-
口腔是仅次于胃肠道的第二丰富的微生物群聚集地,人类口腔微生物群落扩展数据库(eHOMD) 显示,口腔中包含约770个微生物物种信息[1]。这些微生物在口腔中定植、繁殖并通过复杂的相互作用在口腔微生态环境中达到动态平衡,而口腔疾病的发生大多与微生物之间相互作用的动态平衡被打破有关[2]。变异链球菌(Streptococcus mutans)和白色念珠菌(Candida albicans)分别是口腔的主要致龋细菌和主要致病真菌,对低龄儿童龋(early chil⁃ dren caries,ECC)患龋部位的研究发现两者的共同检出率很高[3-5],多项研究也集中揭示了两种微生物之间存在着跨原核生物界⁃真核生物界的复杂相互作用。事实上,这种相互作用关系不仅影响了变异链球菌的致龋性,也影响了白色念珠菌在义齿性口炎中的致病性。本综述对变异链球菌与白色念珠菌跨界相互作用对各自致病性的影响及相互作用机制进行了回顾,并探讨天然产物在调控变异链球菌与白色念珠菌双菌种生物膜及其毒力特性方面的应用。
-
1 变异链球菌与白色念珠菌的生物学特点与致病性
-
变异链球菌是革兰阳性兼性厌氧菌,是人类口腔常驻菌之一,目前认为,变异链球菌是人类龋病的主要致病菌[6]。变异链球菌对牙面具有强黏附能力,在发酵碳水化合物后产酸力强、产酸速度快,同时耐酸性非常强,有助于其在牙菌斑酸性的情况下持续不断地产酸,增加致龋性;此外,变异链球菌可以通过葡糖基转移酶(glucosyltransferase,GTF)以蔗糖为底物合成多种胞内多糖(intracellular polysac⁃ charides,IPS)及胞外多糖(extracellular polysaccha⁃ rides,EPS),为其贮存能量、提供对牙面的黏附位点并促进牙菌斑成熟[7]。变异链球菌可以通过分泌一类被称为密度感应(quorum sensing,QS)信号分子的信号物质来感知周围环境的变化,从而调控自身行为以适应复杂的口腔环境[8]。其QS信号分子分为两类:种内QS信号分子CSP(competence⁃stimulating peptide)和XIP(sigX⁃inducing peptide);种间QS信号分子AI⁃2(autoinducer⁃2);这些分泌到胞外的信号分子达到一定浓度后激活相应的受体蛋白从而改变相应基因的表达[9-11]。
-
白色念珠菌是口腔中常见的机会性致病真菌,在成人健康口腔中检出率为30%~35%。该菌主要定植在口腔黏膜、矫治器等表面,在口腔中可引起白色念珠菌病(如雪口病)、义齿性口炎等疾病。白色念珠菌具有酵母与菌丝两种形态,生物膜的形成和毒力的表达通常与其从酵母形态转变为菌丝形态有关,生物膜的形成和水解酶的分泌被认为是白色念珠菌的主要毒力因素[12]。法尼醇(fanesol)和酪醇(tyrosol)是白色念珠菌所分泌的QS信号分子[13]; 法尼醇可以抑制白色念珠菌菌丝形成[14],抑制生物膜形成,增强白色念珠菌抗药性和氧化应激能力等[15]。酪醇具有与法尼醇几乎相反的作用,其可刺激白色念珠菌酵母细胞芽管形成[16],在生物膜形成早期促进白色念珠菌菌丝形成[17]。
-
2 变异链球菌与白色念珠菌跨界相互作用对致病性的影响
-
口腔中可能同时存在数量众多的变异链球菌与白色念珠菌,已有研究提示两者在共存状态下可能影响各自的致病性,而变异链球菌与白色念珠菌的跨原核生物界⁃真核生物界相互作用应该在其中发挥了关键作用。
-
研究表明在龋病的发生发展过程中,白色念珠菌对变异链球菌的致龋作用产生一定的协同作用。Falsetta等[18] 通过动物实验发现,与单独感染变异链球菌或白色念珠菌的动物相比,共同感染两种微生物的动物其牙菌斑中检出的变异链球菌和白色念珠菌的数量均显著增加(分别超过3倍、20倍)。此外,变异链球菌与白色念珠菌共同感染的动物其光滑面龋坏的进展更加迅速,整体龋坏也更加严重,表明两种微生物很可能发生协同作用增强了牙菌斑生物膜的致龋性[18]。事实上,多位学者的研究均证实ECC患儿其唾液和牙菌斑中白色念珠菌和变异链球菌的共同检出率与龋齿的严重程度存在着显著的正相关关系[5,19-20]。
-
白色念珠菌是义齿性口炎的主要致病菌,但是在义齿表面形成的牙菌斑中,除真菌外还有许多细菌,可能在义齿性口炎的发生过程中存在一定作用[21]。 Valentini等[22] 发现,义齿性口炎的患者和未患有义齿性口炎的人群在佩戴活动义齿7d后,前者基托表面的牙菌斑中变异链球菌的检出率要显著高于后者。Barbosa等[23] 的研究也表明,与变异链球菌共培养有助于白色念珠菌形成生物膜,然而,加入变异链球菌的培养液上清却会减少白色念珠菌生物膜的细胞数量、抑制菌丝生长。通过构建白色念珠菌大蜡螟(Galleria mellonella)感染模型并注射变异链球菌细胞或者培养液上清,他们进一步证实变异链球菌可在体内实验中减弱白色念珠菌的致病毒力,从而提高模型动物的生存率[23]。变异链球菌与白色念珠菌相互作用对义齿性口炎发病的影响仍然有待进一步研究。
-
3 跨界相互作用对变异链球菌的影响机制
-
3.1 导致变异链球菌基因表达谱的改变
-
