大鼠相关炎症及认知功能障碍的影响。方法:48只SD雄性大鼠随机分为4组,每组12只,分别为Control组、α⁃FMH组、LPS组、α⁃FMH+LPS组。在立体定位仪下行大鼠右侧侧脑室置管,恢复1周后置于逃避恐惧实验仪器中学习。然后将α⁃FMH或等体积的生理盐水定向注入大鼠右侧侧脑室,给药后30 min行LPS(1 mg/kg)腹腔注射,1 d后行为学实验评估大鼠的逃避恐惧能力;免疫组化检测海马区小胶质细胞的活化情况;ELISA法检测白介素⁃6和肿瘤坏死因子⁃α的表达量。结果:大鼠腹腔注射LPS后6 h海马区组胺表达明显增多,24 h 内皆高于基础水平。与 Control 组相比,LPS 组大鼠海马区小胶质细胞活化及上述炎症因子的表达均增加(P < 0.01),且LPS组大鼠的僵立时间明显降低(P < 0.01)。与LPS组相比,α⁃FMH+LPS组大鼠海马区小胶质细胞活化及炎症因子的表达明显降低(P < 0.01),且α⁃FMH+LPS组大鼠的僵立时间明显增加(P < 0.01)。结论:组氨酸脱羧酶抑制剂α⁃FMH通过抑制小胶质细胞的活化改善LPS诱导的大鼠相关炎症与认知功能障碍。

    Abstract

    Objective:To explore the effects of histidine decarboxylase inhibitors on lipopolysaccharide(LPS)⁃ induced inflammation and cognitive impairment in rats in vivo. Methods:Forty⁃eight SD male rats were randomly divided into 4 groups with 12 rats in each group:control group,α⁃FMH group,LPS group and α⁃FMH+LPS group. Catheters were placed in the right lateral ventricle of rats with a stereotactic instrument,and a week after recovery,they were placed in an escape fear experimental instrument to learn. Then α ⁃ FMH and the same volume of normal saline were directionally injected into the lateral ventricle of rats. Half an hour after administration,LPS(1 mg/kg)was injected intraperitoneally. A day later,the ability of rats to escape fear was evaluated by behavioral experiments. The activation of microglia in the hippocampus was detected by immunohistochemistry. The expression of interleukin 6 and tumor necrosis factor α was detected by ELISA method. Results:After intraperitoneal injection of LPS,the expression of histamine in hippocampus began to increase significantly at 6 h,and was higher than the basic level within 24 h. Compared with the control group,the activation of microglia and the expression of inflammatory factors mentioned above in the hippocampus of the LPS group were increased (P < 0.01),and the freezing time of the LPS group was significantly decreased(P < 0.01). Compared with LPS group,the activation of microglia and the expression of the inflammatory factors in the hippocampus of α⁃ FMH + LPS group were significantly decreased(P < 0.01),and the freezing time of α⁃FMH+LPS group was significantly increased(P < 0.01). Conclusion:Histidine decarboxylase inhibitor α ⁃FMH can alleviate LPS⁃induced inflammation and cognitive impairment in rats by inhibiting the activation of microglia.

    Keywords

    α⁃FMHmcrogliaIL⁃6TNF⁃αhistamineLPS

  • 近年来,中枢神经系统(central nervous system, CNS)疾病的发病率迅速增加,给全球带来严重的社会经济负担[1]。中枢炎症被认为广泛参与了CNS疾病的发生发展,并被列为一项重要的危险因素[2]。脑内免疫细胞感受到外界刺激后可产生过量的炎症因子,作用于神经元引起神经系统功能下降[3]。因此,探究中枢炎症的潜在机制对于CNS退行性疾病的治疗具有深远意义。

  • 海马是CNS中负责学习记忆的关键脑区,情景恐惧事件的学习和记忆过程均依赖于海马。海马中分布着大量的小胶质细胞(microglial cell,MG)。 MG活化后产生的炎症介质及细胞因子促进了中枢炎症的发生发展[4]。MG在神经系统发挥支持、保护、修复和营养等作用[5],正常生理条件下,MG呈分枝状,处于静息状态。在应激情况下,MG可被迅速激活,表现为M1和M2两种表型。其中,M1型主要产生促炎介质最终导致组织损伤;相反,M2型释放抗炎介质最终帮助损伤组织修复[6]。因此抑制和调控MG的过度激活可能为治疗与海马相关的神经系统退行性疾病提供新的靶点。

