en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

邱文,E⁃mail:qiuwen@njmu.edu.cn

中图分类号:R392.12

文献标识码:A

文章编号:1007-4368(2021)05-637-06

DOI:10.7655/NYDXBNS20210501

参考文献 1
WANG P R,KITAMURA H,SHIMIZU A,et al.Glomeru⁃ lar damage in experimental proliferative glomerulonephri⁃ tis under glomerular capillary hypertension[J].Kidney Blood Press Res,2015,40(2):188-199
参考文献 2
RINTALA J M,SAVIKKO J,RINTALA S E,et al.Epider⁃ mal growth factor receptor inhibition with erlotinib amelio⁃ rates anti⁃Thy 1.1⁃induced experimental glomerulonephri⁃ tis[J].J Nephrol,2016,29(3):359-365
参考文献 3
TAN L X,TOOPS K A,LAKKARAJU A.Protective re⁃ sponses to sublytic complement in the retinal pigment epi⁃ thelium[J].Proc Natl Acad Sci U S A,2016,113(31):8789-8794
参考文献 4
SUI W,LI H,OU M,et,al.Altered long non⁃coding RNA expression profile in patients with IgA⁃negative mesangial proliferative glomerulonephritis[J].Int J Mol Med,2012,30(1):173-178
参考文献 5
BAI J,WU L,CHEN X,et al.Suppressor of cytokine sig⁃ naling ⁃ 1/STAT1 regulates renal inflammation in mesan⁃ gial proliferative glomerulonephritis models[J].Front Im⁃ munol,2018,9:1982
参考文献 6
ZHANG J,LI Y,SHAN K,et,al.Sublytic C5b⁃9 induces IL⁃6 and TGF⁃beta1 production by glomerular mesangial cells in rat Thy⁃1 nephritis through p300⁃mediated C/EB⁃ Pbeta acetylation[J].FASEB J,2014,28(3):1511-1525
参考文献 7
ZHANG J,XIE M,XIA L,et,al.Sublytic C5b⁃9 induces IL ⁃ 23 and IL ⁃ 36a production by glomerular mesangial cells via PCAF ⁃mediated KLF4 acetylation in rat Thy ⁃ 1 nephritis[J].J Immunol,2018,201(11):3184-3198
参考文献 8
罗灿,王文博,吴志皎,等.用sublytic C5b⁃9刺激上调的KLF5对大鼠肾小球系膜细胞合成 IL ⁃36α的影响 [J].南京医科大学学报(自然科学版),2020,40(3):367-373
参考文献 9
吴志皎,张志伟,刘龙飞,等.沉默GCN5或SOX9基因对Thy⁃1肾炎大鼠肾组织中TGF⁃β1生成的影响[J].南京医科大学学报(自然科学版),2020,40(3):360-366
参考文献 10
XIAO X,YANG C,QU S L,et,al.S100 proteins in athero⁃ sclerosis[J].Clin Chim Acta,2020,502(293⁃304)
参考文献 11
MOORE B W,PEREZ V J,GEHRING M.Assay and re⁃ gional distribution of a soluble protein characteristic of the nervous system[J].J Neurochem,1968,15(4):265-272
参考文献 12
MEDKOVA A,SROVNAL J,POTOMKOVA J,et,al.Mul⁃ tifarious diagnostic possibilities of the S100 protein fami⁃ ly:predominantly in pediatrics and neonatology[J].World J Pediatr,2018,14(4):315-321
参考文献 13
BERTHELOOT D,LATZ E.HMGB1,IL ⁃ 1alpha,IL ⁃ 33 and S100 proteins:dual ⁃ function alarmins[J].Cell Mol Immunol,2017,14(1):43-64
参考文献 14
BOTEANU R M,SUICA V I,UYY E,et,al.Alarmins in chronic noncommunicable diseases:atherosclerosis,dia⁃ betes and cancer[J].J Proteomics,2017,153:21-29
参考文献 15
SREEJIT G,ABDEL⁃LATIF A,ATHMANATHAN B,et,al.Neutrophil⁃derived S100A8/A9 amplify granulopoiesis after myocardial infarction[J].Circulation,2020,141(13):1080-1094
参考文献 16
GRIMM D,BAUER J,WISE P,et,al.The role of SOX family members in solid tumours and metastasis[J].Semin Cancer Biol,2019,S1044⁃579X(18)30141-X
参考文献 17
YAO Y,YAO J,BOSTRÖM K I.SOX Transcription fac⁃ tors in endothelial differentiation and endothelial ⁃mesen⁃ chymal transitions[J].Front Cardiovasc Med,2019,6:30
参考文献 18
WAT J J,WAT M J.Sox7 in vascular development:re⁃ view,insights and potential mechanisms[J].Int J Dev Bi⁃ ol,2014,58(1):1-8
目录contents