变异链球菌在与白色念珠菌进行双菌种生物膜共培养时,其基因表达谱发生明显改变。与变异链球菌单菌种生物膜相比,双菌种生物膜状态显著改变了变异链球菌393个基因的表达,大多上调了与碳水化合物运输和代谢/分解相关的基因[24]。 KEGG通路分析表明双菌种共培养提高了变异链球菌丙酮酸盐和半乳糖的代谢,提示共培养增强了变异链球菌对碳水化合物的利用[24]。双组分信号转导系统(two ⁃ component signal transduction system,TCSTS)对变异链球菌响应外界环境刺激,调控自身毒力基因表达具有重要作用[25]。研究发现,双菌种生物膜状态下变异链球菌的多个TCSTS转录调控发生变化,CiaRH TCSTS的基因ciaR、ciaH上调了2倍,而ComDE TCSTS(也是QS调控系统)信号肽CSP的编码基因 comC 及其他晚期感受态基因 comYB、 comYD、comEA及comEC下调[24]。QS常常涉及一系列基因表达的调控与变化,至于变异链球菌哪些基因涉及响应其与白色念珠菌的相互作用则有待深入研究。
-
3.2 影响变异链球菌生长及胞外多糖的产生
-
研究表明,变异链球菌⁃白色念珠菌共培养形成生物膜影响前者的生长。Kim等[26] 提取双菌种生物膜形成早期(18h)的培养液上清用于变异链球菌培养,48h后发现该上清液会明显促进变异链球菌的生长。两菌共培养状态下的相互作用对变异链球菌胞外多糖产生也有影响。2014年,Sztajer等[27] 通过扫描电镜观察培养10h的变异链球菌⁃白色念珠菌双菌种生物膜,发现其胞外多糖较变异链球菌单菌种生物膜减少,进一步以绿色荧光染料标记胞外多糖,荧光显微镜观察证实双菌种生物膜绿色荧光明显弱于变异链球菌单菌种生物膜的绿色荧光,表明双菌种生物膜早期的相互作用可能抑制变异链球菌产生胞外多糖。然而,几乎在同一时间,Falsetta等[18] 通过激光共聚焦扫描显微镜观测双菌种生物膜三维结构,发现相比单菌种生物膜,变异链球菌⁃ 白色念珠菌的双菌种生物膜生长到42h后可以极大增强EPS的聚集导致其双菌种生物膜更厚。2017年,Ellepola等[28] 使用激光共聚焦扫描显微镜观察也发现,变异链球菌与白色念珠菌共培养48h时会产生丰富的葡聚糖(EPS的主要成分)。这些不同时间点的观察结果表明,变异链球菌与白色念珠菌在双菌种生物膜状态下不同时期的相互作用对变异链球菌产生胞外多糖具有不同的影响。
-
3.3 增强变异链球菌的黏附
-
白色念珠菌细胞壁结构复杂,主要由葡聚糖、甘露聚糖和几丁质组成。有研究发现,白色念珠菌分泌的β⁃1,3葡聚糖为变异链球菌分泌的一种GTF (GtfB)提供结合位点[28],其他研究也发现双菌种生物膜状态下白色念珠菌细胞壁外表面的甘露聚糖可介导GtfB结合[29]。GtfB黏附在白色念珠菌的表面,并以蔗糖为底物原位产生葡聚糖,从而有助于变异链球菌EPS的聚集[30]。原位产生的葡聚糖又可以增加变异链球菌的连接位点,极大地增强变异链球菌和白色念珠菌的相互黏附[18]。使用原子力显微镜观查发现双菌种状态下,GtfB与白色念珠菌形成稳定而牢固的结合[29];白色念珠菌和其表面黏附的GtfB通过连接键的伸展、断裂而发生解离,而变异链球菌和其表面黏附的GtfB通过连接键的断裂发生解离(无伸展过程),所以相比于变异链球菌表面的GtfB,黏附到白色念珠菌表面的GtfB与白色念珠菌之间的黏附力更强,黏接更稳定[31]。
-
3.4 白色念珠菌QS信号分子法尼醇的跨界作用
-
法尼醇是白色念珠菌产生的QS信号分子,研究发现变异链球菌也能响应法尼醇的刺激,高浓度法尼醇(>100 μmol/L)会抑制其生长,但是在低浓度时 (25 μmol/L、50 μmol/L)则表现出促进变异链球菌生长、增强Gtfs活性的作用,并且这种作用具有浓度依赖性[26]。进一步的研究显示,变异链球菌与白色念珠菌共同培养时,法尼醇在亚抑菌浓度(0.78mmol/L、 1.56mmol/L)下,可显著降低变异链球菌的产酸性,但是不影响白色念珠菌的水解酶活性;激光共聚焦扫描显微镜显示,法尼醇在抑菌浓度下(3.12mmol/L、 12.50mmol/L),变异链球菌⁃白色念珠菌双菌种生物膜的结构也发生了改变,表现为活细胞和胞外基质的减少[32]。QS信号分子法尼醇对变异链球菌生长和毒力的影响与法尼醇的浓度有关系,这也提示了前文提到的双菌种相互作用与培养时间有关,不同的培养时间分泌到胞外的QS信号分子浓度不同。
-
4 跨界相互作用对白色念珠菌的影响机制
-
4.1 影响白色念珠菌多个毒力基因的表达
-
变异链球菌⁃白色念珠菌共培养时也会影响白色念珠菌的基因表达。Ellepola等[28] 研究表明,变异链球菌分泌的GtfB会促进白色念珠菌多个与生物膜形成相关基因的表达,包括菌丝壁蛋白(hyphal wall protein,HWP1)、凝集素样序列(agglutinin⁃like sequences,ALS1)和ALS3基因。而Lobo等[30] 的研究发现,相比于白色念珠菌单菌种生物膜,变异链球菌⁃白色念珠菌双菌种生物膜会显著抑制BGL2(胞外基质产生相关)、PHR1(胞外基质和耐酸相关)和 SOD1(氧化应激相关)基因的表达。Ellepola等[33] 基于RNA测序和iTRAQ(isobaric tags for relative and absolute quantitation)的定量蛋白质组学研究显示变异链球菌与白色念珠菌相互作用时,白色念珠菌与碳水化合物代谢相关的基因和蛋白表达显著增强,涉及糖转运、有氧呼吸、丙酮酸分解和乙醛酸循环;其他与细胞形态和细胞壁成分(如甘露聚糖和葡聚糖)直接或间接相关的基因和蛋白的表达也被上调。