  • 组氨酸经组氨酸脱羧酶(histidine decarboxyl⁃ ase,HDC)脱羧基生成组胺(histamine)。α⁃FMH即HDC抑制剂,是一种有效的、特异的和不可逆的脑组胺活性抑制剂。据报道,α⁃FMH全身给药后会显著降低胃组胺的含量,且与胃组胺相比,大脑中组胺活性下降会发生延迟。因此目前常用的有效耗竭脑组胺的方法为通过HDC基因敲除或脑室内注射α⁃FMH。CNS中的组胺主要由肥大细胞及MG产生[7]。组胺作为CNS中重要的神经递质,广泛参与神经内分泌调节、体温调节、睡眠与觉醒、学习与记忆等功能活动[8]。此外,组胺也参与CNS疾病的进展,如帕金森病、亨廷顿病、阿尔茨海默病、多发性硬化症等[9-10]。本课题组前期研究发现,MG可以表达4种组胺受体(H1R、H2R、H3R和H4R),组胺能选择性地上调原代培养的MG中H1R和H4R的表达,且呈剂量依赖性[11]。由于MG在神经炎症病理生物学中的关键作用,确定组胺对MG的作用及调节机制意义深远。

  • 本课题组前期体外实验已经报道过组胺可以剂量依赖性地激活MG,产生促炎因子如肿瘤坏死因子(tumor necrosis factor α,TNF⁃α)和白细胞介素⁃ 6(interleukin 6,IL⁃6)。H1R和H4R拮抗剂降低了组胺诱导的TNF⁃α和IL⁃6的产生,MAPK和PI3K/AKT通路的激活以及线粒体膜电位的丧失[11]。然而在体情况下,组胺合成的抑制剂是否影响脂多糖(lipo⁃ polysaccharide,LPS)诱导的MG活化及炎症因子的产生尚未见报道。所以本研究以成年雄性大鼠为研究对象,探讨在体条件下HDC抑制剂α⁃FMH对LPS引起的大鼠相关中枢炎症及认知功能障碍的影响。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 实验动物

  • 成年雄性SPF级Sprague⁃Dawley(SD)大鼠(12月龄,重300g左右)购自南京大学模式动物研究中心。大鼠在标准实验室条件下培养(室温为22℃,湿度为50%~60%,昼夜循环为12h∶12h),自由摄食和饮水。实验经南京医科大学实验动物福利伦理委员会批准(批准号:190913)。

  • 1.1.2 主要试剂与仪器

  • 大鼠IL⁃1β、IL⁃6和TNF⁃α ELISA检测试剂盒 (R&D公司,美国);大鼠组胺ELISA试剂盒(Bio Vi⁃ sion公司,美国);LPS来自大肠杆菌0111:B4(Sigma⁃ Aldrich公司,美国);Iba⁃1抗体(Wako公司,日本); RIPA缓冲液(上海碧云天公司);DMEM细胞培养基、胎牛血清(FBS)、青链霉素(Gibco公司,美国); α⁃FMH(Santa Cruz公司,美国);蛋白酶抑制剂和磷酸酶抑制剂(Roche公司,瑞士);立体定位仪(深圳瑞沃德公司)。

  • 1.2 方法

  • 1.2.1 动物分组及给药方法

  • 实验分为两部分。第1部分:48只SD大鼠随机分为2组,LPS处理组42只,经腹腔注射LPS (1mg/kg),分别于注射后2、4、6、8、10、12、24h各取6只大鼠进行实验。生理盐水组(NS组)6只作为对照,给予相同体积生理盐水腹腔注射。第2部分:另取48只SD大鼠随机分为4组,分别为Control组、α⁃ FMH组、LPS组、α⁃FMH+LPS组,每组12只。用50mg/kg的戊巴比妥钠腹腔注射麻醉大鼠,剃毛后放入立体定位仪中并行三角固定。将套管置入大鼠右侧侧脑室,置入坐标为前囟后0.8mm、侧1.5mm、深度为3.7mm。植入后给大鼠7d时间康复,每日处理检查套管情况。在无束缚饲养7d后,大鼠被放入行为学仪器中练习。练习结束后通过预先置入的套管行右侧侧脑室给药,其中α⁃ FMH组及α⁃ FMH+LPS组注入5 μL的α⁃FMH(1 μg/μL);同时Control组和LPS组经套管注入相同体积的生理盐水。给药30min后,LPS组及α⁃FMH+LPS组大鼠实施LPS腹腔注射(1mg/kg),同时Control组和α⁃FMH组给予相同体积的生理盐水。1d后进行行为学实验,实验结束处死大鼠,取其大脑进行生化和形态学分析。

