en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张倩,E⁃mail:kezhang0601@163.com

中图分类号:R562.25

文献标识码:A

文章编号:1007-4368(2021)05-779-06

DOI:10.7655/NYDXBNS20210526

参考文献 1
ALLEN E A,BAEHRECKE E H.Autophagy in animal de⁃ velopment[J].Cell Death Differ,2020,27(3):903-918
参考文献 2
ZHANG P,ZHENG Z,LING L,et al.W09,a novel au⁃ tophagy enhancer,induces autophagy ⁃ dependent cell apoptosis via activation of the EGFR ⁃ mediated RAS ⁃ RAF1⁃MAP2K⁃MAPK1/3 pathway[J].Autophagy,2017,13(7):1093-1112
参考文献 3
ALLAVENA G,CUOMO F,BAUMGARTNER G,et al.Suppressed translation as a mechanism of initiation of CASP8(caspase 8)⁃dependent apoptosis in autophagy⁃de⁃ ficient NSCLC cells under nutrient limitation[J].Autoph⁃ agy,2018,14(2):252-268
参考文献 4
KING B C,KULAK K,KRUS U,et al.Complement com⁃ ponent C3 is highly expressed in human pancreatic islets and prevents beta cell death via ATG16L1 interaction and autophagy regulation[J].Cell Metab,2019,29(1):202-210.e6
参考文献 5
孙洁,邵庆,刘庆淮.自噬在视网膜母细胞瘤中的研究进展[J].南京医科大学学报(自然科学版),2020,40(5):736-737
参考文献 6
RACANELLI A C,KIKKERS S A,CHOI A M K,et al.Autophagy and inflammation in chronic respiratory dis⁃ ease[J].Autophagy,2018,14(2):221-232
参考文献 7
FUCHS Y,STELLER H.Live to die another way:modes of programmed cell death and the signals emanating from dying cells[J].Nat Rev Mol Cell Biol,2015,16(6):329-344
参考文献 8
GROSS A S,GRAEF M.Mechanisms of autophagy in met⁃ abolic stress response[J].J Mol Biol,2020,432(1):28-52
参考文献 9
NASCIMBENI A C,GIORDANO F,DUPONT N,et al.ER ⁃plasma membrane contact sites contribute to autophago⁃ some biogenesis by regulation of local PI3P synthesis[J].EMBO J,2017,36(14):2018-2033
参考文献 10
ZHAO Y G,LIU N,MIAO G,et al.The ER contact pro⁃ teins VAPA/B interact with multiple autophagy proteins to modulate autophagosome biogenesis[J].Curr Biol,2018,28(8):1234-1245.e4
参考文献 11
ZHUANG X,CHUNG K,LUO M,et al.Autophagosome biogenesis and the endoplasmic reticulum:a plant per⁃ spective[J].Trends Plant Sci,2018,23(8):677-692
参考文献 12
NAKATOGAWA H.Mechanisms governing autophago⁃ some biogenesis[J].Nat Rev Mol Cell Biol,2020,21(8):439-458
参考文献 13
FENG Y,HE D,YAO Z,et al.The machinery of macroau⁃ tophagy[J].Cell Res,2014,24(1):24-41
参考文献 14
MATSUZAWA⁃ISHIMOTO Y,HWANG S,CADWELL K.Autophagy and inflammation[J].Annu Rev Immunol,2018,36:73-101
参考文献 15
HIROSE K,IWATA A,TAMACHI T,et al.Allergic air⁃ way inflammation:key players beyond the Th2 cell path⁃ way[J].Immunol Rev,2017,278(1):145-161
参考文献 16
LAMBRECHT B N,HAMMAD H,FAHY J V.The cyto⁃ kines of asthma[J].Immunity,2019,50(4):975-991
参考文献 17
SALAZAR F,GHAEMMAGHAMI A M.Allergen recogni⁃ tion by innate immune cells:critical role of dendritic and epithelial cells[J].Front Immunol,2013,4:356
参考文献 18
BONSER L R,ERLE D J.The airway epithelium in asth⁃ ma[J].Adv Immunol,2019,142:1-34
参考文献 19