-
4.2 变异链球菌QS信号分子CSP的跨界作用
-
白色念珠菌菌丝相的转变可以由变异链球菌产生的QS信号分子CSP所抑制。Jarosz等[34] 观察到,变异链球菌培养4h的上清液会抑制白色念珠菌出芽,而培养6、8、24h的上清液则无此现象。为了确定变异链球菌在生长早期产生的CSP的作用,他们构建了不能产生CSP的变异链球菌comC基因缺失突变株,并添加1 μmol/L人工合成的CSP重复该实验,发现添加CSP的突变株上清液抑制效果与野生株上清液相似,进一步的实验表明,添加0.01、 0.10、1.00 μmol/L CSP到变异链球菌comC突变株菌液均可抑制白色念珠菌芽管的形成,且抑制效果具有浓度依赖性,表明变异链球菌产生的QS信号分子CSP对白色念珠菌的出芽乃至向菌丝相的转变有影响,然而CSP对白色念珠菌生物膜的生物量并没有作用[34]。变异链球菌另一种QS信号分子XIP对白色念珠菌的作用目前并不清楚,有待进一步研究。
-
5 作用于变异链球菌与白色念珠菌双菌种生物膜的天然产物的研究探索
-
变异链球菌与白色念珠菌在共同形成生物膜的过程中存在复杂的相互作用,可能影响各自毒力特性的表达。在应用天然产物控制变异链球菌与白色念珠菌双菌种生物膜及其毒力方面,有一些学者进行了探索,目前以多酚类天然产物的研究最具代表性。
-
多酚类具有抗氧化、抑制细菌生长等多种作用。Farkash等35]研究表明,绿茶多酚(polyphenol from green tea,PPFGT)和从藏药中提取的酚类PH均可以抑制变异链球菌与白色念珠菌双菌种生物膜的形成和葡聚糖分泌,但是不影响其浮游生长,在PPFGT浓度为0.625mg/mL、PH浓度为0.16mg/mL时抑制效果最佳。另一项研究表明,从蔓越橘中提取的多酚类对变异链球菌与白色念珠菌的双菌种生物膜的毒力具有抑制作用。与对照组相比,在双菌种生物膜培养液中加入浓度为500~1 000 μg/mL的蔓越橘提取物可以显著抑制变异链球菌的产酸耐酸能力、EPS分泌、生物膜结构[36]。丁子香酚是另一种酚类,可以由丁香油、樟脑油等中提取,研究显示,丁子香酚在亚抑菌浓度下(100 μg/mL)可以显著抑制双菌种生物膜形成,与对照组相比,形成生物膜的量为52.65%,同时扫描电镜显示双菌种生物膜的分布被打乱[37]。多酚类天然产物众多,结构各异,在筛选对变异链球菌和白色念珠菌的双菌种生物膜有作用的天然产物方面尚有很大的空间。
-
6 总结和展望
-
在口腔细菌与真菌相互作用的相关研究中,主要致龋细菌变异链球菌与口腔主要机会性致病真菌白色念珠菌因为在低龄儿童龋ECC中常共同检出,成为跨界相互作用研究的热点。多项研究证实变异链球菌与白色念珠菌发生相互作用影响致病性,凸显了进一步研究两者相互作用的具体机制与信号调控通路的重要性。现有的研究大多关注变异链球菌与白色念珠菌相互作用对各自毒力特性与毒力基因表达的影响。作为遗传背景完全不同的两种微生物,细菌与真菌在相互作用过程中其QS信号分子的跨界作用也同样值得关注与进一步探索。有关变异链球菌与白色念珠菌的多种QS信号分子在双菌种生物膜状态下起到何种作用以及相应的作用机制,尚有大片空白有待深入研究。在研究变异链球菌与白色念珠菌相互作用机制的基础上,筛选更多具有抑制作用的天然产物,可为临床干预两者相互作用、控制其致病性提供更多选择。
-
参考文献
-
[1] VERMA D,GARG P K,DUBEY A K.Insights into the human oral microbiome[J].Arch Microbiol,2018,200(4):525-540
-
[2] DEWHIRST F E,CHEN T,IZARD J,et al.The human oral microbiome[J].J Bacteriol,2010,192(19):5002-5017
-
[3] XIAO J,HUANG X,ALKHERS N,et al.Candida albi⁃ cans and early childhood caries:a systematic review and meta⁃analysis[J].Caries Res,2018,52(1/2):102-112
-
[4] QIU R,LI W,LIN Y,et al.Genotypic diversity and cario⁃ genicity of Candida albicans from children with early childhood caries and caries ⁃free children[J].BMC Oral Health,2015,15(1):144
-