  • 1.2.2 免疫组织化学染色

  • 戊巴比妥麻醉大鼠后,灌注250mL生理盐水和多聚甲醛。取出大脑用4%多聚甲醛固定24h,然后用20%和30%的蔗糖梯度脱水。用OCT胶包埋脑组织,固定后连续切片(10 μm)。取海马区的脑片,用PBS液洗去包埋剂(5min× 3次),然后将其放入3%H2O2 (63mL甲醇,7mL 30%H2O2)中浸泡10min,然后用PBS洗3次。滴加5%BSA封闭液,室温下封闭1h。吸除封闭液后加入1%BSA稀释后的一抗(1∶200),放入湿盒内4℃过夜。第2天用PBS洗3遍,滴加对应的辣根过氧化物酶标记的二抗,孵育1h洗去多余二抗后加DAB显色。每只大鼠选取3张海马CA1区切片,每张切片光镜下(×200)拍摄5张照片。细胞计数采用NIH Image J软件。

  • 1.2.3 ELISA检测

  • 切取20mg的脑组织放入离心管中,加入含有蛋白酶抑制剂和磷酸酶抑制剂的RIPA裂解液。于冰上进行超声粉碎,超声强度30kHz、单次持续时间10s,间隔时间5s,共3个循环。将裂解液离心15min。设空白孔(样本稀释液)、标准孔、待测样本孔。每孔先加入样本稀释液50 μL,然后再分别加入空白对照、标准品和样本50 μL,振荡混匀后加上封膜,室温下孵育2h。2h后揭掉封膜,用洗涤液洗涤,并用吸水纸吸干,重复此操作5次。然后每孔加入检测抗体100 μL,室温孵育2h后洗板5次。再每孔加入100 μL底物,室温孵育30min,此过程需避光。每孔加入终止液100 μL终止反应。酶标仪测定波长为450nm,参考波长为570nm,然后检测每孔吸光度。最后通过标准曲线计算IL⁃6和TNF⁃α 的含量。

  • 1.2.4 逃避恐惧实验

  • 将大鼠放入TFC仪器中让其自由探索100s。然后先给予大鼠20s听觉刺激(80db、5kHz),后立即给予2s足底电击(0.8mA)。重复2次,中间间隔100s。刺激结束后100s再将大鼠移出仪器,清理仪器底部的排泄物。待给药后,再将大鼠放回TFC仪器,无声音及电刺激的干预评估其习得性恐惧记忆。由视频追踪软件(Xeye Fcs,北京天鸣鸿远科技发展有限公司)自动记录大鼠300s内僵直反应(除呼吸运动外无其他任何行为活动的状态)时间。

  • 1.3 统计学方法

  • 采用SPSS 19.0软件行统计学分析,所有实验结果均以均数±标准差(x- ± s)表示。采用单因素方差分析和LSD⁃t 检验确定差异显著性。P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 LPS腹腔注射对大鼠海马区组胺表达的影响

  • 大鼠腹腔注射LPS(1mg/kg)2、4、6、8、10、12、 24h后取其大脑进行分析。如图1所示,腹腔注射LPS后4h,大鼠海马区组胺水平较低,与NS组相比差异无统计学意义。注射后6~24h组胺表达明显升高,与NS组相比差异有统计学意义,其中6h时组胺表达量达峰值,24h内仍高于基线水平。