    摘要

    目的:构建大鼠S100钙结合蛋白A8(S100A8)基因启动子荧光素酶报告质粒,并在HEK⁃293T中检查过表达性别决定区Y框蛋白7(SOX7)基因对S100A8启动子活性的影响,同时筛选可能的SOX7结合元件。方法:采用PCR技术扩增大鼠 S100A8启动子全长,经双酶切后连接到pGL3⁃basic中,命名为pGL3⁃S100A8⁃FL。将pGL3⁃S100A8⁃FL与前期构建的pIRES2⁃ SOX7质粒共转染HEK⁃293T,再测定荧光素酶活性。此外,运用JASPAR预测S100A8启动子区可能包含的SOX7结合元件,并依此构建4个启动子截短质粒(即pGL3⁃S100A8⁃1~4)。将pGL3⁃S100A8⁃FL和pGL3⁃S100A8⁃1~4分别与pIRES2⁃SOX7共转染 HEK⁃293T,检查荧光素酶活性。接着构建SOX7结合元件突变的S100A8启动子质粒(即pGL3⁃S100A8⁃M),与pIRES2⁃SOX7转染HEK⁃293T,检测其荧光素酶活性。结果:将pGL3⁃S100A8⁃FL与pIRES2⁃SOX7共转染HEK⁃293T,发现过表达SOX7可显著增加 pGL3⁃S100A8⁃FL 启动子活性。将 pGL3⁃S100A8⁃FL 和 pGL3⁃S100A8⁃1~4 分别与 pIRES2⁃SOX7 共转染 HEK⁃293T,发现 pGL3⁃S100A8⁃4启动子活性显著低于pGL3⁃S100A8⁃FL和pGL3⁃S100A8⁃1~3,提示SOX7与S100A8启动子结合元件可能位于 -200~+51 nt区域内。将-86~-57 nt元件突变质粒(pGL3⁃S100A8⁃M)或pGL3⁃S100A8⁃FL与pIRES2⁃SOX7共转HEK⁃293T,发现 pGL3⁃S100A8⁃M启动子活性显著低于pGL3⁃S100A8⁃FL。提示SOX7可能与S100A8启动子-86~-57 nt元件结合。结论:成功构建大鼠S100A8基因启动子全长、截短和突变荧光素酶报告质粒,并初步确定S100A8启动子区的SOX7结合元件。

    Abstract

    Objective:This study aims to construct luciferase reporter plasmids of rat S100 calcium binding protein A8(S100A8) gene promoter and detect their activity in HEK293T cells in response to SRY ⁃ box transcription factor 7(SOX7)overexpression, meantime screen the possible binding elements for SOX7. Methods:Rat S100A8 gene full length promoter was amplified by PCR and cloned into the luciferase reporter plasmid(pGL3basic),and named pGL3S100A8FL. The plasmid of pGL3S100A8FL and previously constructed plasmid of pIRES2 ⁃ SOX7 were co ⁃ transfected into HEK293T cells,and then the luciferase activity was detected. Meanwhile,the potential SOX7⁃binding elements within S100A8 promoter were predicted by JASPAR. Based on the predicted results, four plasmids of truncated S100A8 gene promoter(pGL3S100A81~4)were co nstructed. The plasmids of pGL3S100A8FL or pGL3⁃ S100A81~4 and pIRES2SOX7 were cotransfected into HEK293T cells respectively. Then,the luciferase activity was detected. Next, S100A8 gene promoter of SOX7⁃binding element(-86~-57 nt)mutated plasmid was constructed(pGL3⁃S100A8⁃M). The HEK⁃293T cells were transfected with pGL3 ⁃ S100A8 ⁃ M and pIRES2 ⁃ SOX7 plasmid,and the luciferase activity was detected. Results:The plasmids of pGL3S100A8FL and pIRES2SOX7 were co transfected into HEK293T cells,found that the luciferase activity of S100A8 gene promoter was markedly increased in response to SOX7 overexpression. The plasmids of pGL3S100A8FL or pGL3S100A81~4 and pIRES2SOX7 were co transfected into HEK293T cells,and the result displayed that the activity of pGL3S100A8⁃4 was much lower than that in pGL3S100A8⁃FL and pGL3⁃S100A8⁃1~3,indicating that the region of rat S100A8 promoter(-200~+51 nt)might contain a SOX7⁃binding element(-86~-57 nt). Then the -86~-57 nt mutated plasmid(pGL3S100A8M)or pGL3S100A8FL and pIRES2SOX7 were co transfected into HEK293T cells,and the result revealed that the activity of pGL3S100A8 ⁃ M was much lower than that of pGL3S100A8FL,indicating that the SOX7 may bind to the element of rat S100A8 gene promoter -86~-57 nt. Conclusion:The rat full length and truncated rat S100A8 promoter luciferase reporter plasmids were constructed successfully,and the possible SOX7 binding element was preliminary determinated.