[5] 曹宏飞,董英,杨婷,等.新疆博尔塔拉蒙古自治州三民族儿童口腔白色念珠菌分布及其与患龋的相关性研究[J].中华口腔医学杂志,2018,53(11):730-735
-
[6] MARSH P D,MOTER A,DEVINE D A.Dental plaque biofilms:communities,conflict and control[J].Periodon⁃ tol 2000,2011,55(1):16-35
-
[7] 周学东.实用口腔微生物学与技术[M].北京:人民卫生出版社,2009:249-250
-
[8] MATSUMOTO ⁃ NAKANO M.Role of streptococcus mu⁃ tans surface proteins for biofilm formation[J].Jpn Dent Sci Rev,2018,54(1):22-29
-
[9] KASPAR J,UNDERHILL S,SHIELDS R C,et al.Inter⁃ cellular communication via the comX ⁃ inducing peptide(XIP)of Streptococcus mutans[J].J Bacteriol,2017,199(21):e00404-e00417
-
[10] WANG X,LI X,LING J.Streptococcus gordonii LuxS/au⁃ toinducer ⁃2 quorum ⁃ sensing system modulates the dual ⁃ species biofilm formation with Streptococcus mutans[J].J Basic Microbiol,2017,57(7):605-616
-
[11] SUZUKI Y,NAGASAWA R,SENPUKU H.Inhibiting ef⁃ fects of fructanase on competence⁃stimulating peptide⁃de⁃ pendent quorum sensing system in Streptococcus mutans [J].J Infect Chemother,2017,23(9):634-641
-
[12] GRAHAM C E,CRUZ M R,GARSIN D,et al.Enterococ⁃ cus faecalis bacteriocin EntV inhibits hyphal morphogene⁃ sis,biofilm formation,and virulence of Candida albicans [J].Proc Natl Acad Sci U S A,2017,114(17):4507-4512
-
[13] WANG F J,LIU Z H.Systematic analysis of protein ex⁃ pression in Candida albicans exposed to farnesol[J].Chin Med J(Engl),2019,132(19):2348-2353
-
[14] DIŽOVÁ S,BUJDÁKOVÁ H.Properties and role of the quorum sensing molecule farnesol in relation to the yeast Candida albicans[J].Pharmazie,2017,72(6):307-312
-
[15] SEBAA S,BOUCHERIT ⁃OTMANI Z,COURTOIS P.Ef⁃ fects of tyrosol and farnesol on Candida albicans biofilm [J].Mol Med Rep,2019,19(4):3201-3209
-
[16] CHEN H,FUJITA M,FENG Q,et al.Tyrosol is a quorum⁃ sensing molecule in Candida albicans[J].Proc Natl Acad Sci U S A,2004,101(14):5048-5052
-
[17] 许雯倩,张琰,马鸣,等.密度感应分子对白色念珠菌生物被膜形成作用的研究[J].南京医科大学学报(自然科学版),2014,34(9):1196-1201
-
[18] FALSETTA M L,KLEIN M I,COLONNE P M,et al.Sym⁃ biotic relationship between streptococcus mutans and can⁃ dida albicans synergizes virulence of plaque biofilms in vivo[J].Infect Immun,2014,82(5):1968-1981
-
[19] XIAO J,FOGARTY C,WU T T,et al.Oral health and Candida carriage in socioeconomically disadvantaged US pregnant women[J].BMC Pregnancy Childbirth,2019,19(1):480