  • 图1 LPS处理后大鼠海马区组胺的表达

  • Fig.1 Expression of histamine in rat hippocampus after LPS treatment

  • 2.2 α⁃FMH可影响LPS诱导的大鼠海马区MG活化

  • 本课题组的前期离体实验已证明组胺可以剂量依赖性地刺激MG激活[11],本实验经大鼠侧脑室注射HDC抑制剂α⁃FMH,检测海马区MG的活化情况。如图2所示,与Control组相比,LPS组与α⁃ FMH+LPS组大鼠海马区MG标志物Iba1表达明显增加;此外与LPS组相比,α⁃FMH+LPS组Iba1表达下调,说明α⁃FMH可抑制MG的激活。

  • 2.3 α⁃FMH可影响LPS诱导的大鼠海马区炎症因子的表达

  • 作为中枢的重要免疫细胞,MG激活后可释放大量促炎因子加重中枢炎症。通过ELISA技术测定大鼠海马区IL⁃6和TNF⁃α的含量。结果如图3所示,与Control组相比,LPS组与α⁃FMH+LPS组大鼠海马区炎症因子TNF⁃α和IL⁃6的表达增加;与LPS组相比,α⁃FMH+LPS组炎症因子TNF⁃α和IL⁃6的表达显著下降。以上结果提示LPS促进了海马区促炎介质的释放,而α⁃FMH可以通过降低MG的激活从而部分抑制炎症介质的释放。

  • 图2 α⁃FMH对小胶质细胞活化的影响

  • Fig.2 Effects of α⁃FMH on activation of microglia

  • 2.4 α⁃FMH可缓解LPS诱导的大鼠恐惧记忆损伤

  • 如前所述α⁃FMH可以降低MG的激活并能抑制炎症介质的释放从而减轻中枢炎症,而认知功能障碍是术后中枢炎症的常见并发症。为此我们进行了逃避恐惧实验评估大鼠的认知功能。结果如图4所示,与Control组相比,LPS组大鼠出现了明显的恐惧记忆损伤,僵立行为的时间明显缩短。而与LPS组相比,α⁃FMH+LPS组大鼠僵立行为的时间明显增加,说明α⁃FMH可缓解LPS诱导的大鼠认知功能下降。

  • 图3 α⁃FMH对大鼠海马区炎症因子表达的影响

  • Fig.3 Effects of α⁃FMH on the expression of inflam⁃ matory cytokines in rat hippocampus

  • 图4 α⁃FMH可缓解LPS诱导的大鼠恐惧记忆损伤

  • Fig.4 α⁃FMH alleviates LPS⁃induced fear memory im⁃ pairment in rats

  • 3 讨论

  • 全球CNS疾病的发病率正在迅速增加,CNS病变对人们生活质量的影响愈发严重[12]。目前普遍认为,CNS的紊乱,包括损伤、缺血、感染与中枢炎性反应密切相关[13]。因此,研究中枢炎症的发病机制及防治策略对于治疗CNS疾病及改善患者的预后具有深远的意义。本课题组先前已经报道过原代培养的MG表达4种类型的组胺受体,其中组胺可上调H1R和H4R的表达,诱导MG活化,进而释放炎症因子如IL⁃6和TNF⁃α[11]。然而动物实验关于组胺在LPS诱导的MG激活、神经炎症和认知障碍中的作用尚未得到阐明。本研究发现,α⁃FMH可以抑制LPS诱导的MG活化和神经炎症,并减轻了大鼠的认知功能障碍。

  • 神经科学研究发现免疫系统和CNS之间存在双向信息交流,MG释放的促炎因子在这种交流中起着关键作用。MG的激活是神经元坏死及CNS退行性疾病的早期预兆。研究发现LPS、组胺和IL⁃10等多种物质均可以引起MG的激活,并诱导向M1表型及M2表型之间转换[14]。组胺作为中枢重要的神经递质其在MG介导的中枢炎症中发挥重要作用[15-16]。脑组胺不仅存在于神经元中,也存在于大脑肥大细胞中,Dong等[17] 证实给予肥大细胞的稳定剂可抑制LPS诱导的MG活化和神经炎症,并减轻LPS诱导的认知功能障碍。此外早有在大鼠黑质中注射组胺可以诱导MG活化的报道[18]。然而目前关于4种组胺受体在MG介导的炎症中如何发挥作用尚未完全阐明。