DEBEUF N,LAMBRECHT B N.Eicosanoid control over antigen presenting cells in asthma[J].Front Immunol,2018,9:2006
参考文献 20
XIA F,DENG C,JIANG Y,et al.IL4(interleukin 4)in⁃ duces autophagy in B cells leading to exacerbated asthma [J].Autophagy,2018,14(3):450-464
参考文献 21
CHEN Z H,WU Y F,WANG P L,et al.Autophagy is es⁃ sential for ultrafine particle ⁃ induced inflammation and mucus hyperproduction in airway epithelium[J].Autoph⁃ agy,2016,12(2):297-311
参考文献 22
XU X C,WU Y F,ZHOU J S,et al.Autophagy inhibitors suppress environmental particulate matter⁃induced airway inflammation[J].Toxicol Lett,2017,280:206-212
参考文献 23
WU Y F,LI Z Y,DONG L L,et al.Inactivation of MTOR promotes autophagy⁃mediated epithelial injury in particu⁃ late matter⁃induced airway inflammation[J].Autophagy,2020,16(3):435-450
参考文献 24
JIANG X,FANG L,WU H,et al.TLR2 regulates allergic airway inflammation and autophagy through PI3K/Akt sig⁃ naling pathway[J].Inflammation,2017,40(4):1382-1392
参考文献 25
LIN Y,TAN D,KAN Q,et al.The protective effect of nar⁃ ingenin on airway remodeling after mycoplasma pneu⁃ moniae infection by inhibiting autophagy ⁃ mediated lung inflammation and fibrosis[J].Mediators Inflamm,2018,2018:8753894
参考文献 26
ZOU H,WANG L X,WANG M,et al.MTOR ⁃ mediated autophagy is involved in the protective effect of ketamine on allergic airway inflammation[J].J Immunol Res,2019,2019:5879714
参考文献 27
WANG X,GAO Y,YANG Q,et al.Pingchuanning decoc⁃ tion attenuates airway inflammation by suppressing au⁃ tophagy via phosphatidylinositol 3 ⁃ kinase/protein kinase B/mammalian target of rapamycin signaling pathway in rat models of asthma[J].J Cell Biochem,2019,120(3):3833-3844
参考文献 28
PAPI A,BRIGHTLING C,PEDERSEN S E,et al.Asthma [J].Lancet,2018,391(10122):783-800
参考文献 29
MCALINDEN K D,DESHPANDE D A,GHAVAMI S,et al.Autophagy activation in asthma airways remodeling [J].Am J Respir Cell Mol Biol,2019,60(5):541-553
参考文献 30
CHENG Z,WANG X,DAI L,et al.Suppression of mi⁃ croRNA ⁃384 enhances autophagy of airway smooth mus⁃ cle cells in asthmatic mouse[J].Oncotarget,2017,8(40):67933-67941
参考文献 31
LOU L,TIAN M,CHANG J,et al.MiRNA⁃192⁃5p attenu⁃ ates airway remodeling and autophagy in asthma by target⁃ ing MMP⁃16 and ATG7[J].Biomed Pharmacother,2019,122:109692
参考文献 32
GU W,CUI R,DING T,et al.Simvastatin alleviates air⁃ way inflammation and remodelling through up ⁃ regulation of autophagy in mouse models of asthma[J].Respirology,2017,22(3):533-541
参考文献 33
FISCHER K D,HALL S C,AGRAWAL D K.Vitamin D supplementation reduces induction of epithelial ⁃ mesen⁃ chymal transition in allergen sensitized and challenged mice[J].PLoS One,2016,11(2):e0149180
参考文献 34
LAMOUILLE S,XU J,DERYNCK R.Molecular mecha⁃ nisms of epithelial ⁃ mesenchymal transition[J].Nat Rev Mol Cell Biol,2014,15(3):178-196
参考文献 35
YANG J,ANTIN P,BERX G,et al.Guidelines and defini⁃ tions for research on epithelial ⁃ mesenchymal transition [J].Nat Rev Mol Cell Biol,2020,21(6):341-352