-
[20] XIAO J,MOON Y,LI L,et al.Candida albicans carriage in children with severe early childhood caries(S ⁃ ECC)and maternal relatedness[J].PLoS One,2016,11(10):e0164242
-
[21] ANDJELKOVIC M,SOJIC L T,LEMIC A M,et al.Does the prevalence of periodontal pathogens change in elderly edentulous patients after complete denture treatment?[J].J Prosthodont,2017,26(5):364-369
-
[22] VALENTINI F,LUZ M S,BOSCATO N,et al.Biofilm for⁃ mation on denture liners in a randomised controlled in si⁃ tu trial[J].J Dent,2013,41(5):420-427
-
[23] BARBOSA J O,ROSSONI R D,VILELA S F,et al.Strep⁃ tococcus mutans can modulate biofilm formation and atten⁃ uate the virulence of Candida albicans[J].PLoS One,2016,11(3):e0150457
-
[24] HE J,KIM D,ZHOU X,et al.RNA⁃Seq reveals enhanced sugar metabolism in Streptococcus mutans co ⁃ cultured with Candida albicans within mixed ⁃species biofilms[J].Front Microbiol,2017,8:1036
-
[25] HE Z,HUANG Z,JIANG W,et al.Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms[J].Front Microbiol,2019,10:2241
-
[26] KIM D,SENGUPTA A,NIEPA T H,et al.Candida albi⁃ cans stimulates Streptococcus mutans microcolony devel⁃ opment via cross ⁃ kingdom biofilm ⁃ derived metabolites [J].Sci Rep,2017,7:41332
-
[27] SZTAJER H,SZAFRANSKI S P,TOMASCH J,et al.Cross ⁃ feeding and interkingdom communication in dual ⁃ spe⁃ cies biofilms of Streptococcus mutans and Candida albi⁃ cans[J].ISME J,2014,8(11):2256-2271
-
[28] ELLEPOLA K,LIU Y,CAO T,et al.Bacterial GtfB aug⁃ ments Candida albicans accumulation in cross ⁃ kingdom biofilms[J].J Dent Res,2017,96(10):1129-1135
-
[29] HWANG G,LIU Y,KIM D,et al.Candida albicans man⁃ nans mediate Streptococcus mutans exoenzyme GtfB bind⁃ ing to modulate cross⁃kingdom biofilm development in vi⁃ vo[J].PLoS Pathog,2017,13(6):e1006407
-
[30] LOBO C,RINALDI T B,CHRISTIANO C,et al.Dual⁃spe⁃ cies biofilms of Streptococcus mutans and Candida albi⁃ cans exhibit more biomass and are mutually beneficial compared with single⁃species biofilms[J].J Oral Microbi⁃ ol,2019,11(1):1581520
-
[31] HWANG G,MARSH G,GAO L,et al.Binding force dy⁃ namics of Streptococcus mutans ⁃ glucosyltransferase B to candida albicans[J].J Dent Res,2015,94(9):1310 ⁃ 1317