  • LPS腹腔注射的大鼠是CNS炎症的最常用动物模型。LPS外周给药可诱导大鼠MG活化及促炎细胞因子表达增加[19]。参考相关文献及预实验,我们最终选择腹腔注射LPS的剂量为1mg/kg,实验大鼠均成功存活。本研究首先观察了大鼠腹腔注射LPS 1mg/kg后,脑内组胺随时程变化的表达情况。结果提示与生理盐水组相比,6~24h大鼠海马区组胺表达明显增多,其中6h达峰值,24h仍高于生理盐水组。Wang等[20] 给予大鼠腹腔注射LPS 2mg/kg,发现组胺在6~24h表达明显增多,这与我们的结果相一致。

  • 为了进一步探索α⁃FMH在LPS诱导的中枢炎症及认知功能中的作用,我们进行了动物实验。将5 μL的α⁃FMH(1 μg/μL)注入大鼠右侧侧脑室,30min后行LPS腹腔注射,1d后检测大鼠海马区MG活化及炎症因子的表达情况。有文献指出在外周给予LPS刺激后,海马区域的Iba1免疫反应活性增加[21]。Norden等[22] 报道给予LPS后4h,大鼠即表现出运动能力降低,这与MG被过度激活,释放炎症因子有关。我们的结果发现LPS组大鼠海马区MG标志物Iba1明显增加,而α⁃FMH预处理明显抑制了海马区MG的活化,同时与LPS组相比,α⁃FMH+LPS组大鼠海马区炎症因子的表达也显著下调。已知认知功能障碍是中枢炎症的常见并发症,为此我们进一步进行了行为学实验来评估各组大鼠的认知功能[23]。逃避恐惧实验结果显示LPS组大鼠出现了明显的恐惧记忆损伤,而α⁃FMH+LPS组大鼠的恐惧记忆损伤明显得到改善。以上结果提示α⁃FMH在MG相关的炎症反应及炎性疾病中发挥保护作用。

  • 综上所述,本研究通过在体实验进一步表明组胺在MG的激活及随后产生各种促炎因子发挥重要作用,而α⁃FMH可以通过抑制MG的活化改善LPS诱导的大鼠相关炎症与认知功能障碍。但是本实验只使用组胺合成的抑制剂,没有使用组胺合成的激动剂反向证明,且没有在体开展组胺与MG作用相关的通路机制研究,这将作为我们下一步的研究目标。

  • 参考文献

    • [1] JAKARIA M,KIM J,KARTHIVASHAN G,et al.Emerg⁃ ing signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases[J].J Ginseng Res,2019,43(2):163-171

    • [2] YANG Q Q,ZHOU J W.Neuroinflammation in the cen⁃ tral nervous system:symphony of glial cells[J].Glia,2019,67(6):1017-1035

    • [3] SUBHRAMANYAM C S,WANG C,HU Q,et al.Microg⁃ lia⁃mediated neuroinflammation in neurodegenerative dis⁃ eases[J].Semin Cell Dev Biol,2019,94:112-120

    • [4] KINNEY J W,BEMILLER S M,MURTISHAW A S,et al.Inflammation as a central mechanism in Alzheimer’s dis⁃ ease[J].Alzheimers Dement(N Y),2018,4:575-590

    • [5] XU L,HE D,BAI Y.Microglia⁃Mediated inflammation and neurodegenerative disease[J].Mol Neurobiol,2016,53(10):6709-6715

    • [6] CHEON S Y,KIM E J,KIM J M,et al.Regulation of mi⁃ croglia and macrophage polarization via apoptosis signal ⁃ regulating kinase 1 silencing after ischemic/hypoxic injury [J].Front Mol Neurosci,2017,10:261

    • [7] PANULA P,SUNDVIK M,KARLSTEDT K.Developmen⁃ tal roles of brain histamine[J].Trends Neurosci,2014,37(3):159-168

    • [8] HAAS H L,SERGEEVA O A,SELBACH O.Histamine in the nervous system[J].Physiol Rev,2008,88(3):1183-1241

    • [9] BARATA ⁃ANTUNES S,CRISTÓVÃO A C,PIRES J,et al.Dual role of histamine on microglia ⁃induced neurode⁃ generation[J].Biochim Biophys Acta Mol Basis Dis,2017,1863(3):764-769