参考文献 36
WANG X,ZHOU Y,PENG Y,et al.Bromodomain ⁃con⁃ taining protein 4 contributes to renal fibrosis through the induction of epithelial ⁃ mesenchymal transition[J].Exp Cell Res,2019,383(2):111507
参考文献 37
PAIN M,BERMUDEZ O,LACOSTE P,et al.Tissue re⁃ modelling in chronic bronchial diseases:from the epitheli⁃ al to mesenchymal phenotype[J].Eur Respir Rev,2014,23(131):118-130
参考文献 38
LIU T,LIU Y H,MILLER M,et al.Autophagy plays a role in FSTL1⁃induced epithelial mesenchymal transition and airway remodeling in asthma[J].Am J Physiol Lung Cell Mol Physiol,2017,313(1):L27-L40
参考文献 39
POON A H,CHOUIALI F,TSE S M,et al.Genetic and histologic evidence for autophagy in asthma pathogenesis [J].J Allergy Clin Immunol,2012,129(2):569-571
参考文献 40
YIN H,ZHANG S,SUN Y,et al.MicroRNA ⁃34/449 tar⁃ gets IGFBP ⁃ 3 and attenuates airway remodeling by sup⁃ pressing Nur77⁃mediated autophagy[J].Cell Death Dis,2017,8(8):e2998
参考文献 41
LI B B,CHEN Y L,PANG F.MicroRNA ⁃ 30a targets ATG5 and attenuates airway fibrosis in asthma by sup⁃ pressing autophagy[J].Inflammation,2019,43(1):44-53
参考文献 42
DICKINSON J D,ALEVY Y,MALVIN N P,et al.IL13 activates autophagy to regulate secretion in airway epithe⁃ lial cells[J].Autophagy,2016,12(2):397-409
参考文献 43
ZHANG Y,TANG H,YUAN X,et al.TGF ⁃ beta3 pro⁃ motes MUC5AC hyper⁃expression by modulating autopha⁃ gy pathway in airway epithelium[J].EBioMedicine,2018,33:242-252
参考文献 44
AGARRABERES F,DICE J.A molecular chaperone com⁃ plex at the lysosomal membrane is required for protein translocation[J].J Cell Sci,2001,114(13):2491-2499
参考文献 45
ROBERT G,JACQUEL A,AUBERGER P.Chaperone ⁃ mediated autophagy and its emerging role in hematologi⁃ cal malignancies[J].Cells,2019,8(10):1260
参考文献 46
CUERVO A,DICE J.Regulation of lamp2a levels in the lysosomal membrane [J].Traffic(Copenhagen,Den⁃ mark),2000,1(7):570-583
参考文献 47
VALDOR R,MOCHOLI E,BOTBOL Y,et al.Chaperone⁃ mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activa⁃ tion[J].Nat Immunol,2014,15(11):1046-1054
参考文献 48
PEREZ L,MCLETCHIE S,GARDINER G J,et al.LAMP⁃ 2C inhibits MHC class Ⅱ presentation of cytoplasmic an⁃ tigens by disrupting chaperone⁃mediated autophagy[J].J Immunol,2016,196(6):2457-2465
参考文献 49
SCHULIGA M.NF ⁃ kappaB Signaling in chronic inflam⁃ matory airway disease[J].Biomolecules,2015,5(3):1266-1283
参考文献 50
CUERVO A,HU W,LIM B,et al.IkappaB is a substrate for a selective pathway of lysosomal proteolysis[J].Mol Biol Cell,1998,9(8):1995-2010
参考文献 51
OKU M,SAKAI Y.Three distinct types of microautopha⁃ gy based on membrane dynamics and molecular machiner⁃ ies[J].Bioessays,2018,40(6):e1800008
参考文献 52
SATO M,UEDA E,KONNO A,et al.Glucocorticoids neg⁃ atively regulates chaperone mediated autophagy and mi⁃ croautophagy[J].Biochem Biophys Res Commun,2020,528(1):199-205
目录contents