-
[32] FERNANDES R A,MONTEIRO D R,ARIAS L S,et al.Virulence factors in Candida albicans and Streptococcus mutans biofilms mediated by farnesol[J].Indian J Micro⁃ biol,2018,58(2):138-145
-
[33] ELLEPOLA K,TRUONG T,LIU Y,et al.Multi ⁃ omics analyses reveal synergistic carbohydrate metabolism in Streptococcus mutans ⁃ Candida albicans mixed ⁃ species biofilms[J].Infect Immun,2019,87(10):e00319-e00339
-
[34] JAROSZ L M,DENG D M,VAN DER MEI H C,et al.Streptococcus mutans competence ⁃ stimulating peptide in⁃ hibits Candida albicans hypha formation[J].Eukaryot Cell,2009,8(11):1658-1664
-
[35] FARKASH Y,FELDMAN M,GINSBURG I,et al.Poly⁃ phenols inhibit Candida albicans and Streptococcus mu⁃ tans biofilm formation[J].Dent J(Basel),2019,7(2):42
-
[36] PHILIP N,LEISHMAN S J,BANDARA H,et al.Polyphe⁃ nol⁃rich cranberry extracts modulate virulence of strepto⁃ coccus mutans ⁃ Candida albicans biofilms implicated in the pathogenesis of early childhood caries[J].Pediatr Dent,2019,41(1):56-62
-
[37] JAFRI H,KHAN M,AHMAD I.In vitro efficacy of euge⁃ nol in inhibiting single and mixed⁃biofilms of drug⁃resis⁃ tant strains of Candida albicans and Streptococcus mutans [J].Phytomedicine,2019,54:206-213
-
摘要
口腔微生物之间的相互作用对于口腔微生态平衡的维持以及口腔疾病的发生至关重要。变异链球菌和白色念珠菌分别是口腔的主要致龋细菌和主要致病真菌,研究表明两种微生物之间存在复杂的跨原核生物界⁃真核生物界相互作用,对临床致病性具有潜在影响。文章将综述变异链球菌和白色念珠菌的相互作用机制以及对致病性的影响,对于将天然产物应用于控制变异链球菌与白色念珠菌的双菌种生物膜及其毒力的探索研究也进行了总结。
Abstract
The interaction between oral microorganisms is critical for the maintenance of oral microecological balance and the occurrence of oral diseases. Studies have shown that there is a complex interkingdom interaction between the main cariogenic bacteria, Streptococcus mutans,and the main opportunistic pathogenic fungus in the mouth,Candida albicans,which may affect the clinical pathogenicity of each other. In this review,we summarized the influence of the interaction between Streptococcus mutans and Candida albicans on pathogenicity and known mechanisms. The application of natural products to control biofilms of Streptococcus mutans and Candida albicans and the virulence were also summarized.
Keywords
Streptococcus mutans ; Candida albicans ; biofilm ; interaction ; natural product