    • [10] CACABELOS R,TORRELLAS C,FERNÁNDEZ⁃NOVOA L,et al.Histamine and immune biomarkers in CNS disor⁃ ders[J].Mediators Inflamm,2016,2016:1924603

    • [11] DONG H,ZHANG W,ZENG X,et al.Histamine induces upregulated expression of histamine receptors and increas⁃ es release of inflammatory mediators from microglia[J].Mol Neurobiol,2014,49(3):1487-1500

    • [12] KAUSHIK A,JAYANT R D,BHARDWAJ V,et al.Per⁃ sonalized nanomedicine for CNS diseases[J].Drug Dis⁃ cov Today,2018,23(5):1007-1015

    • [13] DE LUCA C,COLANGELO A M,ALBERGHINA L,et al.Neuro ⁃ immune hemostasis:homeostasis and diseases in the central nervous system[J].Front Cell Neurosci,2018,12:459

    • [14] ORIHUELA R,MCPHERSON C A,HARRY G J.Microg⁃ lial M1/M2 polarization and metabolic states[J].Br J Pharmacol,2016,173(4):649-665

    • [15] FRICK L,RAPANELLI M,ABBASI E,et al.Histamine regulation of microglia:gene ⁃ environment interaction in the regulation of central nervous system inflammation[J].Brain Behav Immun,2016,57:326-337

    • [16] RANSOHOFF R M,EL KHOURY J.Microglia in health and disease[J].Cold Spring Harb Perspect Biol,2015,8(1):a020560

    • [17] DONG H,WANG Y,ZHANG X,et al.Stabilization of brain mast cells alleviates LPS ⁃ induced neuroinflamma⁃tion by inhibiting microglia activation[J].Front Cell Neu⁃ rosci,2019,13:191

    • [18] VIZUETE M L,MERINO M,VENERO J L,et al.Hista⁃ mine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substan⁃ tia nigra[J].J Neurochem,2000,75(2):540-552

    • [19] PARK S M,CHOI M S,SOHN N W,et al.Ginsenoside Rg3 attenuates microglia activation following systemic li⁃ popolysaccharide treatment in mice[J].Biol Pharm Bull,2012,35(9):1546-1552

    • [20] WANG Y,SHA H,ZHOU L,et al.The mast cell is an ear⁃ ly activator of lipopolysaccharide⁃induced neuroinflamma⁃ tion and blood⁃brain barrier dysfunction in the hippocam⁃ pus[J].Mediators Inflamm,2020,2020:8098439

    • [21] WOHLEB E S,FENN A M,PACENTA A M,et al.Periph⁃ eral innate immune challenge exaggerated microglia acti⁃ vation,increased the number of inflammatory CNS macro⁃ phages,and prolonged social withdrawal in socially de⁃ feated mice[J].Psychoneuroendocrinology,2012,37(9):1491-1505

    • [22] NORDEN D M,TROJANOWSKI P J,VILLANUEVA E,et al.Sequential activation of microglia and astrocyte cyto⁃ kine expression precedes increased Iba⁃1 or GFAP immu⁃ noreactivity following systemic immune challenge[J].Glia,2016,64(2):300-316

    • [23] KOHMAN R A,NEUROGENESIS R J.Inflammation and behavior[J].Brain Behav Immun,2013,27(1):22-32

  • 参考文献

    • [1] JAKARIA M,KIM J,KARTHIVASHAN G,et al.Emerg⁃ ing signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases[J].J Ginseng Res,2019,43(2):163-171

    • [2] YANG Q Q,ZHOU J W.Neuroinflammation in the cen⁃ tral nervous system:symphony of glial cells[J].Glia,2019,67(6):1017-1035

    • [3] SUBHRAMANYAM C S,WANG C,HU Q,et al.Microg⁃ lia⁃mediated neuroinflammation in neurodegenerative dis⁃ eases[J].Semin Cell Dev Biol,2019,94:112-120

    • [4] KINNEY J W,BEMILLER S M,MURTISHAW A S,et al.Inflammation as a central mechanism in Alzheimer’s dis⁃ ease[J].Alzheimers Dement(N Y),2018,4:575-590

    • [5] XU L,HE D,BAI Y.Microglia⁃Mediated inflammation and neurodegenerative disease[J].Mol Neurobiol,2016,53(10):6709-6715