    摘要

    支气管哮喘是一种具有复杂病理生理特征的气道慢性炎症疾病,细胞自噬是哺乳动物真核细胞内普遍存在的一种生物学行为。自噬通过降解损伤的细胞器、蛋白质、入侵的病原微生物等参与细胞的正常生理活动和新陈代谢,与细胞的生存发展密切相关,并且已经被证实与许多疾病包括哮喘的发生发展有关,是目前研究的热点。文章就细胞自噬与哮喘最新相关研究作一综述。

    Abstract

    Bronchial asthma is a chronic airway inflammatory disease with complex pathophysiological characteristics. Autophagy is involved in the normal physiological activities and metabolism of cells by degrading damaged organelles,proteins and invading pathogenic microorganisms. It is closely related to the survival and development of cells,and has been confirmed to be associated with the development of many diseases including asthma,which is a hotspot of current research. This review will summarize and evaluate the progress of study of the relationship between autophagy and asthma.

  • 细胞自噬(autophagy)又称Ⅱ型细胞死亡,是一种高度保守的维持细胞稳态的生物学现象,细胞自噬有3种:大自噬(macroautophagy)、微自噬(micro⁃ autophagy)和伴侣介导的自噬(chaperone ⁃mediated autophagy,CMA),虽然他们的机制不同,但最终都是把“货物”运送到溶酶体,利用溶酶体的相关降解酶进行降解,从而实现对吞噬的“货物”进行再循环利用[1]。自噬受多种因素调控,适度的自噬水平有利于细胞的存活,然而过度的自噬也会引起细胞的程序性死亡[2-3]。自噬的失调参与某些疾病的发生发展,如肿瘤、神经退行性病变、代谢相关性疾病、免疫相关性疾病等[4-5]。越来越多的研究表明自噬与支气管哮喘之间存在密切关系[6],本文就自噬和哮喘的关系作一综述。

  • 1 大自噬和支气管哮喘

  • 1.1 大自噬

  • 自噬、凋亡和坏死是目前公认的细胞的3种程序性死亡方式[7]。大自噬是普遍存在于真核动物细胞内的一种高度保守的分解代谢途径,其主要功能是应对缺氧、营养缺乏等应激反应来维持细胞的稳态。正常情况下,细胞内的大自噬处于低水平,当在缺氧或者营养缺乏等条件下,大自噬被进一步激活[8]。大自噬的起始首先是细胞内吞噬泡的形成,关于该吞噬泡的来源目前仍有争议,有学者认为其来自细胞内某个具有膜结构的细胞器的双层膜,也有学者认为其不是源于细胞膜内的细胞器[9-11]。吞噬泡形成后在细胞内自噬相关蛋白作用下进行膨胀延伸并靶向细胞内的某些物质(如受损的细胞器、感染的微生物等),最后闭合形成独特的具有双层膜结构的自噬小体,自噬小体随后与溶酶体进行融合并将吞噬的物质输送到溶酶体,利用溶酶体的相关降解酶对其进行降解,降解产物如氨基酸可以释放到细胞质中供细胞的生命活动再利用[12]。由此可见大自噬主要是通过3种方法参与维持细胞内的稳态,首先是大自噬为细胞内新陈代谢提供原料;其次大自噬去除受损的一些细胞成分,比如对细胞具有毒性作用的受损蛋白质和细胞器;最后大自噬在细胞信号转导水平和凋亡具有交叉通路,并且参与细胞程序性死亡的决策。

  • 大自噬的过程主要需要unc⁃51样激酶1(unc⁃ 51like autophagy activating kinase1,ULK1)、VPS34复合物的激活以及两个泛素样结合系统的参与,大自噬的起始受到多因素调控,比如能量状态、营养状态和氧化应激。在自噬的任意发生阶段都可以受到调控,但大部分自噬的调节发生在自噬的起始阶段[13],主要通过哺乳动物雷帕霉素靶信号激酶 (mammalian target of rapamycin,mTOR)通路,尤其是mTOR复合物1(mTORC1)。mTORC1是Ⅰ类磷脂酰肌醇信号3 ⁃ kinase(phosphatidylinositol3 ⁃ ki⁃ nase,PI3K)通路和AMP活化蛋白激酶(adenosine5′⁃ monophosphate⁃activated protein kinase,AMPK)通路的交叉点,整合上述2个通路,通过磷酸化ULK1或ULK2激酶复合物阻断自噬通路。上游信号抑制mTORC1可以激活ULK复合物,进而激活Ⅲ类PI3K或VPS34复合物,其可被跨膜蛋白1(vacuole mem⁃ brane protein 1,VMP1)招募到吞噬泡促进自噬小体的形成。参与大自噬发生的还有2个泛素样结合系统,ATG8(LC3)泛素样结合系统和ATG12泛素样结合系统。首先LC3经过ATG4切割成为LC3⁃Ⅰ,LC3⁃ Ⅰ经过ATG3、ATG7和ATG12⁃ATG⁃5⁃ATG16L1复合物处理并经磷脂酰乙醇胺(phosphatidylethanol⁃ amine,PE)酯化变为LC3⁃Ⅱ,LC3⁃Ⅱ插入大自噬双层膜的两侧促进其延伸以及闭合,随后自噬小体和溶酶体融合,将包裹的“货物”释放入溶酶体降解,嵌插在自噬小体内侧膜的LC3⁃Ⅱ被溶酶体降解,外侧的LC3⁃Ⅱ与自噬小体外侧膜分离,随后被ATG4还原为LC3供下次再利用[14]