  • 大鼠Thy⁃1肾炎(Thy⁃1nephritis,Thy⁃1N)是一种公认的研究人类系膜增生性肾小球肾炎(mesan⁃ gial proliferative glomerulonephritis,MsPGN)的动物模型[1-2],给大鼠注射抗Thy⁃1抗原的抗体后,该抗体能与大鼠肾小球系膜细胞(glomerular mesangial cells,GMC)表面的Thy⁃1抗原结合,继而激活补体,引起炎症反应和GMC增生病变。已知补体作用靶细胞可分为全溶解型(lytic)和亚溶解型(sublytic), sublytic C5b⁃9虽不能导致细胞溶破,但能促发多种生物学反应[3]。本课题组以往研究证实,Thy⁃1N病变具有补体C5b⁃9依赖性,尤其是sublytic C5b⁃9依赖性。Thy⁃1N大鼠肾组织内和体外受sublytic C5b⁃9刺激的大鼠GMC中,多种炎症因子如白介素(inter⁃ leukein,IL)⁃6、IL⁃23和IL⁃36a表达显著上调,且参与肾组织炎性病变[4-9]。但是,其他炎症因子或介质在Thy⁃1N发病过程中发挥何种作用目前尚不知晓。

  • 本课题组前期实验发现,Thy⁃1N大鼠肾组织中和体外受sublytic C5b⁃9刺激的大鼠GMC中,炎症介质S100A8的mRNA和蛋白表达均显著上调。S100蛋白家族是仅存在于脊椎动物中的低分子量蛋白[10],于1965年由Moore等[11] 在牛脑中首次发现,因其可100%溶于饱和硫酸铵而得名。S100蛋白家族共计20余个成员,包括S100A1⁃A18、S100B、S100P等[12-13],且具有组织和细胞特异性以及结合Ca2+ 的能力[12]。在损伤或应激等因素的作用下,S100蛋白被释放到细胞外,促发组织炎症反应[13]。已发现, S100在类风湿关节炎(rheumatoid arthritis,RA)、炎症性肠病(inflammatory bowel disease,IBD)和狼疮肾炎(lupus nephritis,LN)等免疫性疾病中发挥了重要的促炎作用[14]。另有研究报道,在心肌梗死后发生的炎症中,梗死灶中的中性粒细胞释放的S100A8可与TLR⁃4结合,促进NLRP3炎症小体释放IL⁃1β,后者可增强骨髓中粒细胞的分化,进而加重炎症反应[15]

  • 为了研究Thy⁃1N大鼠GMC中S100A8基因表达的转录调控机制,本课题组前期又筛查了Thy⁃1N大鼠肾组织内和体外受sublytic C5b⁃9刺激的大鼠GMC中上调的转录因子,发现性别决定区Y框蛋白7(SRY⁃related HMG⁃box gene7,SOX7)的mRNA和蛋白表达均显著上升(资料未发表)。SOX7是一种含有高迁移率族框结构域的转录因子,可与启动子区DNA序列结合启动靶基因转录,发挥相应的生物学功能。目前发现的SOX家族根据HMG结构的氨基酸序列分为A、B1、B2、C、D、E、F、G和H亚群,共20余个成员,其中SOX7属于F亚群[16-17]。有文献报道,SOX7作为抑癌基因可通过Wnt/β⁃catenin信号通路抑制胶质瘤细胞的增殖[16]。此外,SOX7还可通过Notch信号通路促进血管生成[18]。本课题组前期实验发现,在大鼠GMC中过表达SOX7可上调S100A8基因的表达(资料未发表),另生物信息学软件预测提示大鼠S100A8基因启动子区含有SOX7的结合元件,但是上调的SOX7能否直接促进S100A8基因的转录,目前尚不清楚,故本实验拟对此问题展开研究。首先构建大鼠S100A8基因启动子全长和截短质粒,与大鼠S100A8过表达质粒共同转染HEK⁃293T工具细胞,观察SOX7对S100A8基因启动子活性的影响,同时筛选SOX7与S100A8基因可能的结合元件,并对上述SOX7结合元件进行突变分析,拟为进一步研究Thy ⁃1N大鼠GMC中SOX7促进S100A8基因启动和转录的机制提供实验依据。