    • [6] CHEON S Y,KIM E J,KIM J M,et al.Regulation of mi⁃ croglia and macrophage polarization via apoptosis signal ⁃ regulating kinase 1 silencing after ischemic/hypoxic injury [J].Front Mol Neurosci,2017,10:261

    • [7] PANULA P,SUNDVIK M,KARLSTEDT K.Developmen⁃ tal roles of brain histamine[J].Trends Neurosci,2014,37(3):159-168

    • [8] HAAS H L,SERGEEVA O A,SELBACH O.Histamine in the nervous system[J].Physiol Rev,2008,88(3):1183-1241

    • [9] BARATA ⁃ANTUNES S,CRISTÓVÃO A C,PIRES J,et al.Dual role of histamine on microglia ⁃induced neurode⁃ generation[J].Biochim Biophys Acta Mol Basis Dis,2017,1863(3):764-769

    • [10] CACABELOS R,TORRELLAS C,FERNÁNDEZ⁃NOVOA L,et al.Histamine and immune biomarkers in CNS disor⁃ ders[J].Mediators Inflamm,2016,2016:1924603

    • [11] DONG H,ZHANG W,ZENG X,et al.Histamine induces upregulated expression of histamine receptors and increas⁃ es release of inflammatory mediators from microglia[J].Mol Neurobiol,2014,49(3):1487-1500

    • [12] KAUSHIK A,JAYANT R D,BHARDWAJ V,et al.Per⁃ sonalized nanomedicine for CNS diseases[J].Drug Dis⁃ cov Today,2018,23(5):1007-1015

    • [13] DE LUCA C,COLANGELO A M,ALBERGHINA L,et al.Neuro ⁃ immune hemostasis:homeostasis and diseases in the central nervous system[J].Front Cell Neurosci,2018,12:459

    • [14] ORIHUELA R,MCPHERSON C A,HARRY G J.Microg⁃ lial M1/M2 polarization and metabolic states[J].Br J Pharmacol,2016,173(4):649-665

    • [15] FRICK L,RAPANELLI M,ABBASI E,et al.Histamine regulation of microglia:gene ⁃ environment interaction in the regulation of central nervous system inflammation[J].Brain Behav Immun,2016,57:326-337

    • [16] RANSOHOFF R M,EL KHOURY J.Microglia in health and disease[J].Cold Spring Harb Perspect Biol,2015,8(1):a020560

    • [17] DONG H,WANG Y,ZHANG X,et al.Stabilization of brain mast cells alleviates LPS ⁃ induced neuroinflamma⁃tion by inhibiting microglia activation[J].Front Cell Neu⁃ rosci,2019,13:191

    • [18] VIZUETE M L,MERINO M,VENERO J L,et al.Hista⁃ mine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substan⁃ tia nigra[J].J Neurochem,2000,75(2):540-552

    • [19] PARK S M,CHOI M S,SOHN N W,et al.Ginsenoside Rg3 attenuates microglia activation following systemic li⁃ popolysaccharide treatment in mice[J].Biol Pharm Bull,2012,35(9):1546-1552

    • [20] WANG Y,SHA H,ZHOU L,et al.The mast cell is an ear⁃ ly activator of lipopolysaccharide⁃induced neuroinflamma⁃ tion and blood⁃brain barrier dysfunction in the hippocam⁃ pus[J].Mediators Inflamm,2020,2020:8098439

    • [21] WOHLEB E S,FENN A M,PACENTA A M,et al.Periph⁃ eral innate immune challenge exaggerated microglia acti⁃ vation,increased the number of inflammatory CNS macro⁃ phages,and prolonged social withdrawal in socially de⁃ feated mice[J].Psychoneuroendocrinology,2012,37(9):1491-1505

    • [22] NORDEN D M,TROJANOWSKI P J,VILLANUEVA E,et al.Sequential activation of microglia and astrocyte cyto⁃ kine expression precedes increased Iba⁃1 or GFAP immu⁃ noreactivity following systemic immune challenge[J].Glia,2016,64(2):300-316

    • [23] KOHMAN R A,NEUROGENESIS R J.Inflammation and behavior[J].Brain Behav Immun,2013,27(1):22-32