  • 1.2 大自噬与哮喘气道免疫炎症

  • 目前哮喘的发病机制尚未阐明,但气道炎症学说被广泛认可,哮喘气道炎症免疫反应中,Th1/Th2介导的免疫失衡是主要机制[15]。Th2细胞分泌的白介素(interleukin,IL)⁃4、IL⁃5等细胞因子促进气道炎症的发展,在此基础上发生气道重塑、气道高反应性、黏液高分泌和组织损伤[16]。气道上皮细胞和树突状细胞对哮喘的发生具有重要作用,上皮细胞可以对吸入性变应原作出反应,产生上皮细胞源性细胞因子(包括IL⁃25、IL⁃33、胸腺基质淋巴细胞生成素),从而增强树突状细胞的抗原递呈功能,促进T淋巴细胞向Th2细胞极化,以启动Th2免疫反应[17]。气道上皮细胞释放的细胞因子也会导致如肥大细胞、嗜碱性粒细胞和中性粒细胞向气道募集,募集到气道的免疫细胞可以释放炎性介质和细胞因子,从而导致IgE产生增加、嗜酸性粒细胞黏附、黏液生成增加以及气道纤维化[18]

  • 哮喘中Th2型免疫可以由树突状细胞、B细胞等抗原递呈细胞激活,所以有学者提出大自噬可以影响相关免疫细胞的抗原递呈功能来调控炎症反应[19]。研究发现IL⁃4体外可以诱导B细胞大自噬,促进B细胞的抗原递呈,在B细胞大自噬缺陷的哮喘小鼠中IL⁃4介导的B细胞抗原递呈能力减弱,使活化的T细胞数量较少、哮喘小鼠的免疫病理生理特征减轻[20]。环境超微颗粒物可以诱发支气管上皮细胞自噬小体的产生,自噬小体通过NF⁃κB1通路诱导IL⁃8、IL⁃6等炎性细胞因子的产生,导致支气管上皮细胞损伤,特异性敲除自噬相关基因BECN1或者LC3B之后,可以显著逆转相关炎性细胞因子的表达以及小鼠的气道炎症[21],大自噬抑制剂spau⁃ tin⁃1和3⁃MA也可以抑制NF⁃κB1通路诱导的炎性细胞因子的产生和小鼠气道炎症[22]。进一步研究发现超微颗粒物可以灭活mTOR激酶来激活自噬,从而增加IL⁃6等Th2细胞因子的表达,自噬相关基因ATG5的特异性缺失可逆转上述结果[23]。Toll样受体(toll like receptor,TLR)在哮喘的发生发展中起关键作用,研究证实TLR2可以通过PI3K/AKT通路促进大自噬,从而促进哮喘小鼠的气道炎症[24]

  • 此外,一些植物提取物或药物的抗炎作用可能与大自噬有关,如柚皮素可以通过抑制支原体感染的小鼠大自噬水平,降低小鼠的气道相关炎性因子的表达和气道炎症反应[25];氯胺酮可以激活mTOR激酶抑制大自噬从而减低哮喘小鼠的气道炎症[26]; 平喘宁汤可以通过激活PI3K/AKT/MTOR通路抑制大自噬以及抑制HMGB1/TLR4/NF⁃κB信号通路,减轻哮喘大鼠肺部的炎症反应和降低炎性细胞因子的产生[27]

  • 1.3 大自噬与哮喘气道重塑

  • 1.3.1 大自噬与平滑肌细胞增生肥大

  • 气道重塑是指气道在慢性炎症基础上发生的一系列的结构性改变,主要包括气道平滑肌细胞的增生肥大、气道纤维化、上皮细胞的杯状化生和黏液腺体增生导致黏液分泌增多等,这一系列结构性改变可导致哮喘可逆性气流受限恶化为不可逆性气流受限[28]