  • 1 材料和方法

  • 1.1 材料

  • 人胚肾293T(HEK⁃293T)细胞购自美国模式培养物集存库(American Type Culture Collection,ATCC)。 pGL3⁃basic和pRL⁃SV40荧光素酶报告质粒以及双荧光素酶报告基因检测试剂盒(Promega公司,美国);基因组DNA提取试剂盒(北京天根生化技术有限);SanPrep柱式PCR产物纯化试剂盒(上海生工生物工程股份有限公司);高保真酶PrimeSTAR@Max DNA Polymerase、限制性内切酶 KpnⅠ、SmaⅠ 和T4DNA连接酶(TaKaRa公司,日本)。

  • 1.2 方法

  • 1.2.1 引物设计

  • 登录NCBI,通过Gene数据库中搜索大鼠S100A8基因(ID:116547),利用Primer 5.0软件辅助设计针对S100A8基因启动子区(-2 068~+174nt)的引物,上游:5′ ⁃ GGGGTACCATCCTAGCAGATGT⁃ GAGATGG ⁃ 3′;下游:5′ ⁃ TCCCCCGGGGCTACTC⁃ TATTCCCCCAACTC⁃3′,并在上下游引物序列前加入 KpnⅠ、SmaⅠ酶切位点序列,后交由滁州通用生物系统有限公司制备。

  • 1.2.2 大鼠S100A8基因启动子全长序列的扩增

  • 以大鼠基因组DNA为模板,用PrimeSTAR@Max DNA Polymerase进行PCR反应,反应体系: PrimeSTAR Max Premix(2×)25 μL,上、下游引物各2 μL,基因组DNA 2 μL,灭菌双蒸水19 μL;反应程序:98℃变性10s;60℃退火15s,72℃ 延伸2min,循环30次;扩增产物经SanPrep柱式PCR产物纯化试剂盒回收。

  • 1.2.3 大鼠S100A8基因启动子全长荧光素酶报告质粒的构建与鉴定

  • 将pGL3⁃basic质粒与S100A8基因启动子PCR产物与限制性内切酶KpnⅠ和SmaⅠ 37℃水浴2h,利用SanPrep柱式PCR产物纯化试剂盒分别回收线性化的pGL3⁃basic质粒和S100A8启动子PCR产物,再通过T4DNA连接酶进行连接反应(16℃,8~12h),并将连接产物转化感受态大肠杆菌DH5α,将其均匀涂布于含Amp抗性的LB平板琼脂表面,于37℃ 中培养12h后,挑取5个单克隆菌落于3mL含有Amp抗性的液体LB培养基中,37℃震荡培养12h。取1 μL培养后的菌液作为模板DNA进行PCR鉴定,筛选出的阳性克隆送通用生物系统(安徽)有限公司测序鉴定,将构建成功的质粒命名为pGL3⁃ S100A8⁃FL。

  • 1.2.4 大鼠S100A8基因启动子截短和突变质粒的构建与鉴定

  • 利用JASPAR软件预测S100A8基因启动子区SOX7的结合元件,并根据预测结果通过通用生物系统(安徽)有限公司构建4个S100A8基因启动子截短质粒。后由该公司将S100A8基因启动子-86~-57nt区SOX7结合元件5′ ⁃GAAATGCTCAATGT⁃ GCTCAGTGATTGCCAC ⁃ 3′突变为5′ ⁃GGGCGCGC⁃ GCGCTATAGGGCGCGCGCGCCC⁃3′,突变质粒命名为pGL3⁃S100A8⁃M。

  • 1.2.5 重组质粒转染HEK⁃293T细胞

  • 将HEK⁃293T细胞接种于24孔板中(1×105 个/孔),培养24h后,用Lipofectamine2000将pIRES2 ⁃ SOX7、pRL⁃SV40分别与S100A8基因启动子全长质粒及各截短质粒转染HEK⁃293T细胞。

  • 1.2.6 荧光素酶活性的测定

  • 待上述质粒共转染HEK⁃293T细胞48h后,用双荧光素酶报告基因检测试剂盒中PLB裂解液稀释后裂解细胞,收集细胞裂解产物,分别检测S100A8基因启动子质粒及内参照质粒(pRL ⁃ SV40)的荧光活性,其中,目的基因的萤火虫荧光素酶活性(M1)/pRL⁃SV40质粒的海肾荧光素酶活性(M2),即为被检测质粒的相对荧光素酶活性 (RLU)。

  • 1.3 统计学方法

  • 所得定量数据均以均数±标准误(x-±sx-)表示。采用SPSS 19.0软件对所得数据进行方差分析和Bonfferoni法两两比较,P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 大鼠S100A8启动子荧光素酶报告质粒的构建与鉴定