  • McAlinden等[29] 在对哮喘患者的肥大气道平滑肌束进行分析发现,哮喘患者肺组织中的大自噬关键蛋白的表达,如Beclin⁃1、ATG5、LC3B,较非哮喘患者明显升高;在支气管平滑肌细胞中,大自噬的上调或是抑制都可以改善哮喘症状和病理特征,这可能是因为大自噬的双面性,适度的大自噬有利于细胞的生存,然而过度的大自噬又会引起细胞程序性死亡。miR⁃384过表达可以显著抑制平滑肌细胞大自噬相关蛋白beclin⁃1的表达而显著改善哮喘小鼠的肺功能[30]。miR⁃192⁃5p可以靶向ATG7抑制平滑肌细胞的大自噬水平,减轻哮喘小鼠的气道炎症和气道重塑[31]。但辛伐他汀却通过上调哮喘小鼠气道平滑肌细胞的大自噬水平而降低气道平滑肌细胞的数量来逆转气道重塑[32]。平滑肌细胞增生肥大的原因之一是由于Th2细胞分泌的IL⁃4、IL⁃5等细胞因子的作用[28],已证实调控大自噬可以逆转平滑肌细胞增生肥大,所以大自噬可能参与了各种细胞因子促进平滑肌细胞增生肥大的过程,但是其中具体的信号通路机制仍有待阐明。

  • 1.3.2 大自噬和气道纤维化

  • 气道上皮下纤维化是促使气道重塑的重要原因,有观点认为是上皮间质转化(epithelial⁃mesen⁃ chymal transition,EMT)增强上皮下纤维化,从而加重气道重塑[33]。EMT包括一系列的改变,在此过程中,上皮细胞失去上皮细胞的特征,如紧密和黏附的连接以及上皮标志物,并获得间充质特性[34-35],并且EMT的失调可能导致器官纤维化[36]。EMT可分为3个功能不同的类别,其中Ⅱ型EMT与哮喘相关, Ⅱ型EMT通过产生组织再生所需的间充质细胞池参与组织修复和伤口愈合。在哮喘发病机制中,过敏原、感染、香烟烟雾等应激对支气管上皮细胞的反复损伤导致慢性炎症,并通过Ⅱ型EMT导致无法控制的组织修复,从而使肌纤维细胞增多,分泌更多的胶原蛋白,最终导致哮喘气道重塑和纤维化[37]。 Liu等[38] 研究发现抑制哮喘小鼠大自噬可以显著降低FSTL⁃1(follistatin⁃like protein1)诱导的哮喘小鼠上皮间质转化和气道重塑。Poon等[39] 发现从哮喘患者支气管活检组织中分离的上皮细胞和成纤维细胞与健康人相比具有更多的自噬小体。另有研究发现,miR ⁃34/449可通过抑制(insulin growth factor binding protein⁃3,IGFBP⁃3)的表达来降低支气管上皮细胞的大自噬进而降低气道纤维化程度[40]

  • 胶原蛋白沉积是上皮下纤维化的重要特征,胶原蛋白可以由平滑肌细胞和肌成纤维细胞产生,自噬溶酶体降解时产生的氨基酸可以为胶原蛋白的合成提供原料。Li等[41] 研究发现miR⁃30a过表达可以显著降低胶原蛋白Ⅰ、Ⅲ的沉积以及α⁃SMA在肺组织中的表达,其机制可能是miR⁃30a靶向大自噬相关蛋白ATG5,抑制IL⁃33诱导的大自噬而改善哮喘小鼠的气道炎症和纤维化。