  • PCR扩增大鼠S100A8全长启动子(-2 068~+174nt)后,经双酶切插入pGL3⁃basic质粒中,将重组质粒转化后均匀涂布于含Amp抗性的固体LB平板琼脂表面,经菌液PCR筛选出阳性克隆菌落,再送公司测序验证,测序结果显示质粒构建成功,命名为pGL3⁃S100A8⁃FL(图1)。

  • 2.2 过表达SOX7 对大鼠S100A8 启动子全长活性的影响

  • 将pIRES2⁃EGFP、pIRES2⁃SOX7、pRL ⁃SV40和pGL3⁃S100A8⁃FL不同分组共转染HEK⁃293T细胞,转染后48h检查GFP表达情况,发现GFP显著表达,其转染效率约为80%(图2)。随后裂解细胞并进行荧光素酶报告基因检测,结果显示,pGL3 ⁃ S100A8⁃FL、pIRES2⁃SOX7与pRL⁃SV40共转染组其RLU值显著高于pGL3⁃S100A8⁃FL、pIRES2⁃EGFP与pRL⁃SV40共转染组,提示SOX7过表达能够明显上调S100A8基因的启动子活性。

  • 图1 琼脂糖凝胶电泳结果

  • Fig.1 Agarose gel electrophoresis results

  • 2.3 SOX7 过表达对大鼠S100A8 基因启动子活性的影响

  • 2.3.1 大鼠S100A8基因启动子各截短质粒位置的确定

  • 应用生物信息学软件JASPAR对S100A8基因启动子全长序列中SOX7的结合元件进行预测(表1)。参考其各结合元件的位置,设计相应的截短质粒(表2)。

  • 2.3.2 大鼠S100A8基因启动子各截短质粒的构建与鉴定

  • 基于pGL3⁃S100A8⁃FL质粒,由通用生物系统 (安徽)有限公司构建上述4个截短质粒,即pGL3⁃ S100A8⁃1、pGL3⁃S100A8⁃2、pGL3⁃S100A8⁃3和pGL3⁃ S100A8⁃4,测序结果显示pGL3⁃S100A8⁃1~4截短质粒构建正确。

  • 2.3.3 SOX7过表达对大鼠S100A8基因启动子各截短质粒活性的影响

  • 将pGL3 ⁃ basic、pGL3 ⁃ S100A8 ⁃ FL和pGL3 ⁃ S100A8各截短质粒分别与pIRES2⁃ SOX7和pRL ⁃ SV40共转染HEK⁃293T细胞,转染后48h裂解细胞并测定其荧光素酶活性,转染pGL3⁃S100A8⁃4细胞的RLU值较pGL3⁃S100A8⁃FL和pGL3⁃S100A8⁃1~3转染组相比显著降低(图3)。提示S100A8基因启动子区的SOX7结合元件可能位于-200~+51nt区域。

  • 2.3.4 SOX7过表达对大鼠S100A8基因启动子突变质粒活性的影响

  • 为了进一步确定SOX7在S100A8启动子-200~+51nt区内的结合元件,根据JASPAR结合元件预测结果,又开展了启动子突变实验,构建了S100A8启动子-86~-57nt区突变的荧光素酶报告质粒,即将5′ ⁃ GAAATGCTCAATGTGCTCAGTGATTGCCAC ⁃ 3′突变为5′ ⁃ GGGCGCGCGCGCTATAGGGCGCGCGC⁃ GCCC⁃3′,并将其命名为pGL3⁃S100A8⁃FL⁃M。将pGL3⁃basic、pGL3⁃S100A8⁃FL和pGL3⁃S100A8⁃M分别与pIRES2⁃SOX7质粒共转染HEK⁃293T细胞,于转染48h裂解细胞并检测各组荧光素酶活性。结果显示,S100A8基因全长启动子-86~-57nt突变后其荧光素酶活性显著降低,初步确定转录因子SOX7可通过与-86~-57nt区结合并上调S100A8的启动子活性 (图4)。

  • 图2 HEK⁃293T细胞中质粒共转效率的评估以及SOX7过表达对大鼠S100A8基因启动子全长荧光素酶活性的影响

  • Fig.2 Transfection efficiency of plasmids in HEK ⁃ 293T cells and the effect of SOX7overexpres⁃ sion on rat S100A8gene full ⁃ length promoter activity