  • 1.3.3 大自噬和气道黏液高分泌

  • 气道黏液高分泌也是哮喘的重要病理生理特征,气道黏液的分泌主要是由气道壁中的杯状细胞分泌的,杯状细胞的高分泌,产生大量黏液致使气道狭窄,患者肺功能下降。当变应原进入气道,树突状细胞捕获变应原将其递呈给Th2细胞,促进其表达相关因子受体(如IL⁃33R)和分泌IL⁃13,进而促进杯状细胞的增生和黏液分泌[16]。体内实验发现, IL⁃33可通过IL⁃13依赖的途径促进小鼠气道杯状细胞分泌增生,而在大自噬相关基因ATG16L1缺乏的小鼠中却出现黏液分泌阻滞现象,体外实验也证实大自噬基因缺乏的支气管上皮细胞黏蛋白5AC (mucin⁃5subtype AC,MUC5AC)分泌阻滞[42]。研究进一步发现转化生长因子β3(transforming growth factor⁃β3,TGF⁃β3)可以通过激活大自噬而促进支气管上皮细胞MUC5AC的分泌,抑制大自噬对于TGF⁃ β3诱导的黏液分泌具有改善作用[43]

  • 2 CMA和支气管哮喘

  • CMA是一种高度选择性降解胞浆蛋白的过程,据估计,约有1/3的胞浆蛋白通过这种降解途径降解。在缺氧、长期饥饿等应激条件下,CMA可被激活,参与CMA的关键蛋白主要是热休克同源蛋白70 (heat shock cognate protein 70,Hsc70)和溶酶体相关膜蛋白2A(lysosomal associated membrane protein 2A,LAMP2A)。CMA起始阶段,一些辅助伴侣蛋白,如Hsp40(heat ⁃ shock protein of 40kDa)、Hop (Hsp70/Hsp90 ⁃ organizing protein)、Cdc48(cell divi⁃ sion cycle48)等,与Hsc70结合形成伴侣蛋白复合物并且促进Hsc70特异性识别带有KFERQ序列蛋白能力,随后形成的大分子复合物中的Hsc70可以与溶酶体膜蛋白LAMP2A单体特异性结合,促进LAMP2A的聚合形成一个将蛋白质底物转运到溶酶体的三聚体通道,胞质中胶质纤维酸性蛋白(glial fi⁃ brillary acidic protein,GFAP)因子负责维护该通道的稳定,当携带有底物蛋白的Hsc70转运到溶酶体内,底物蛋白很容易被溶酶体内的水解酶水解,水解产物可以释放到胞质内供细胞生命活动利用,待降解蛋白质在从胞质到管腔转位结束后,胞质内延伸因子1⁃α(elongation factor 1⁃α,EF1⁃α)蛋白结合并磷酸化胶质纤维酸性蛋白,使GFAP与LAMP2A的亲和力降低,促进GFAP/LAMP2A蛋白复合体的解离和p⁃GFAP二聚体的形成[44]。溶酶体外膜GFAP蛋白解离导致LAMP2A的异三聚体形成的通道解离。解离后LAMP2A的单体被降解或回到溶酶体表面储存用于下面的CMA诱导[45]

  • 研究证实,CMA的活性与溶酶体膜上的LAMP2A的数量成正比,LAMP2A是调控CMA的关键步骤[46],这为以后研究CMA的生理功能提供了极大的帮助;虽然伴侣介导的自噬在支气管哮喘中鲜有研究,但目前研究表明CMA对于支气管哮喘的发病具有一定的潜在价值;CMA对B细胞的抗原提呈和T细胞活化都有调节作用[47-48],另外核转录因子B (NF⁃κB)是由p50和p65蛋白组成的异源二聚体形成的转录因子,其可诱导涉及免疫和炎症反应的基因表达,并且已被证明参与哮喘的发生发展[49]。在正常情况下,NF⁃κB被抑制因子IκB隔离到胞浆中;在应激条件下,I κB被降解,允许NF⁃κB在细胞核内迁移,发挥其对基因转录的作用。研究证实在营养缺乏的条件下,CMA触发I κB的特异性降解,允许NF⁃κB激活并将其移位到细胞核[50],以上研究揭示CMA调控NF⁃κB可能与哮喘气道炎症的发生发展相关,但需要进一步研究证明,CMA是否参与哮喘发生发展中的Th1/Th2型免疫失调也有待进一步探讨。