  • 表1 JASPAR预测的大鼠S100A8基因启动子区SOX7结合元件

  • Table1 SOX7binding elements within rat S100A8gene promoter predicted by JASPAR

  • 表2 S100A8截短质粒位置

  • Table2 location of different S100A8truncated luciferase reporter plasmids

  • 图3 HEK⁃293T细胞中SOX7对S100A8各截短质粒荧光素酶活性的影响

  • Fig.3 The effect of SOX7on the activity of different truncated rat S100A8promoter in HEK ⁃ 293T cells

  • 3 讨论

  • 本课题组前期研究证实,大鼠Thy⁃1N发病过程中炎症介质S100A8和转录因子SOX7的表达均显著上调,且体外用sublytic C5b⁃9刺激大鼠GMC后亦可明显增强S100A8和SOX7的表达。此外,在大鼠GMC中过表达SOX7可显著上调S100A8的表达,另生物信息学软件预测提示,S100A8基因启动子区包含多个SOX7结合元件。因此推测,sublytic C5b⁃9刺激大鼠GMC后可通过上调SOX7促进S100A8基因的转录和表达,进而加重Thy⁃1N的炎性病变。

  • 为了研究大鼠SOX7对S100A8基因启动的影响,本实验构建了大鼠S100A8基因启动子全长荧光素酶报告质粒(pGL3⁃S100A8⁃FL),将pGL3⁃S100A8⁃ FL质粒与我们前期构建的pIRES2⁃SOX7质粒行不同分组共转染HEK⁃293T细胞,转染48h裂解细胞并测定其荧光素酶活性。结果发现,pGL3⁃S100A8⁃FL和pIRES2⁃SOX7共转染组其荧光素酶活性显著高于其他组,提示过表达大鼠SOX7能够增强HEK⁃293T细胞中大鼠S100A8基因的启动子活性,这一发现与本课题前期GMC细胞实验的结果一致,即转录因子SOX7能够促进大鼠GMC中S100A8基因的表达。

  • 图4 HEK⁃293T细胞中SOX7对S100A8全长和突变启动子质粒荧光素酶活性的影响

  • Fig.4 The effect of SOX7on the activity of full length and mutant of rat S100A8promoter in HEK ⁃ 293T cells

  • 为了进一步确定大鼠SOX7与S100A8基因启动子的结合部位,通过JASPAR软件预测发现大鼠S100A8基因启动子区可能存在5个SOX7结合元件,并据此构建了4个大鼠S100A8基因启动子截短荧光素酶报告质粒,即pGL3⁃S100A8⁃1~4。之后将pGL3 ⁃ S100A8 ⁃ FL或pGL3 ⁃ S100A8 ⁃ 1~4分别与pIRES2⁃SOX7和pRL⁃SV40共转染HEK⁃293T细胞,于48h裂解细胞检测各组RLU值,结果表明,pGL3⁃ S100A8⁃4荧光素酶活性显著低于pGL3⁃S100A8⁃FL和pGL3⁃S100A8⁃1~3,提示SOX7与S100A8基因启动子的结合元件可能位于启动子-200~+51nt之间。而根据JASPAR软件预测结果,-200~+51nt区域含有1个SOX7结合元件(-86~-57nt,5′⁃GAAATGCT⁃ CAATGTGCTCAGTGATTGCCA C⁃3′),随后,将该结合元件进行序列突变,构建S100A8启动子全长突变质粒即pGL3⁃S100A8⁃M,并将pGL3⁃S100A8⁃FL和pGL3⁃S100A8⁃M分别与pIRES2⁃SOX7和pRL⁃SV40共转染HEK⁃293T细胞,于48h裂解细胞检测各组荧光素酶活性。结果发现与pGL3⁃S100A8⁃FL相比, pGL3⁃S100A8⁃M组荧光素酶活性显著降低,提示S100A8基因启动子-86~-57nt区可能是SOX7结合元件。不过有关SOX7能否与该启动子区直接结合,仍需要通过染色质免疫沉淀(chromatin immuno⁃ precipitation,ChIP)实验进一步确证。

  • 综上所述,本实验成功构建了大鼠S100A8基因启动子全长荧光素酶报告质粒,并在HEK⁃293T细胞中证实过表达SOX7可增强S100A8基因的启动子活性。此外,用生物信息学软件预测SOX7结合元件的分布,据此设计并构建了4个S100A8基因启动子截短荧光素酶报告质粒,在HEK⁃293T细胞中过表达SOX7探讨其对S100A8基因启动子不同截短活性的影响,初步筛选出大鼠S100A8基因启动子区可能的SOX7结合元件(-86~-57nt)。接着对上述结合元件序列进行突变,并在HEK⁃293T细胞中检查过表达SOX7对S100A8基因启动子突变质粒启动的影响,进一步确证了上述SOX7结合元件的有效性。本研究结果为今后进一步探究sublytic C5b⁃9刺激大鼠GMC后通过上调SOX7促进S100A8基因的转录及其机制提供了必要的启动子质粒和有用的实验数据。

  • 参考文献

    • [1] WANG P R,KITAMURA H,SHIMIZU A,et al.Glomeru⁃ lar damage in experimental proliferative glomerulonephri⁃ tis under glomerular capillary hypertension[J].Kidney Blood Press Res,2015,40(2):188-199

    • [2] RINTALA J M,SAVIKKO J,RINTALA S E,et al.Epider⁃ mal growth factor receptor inhibition with erlotinib amelio⁃ rates anti⁃Thy 1.1⁃induced experimental glomerulonephri⁃ tis[J].J Nephrol,2016,29(3):359-365

    • [3] TAN L X,TOOPS K A,LAKKARAJU A.Protective re⁃ sponses to sublytic complement in the retinal pigment epi⁃ thelium[J].Proc Natl Acad Sci U S A,2016,113(31):8789-8794

    • [4] SUI W,LI H,OU M,et,al.Altered long non⁃coding RNA expression profile in patients with IgA⁃negative mesangial proliferative glomerulonephritis[J].Int J Mol Med,2012,30(1):173-178

    • [5] BAI J,WU L,CHEN X,et al.Suppressor of cytokine sig⁃ naling ⁃ 1/STAT1 regulates renal inflammation in mesan⁃ gial proliferative glomerulonephritis models[J].Front Im⁃ munol,2018,9:1982

    • [6] ZHANG J,LI Y,SHAN K,et,al.Sublytic C5b⁃9 induces IL⁃6 and TGF⁃beta1 production by glomerular mesangial cells in rat Thy⁃1 nephritis through p300⁃mediated C/EB⁃ Pbeta acetylation[J].FASEB J,2014,28(3):1511-1525

    • [7] ZHANG J,XIE M,XIA L,et,al.Sublytic C5b⁃9 induces IL ⁃ 23 and IL ⁃ 36a production by glomerular mesangial cells via PCAF ⁃mediated KLF4 acetylation in rat Thy ⁃ 1 nephritis[J].J Immunol,2018,201(11):3184-3198

    • [8] 罗灿,王文博,吴志皎,等.用sublytic C5b⁃9刺激上调的KLF5对大鼠肾小球系膜细胞合成 IL ⁃36α的影响 [J].南京医科大学学报(自然科学版),2020,40(3):367-373

    • [9] 吴志皎,张志伟,刘龙飞,等.沉默GCN5或SOX9基因对Thy⁃1肾炎大鼠肾组织中TGF⁃β1生成的影响[J].南京医科大学学报(自然科学版),2020,40(3):360-366

    • [10] XIAO X,YANG C,QU S L,et,al.S100 proteins in athero⁃ sclerosis[J].Clin Chim Acta,2020,502(293⁃304)

    • [11] MOORE B W,PEREZ V J,GEHRING M.Assay and re⁃ gional distribution of a soluble protein characteristic of the nervous system[J].J Neurochem,1968,15(4):265-272

    • [12] MEDKOVA A,SROVNAL J,POTOMKOVA J,et,al.Mul⁃ tifarious diagnostic possibilities of the S100 protein fami⁃ ly:predominantly in pediatrics and neonatology[J].World J Pediatr,2018,14(4):315-321

    • [13] BERTHELOOT D,LATZ E.HMGB1,IL ⁃ 1alpha,IL ⁃ 33 and S100 proteins:dual ⁃ function alarmins[J].Cell Mol Immunol,2017,14(1):43-64

    • [14] BOTEANU R M,SUICA V I,UYY E,et,al.Alarmins in chronic noncommunicable diseases:atherosclerosis,dia⁃ betes and cancer[J].J Proteomics,2017,153:21-29

    • [15] SREEJIT G,ABDEL⁃LATIF A,ATHMANATHAN B,et,al.Neutrophil⁃derived S100A8/A9 amplify granulopoiesis after myocardial infarction[J].Circulation,2020,141(13):1080-1094

    • [16] GRIMM D,BAUER J,WISE P,et,al.The role of SOX family members in solid tumours and metastasis[J].Semin Cancer Biol,2019,S1044⁃579X(18)30141-X

    • [17] YAO Y,YAO J,BOSTRÖM K I.SOX Transcription fac⁃ tors in endothelial differentiation and endothelial ⁃mesen⁃ chymal transitions[J].Front Cardiovasc Med,2019,6:30

    • [18] WAT J J,WAT M J.Sox7 in vascular development:re⁃ view,insights and potential mechanisms[J].Int J Dev Bi⁃ ol,2014,58(1):1-8

  • 参考文献

    • [1] WANG P R,KITAMURA H,SHIMIZU A,et al.Glomeru⁃ lar damage in experimental proliferative glomerulonephri⁃ tis under glomerular capillary hypertension[J].Kidney Blood Press Res,2015,40(2):188-199

    • [2] RINTALA J M,SAVIKKO J,RINTALA S E,et al.Epider⁃ mal growth factor receptor inhibition with erlotinib amelio⁃ rates anti⁃Thy 1.1⁃induced experimental glomerulonephri⁃ tis[J].J Nephrol,2016,29(3):359-365

    • [3] TAN L X,TOOPS K A,LAKKARAJU A.Protective re⁃ sponses to sublytic complement in the retinal pigment epi⁃ thelium[J].Proc Natl Acad Sci U S A,2016,113(31):8789-8794

    • [4] SUI W,LI H,OU M,et,al.Altered long non⁃coding RNA expression profile in patients with IgA⁃negative mesangial proliferative glomerulonephritis[J].Int J Mol Med,2012,30(1):173-178

    • [5] BAI J,WU L,CHEN X,et al.Suppressor of cytokine sig⁃ naling ⁃ 1/STAT1 regulates renal inflammation in mesan⁃ gial proliferative glomerulonephritis models[J].Front Im⁃ munol,2018,9:1982

    • [6] ZHANG J,LI Y,SHAN K,et,al.Sublytic C5b⁃9 induces IL⁃6 and TGF⁃beta1 production by glomerular mesangial cells in rat Thy⁃1 nephritis through p300⁃mediated C/EB⁃ Pbeta acetylation[J].FASEB J,2014,28(3):1511-1525

    • [7] ZHANG J,XIE M,XIA L,et,al.Sublytic C5b⁃9 induces IL ⁃ 23 and IL ⁃ 36a production by glomerular mesangial cells via PCAF ⁃mediated KLF4 acetylation in rat Thy ⁃ 1 nephritis[J].J Immunol,2018,201(11):3184-3198

    • [8] 罗灿,王文博,吴志皎,等.用sublytic C5b⁃9刺激上调的KLF5对大鼠肾小球系膜细胞合成 IL ⁃36α的影响 [J].南京医科大学学报(自然科学版),2020,40(3):367-373

    • [9] 吴志皎,张志伟,刘龙飞,等.沉默GCN5或SOX9基因对Thy⁃1肾炎大鼠肾组织中TGF⁃β1生成的影响[J].南京医科大学学报(自然科学版),2020,40(3):360-366

    • [10] XIAO X,YANG C,QU S L,et,al.S100 proteins in athero⁃ sclerosis[J].Clin Chim Acta,2020,502(293⁃304)

    • [11] MOORE B W,PEREZ V J,GEHRING M.Assay and re⁃ gional distribution of a soluble protein characteristic of the nervous system[J].J Neurochem,1968,15(4):265-272

    • [12] MEDKOVA A,SROVNAL J,POTOMKOVA J,et,al.Mul⁃ tifarious diagnostic possibilities of the S100 protein fami⁃ ly:predominantly in pediatrics and neonatology[J].World J Pediatr,2018,14(4):315-321

    • [13] BERTHELOOT D,LATZ E.HMGB1,IL ⁃ 1alpha,IL ⁃ 33 and S100 proteins:dual ⁃ function alarmins[J].Cell Mol Immunol,2017,14(1):43-64

    • [14] BOTEANU R M,SUICA V I,UYY E,et,al.Alarmins in chronic noncommunicable diseases:atherosclerosis,dia⁃ betes and cancer[J].J Proteomics,2017,153:21-29

    • [15] SREEJIT G,ABDEL⁃LATIF A,ATHMANATHAN B,et,al.Neutrophil⁃derived S100A8/A9 amplify granulopoiesis after myocardial infarction[J].Circulation,2020,141(13):1080-1094

    • [16] GRIMM D,BAUER J,WISE P,et,al.The role of SOX family members in solid tumours and metastasis[J].Semin Cancer Biol,2019,S1044⁃579X(18)30141-X

    • [17] YAO Y,YAO J,BOSTRÖM K I.SOX Transcription fac⁃ tors in endothelial differentiation and endothelial ⁃mesen⁃ chymal transitions[J].Front Cardiovasc Med,2019,6:30

    • [18] WAT J J,WAT M J.Sox7 in vascular development:re⁃ view,insights and potential mechanisms[J].Int J Dev Bi⁃ ol,2014,58(1):1-8