  • 3 微自噬和支气管哮喘

  • 微自噬是溶酶体主动通过内陷或者凸起的方式,特异性或者非特异性地包裹货物,随后利用溶酶体的水解酶实现对“货物”的降解。这种形式的自噬主要集中在酵母中,在哺乳动物中鲜有研究。目前对于哺乳动物中微自噬的分类大致分为3类: ①溶酶体凸起型微自噬。溶酶体膜主动向外凸起延伸,将待降解“货物”包绕进自身;②溶酶体凹陷性微自噬。溶酶体主动向内凹陷,将待降解“货物” 报燃尽自身;③内小体型微自噬。内小体通过内小体分选复合物(endosomal sorting complex required for transport,ESCRT)将选择性待降解蛋白质通过适配器蛋白特异性招募进内小体形成多囊体(晚期内小体),随后多囊泡体将“货物”输送入溶酶体,其中内小体招募蛋白时还需要适配蛋白的参与,目前已知的适配蛋白有Nbr1和Hsc70,其中Hsc70也被证明是伴侣介导自噬不可缺少的关键蛋白[51]。对于哺乳动物微自噬的具体机制仍未阐明,微自噬与哮喘之间的关系尚无文献报道,但已有研究揭示糖皮质激素可负性调控微自噬[52],这表明微自噬在支气管哮喘的治疗中可能发挥一定作用。

  • 4 展望

  • 细胞自噬是所有真核细胞的一个再循环机制,在细胞的生理活动、代谢以及生存中起着十分重要的作用。许多学者的研究表明大自噬和哮喘气道炎症、气道重塑有关,这揭示了调控大自噬具有诊治哮喘的潜力,未来阐明哮喘中大自噬激活或者抑制的机制将会为哮喘的诊治提供另外的途径,例如对于轻度哮喘、中度哮喘以及重症哮喘患者气道大自噬的激活或者抑制程度分析会为哮喘的诊断带来新的可能,另外,开发大自噬调节剂作为治疗哮喘的新策略,鉴于大自噬确实是一把“双刃剑”,可以考虑气道靶向的方法,开发一种新的吸入器,或基于纳米粒子的细胞靶向方法,将调控大自噬药物有效专门传递给上皮细胞、平滑肌细胞或者上皮下成纤维细胞等来实现对哮喘的精准治疗,减少药物的不良反应。关于伴侣介导的自噬,近年来它与临床疾病的关系不断涌现,尽管尚无研究报道其和哮喘的关系,但目前研究已揭示其在哮喘中应用的可能性,随着未来的深入研究,探索伴侣介导的自噬在气道上皮细胞、平滑肌细胞、成纤维细胞等中的生理以及在哮喘病理生理发生发展中作用,将会为哮喘的诊治提供一个新线索。参考大自噬以及伴侣介导的自噬,微自噬未来也会在转化医学研究中提上日程。

  • 参考文献

    • [1] ALLEN E A,BAEHRECKE E H.Autophagy in animal de⁃ velopment[J].Cell Death Differ,2020,27(3):903-918

    • [2] ZHANG P,ZHENG Z,LING L,et al.W09,a novel au⁃ tophagy enhancer,induces autophagy ⁃ dependent cell apoptosis via activation of the EGFR ⁃ mediated RAS ⁃ RAF1⁃MAP2K⁃MAPK1/3 pathway[J].Autophagy,2017,13(7):1093-1112

    • [3] ALLAVENA G,CUOMO F,BAUMGARTNER G,et al.Suppressed translation as a mechanism of initiation of CASP8(caspase 8)⁃dependent apoptosis in autophagy⁃de⁃ ficient NSCLC cells under nutrient limitation[J].Autoph⁃ agy,2018,14(2):252-268

    • [4] KING B C,KULAK K,KRUS U,et al.Complement com⁃ ponent C3 is highly expressed in human pancreatic islets and prevents beta cell death via ATG16L1 interaction and autophagy regulation[J].Cell Metab,2019,29(1):202-210.e6

    • [5] 孙洁,邵庆,刘庆淮.自噬在视网膜母细胞瘤中的研究进展[J].南京医科大学学报(自然科学版),2020,40(5):736-737

    • [6] RACANELLI A C,KIKKERS S A,CHOI A M K,et al.Autophagy and inflammation in chronic respiratory dis⁃ ease[J].Autophagy,2018,14(2):221-232

    • [7] FUCHS Y,STELLER H.Live to die another way:modes of programmed cell death and the signals emanating from dying cells[J].Nat Rev Mol Cell Biol,2015,16(6):329-344

    • [8] GROSS A S,GRAEF M.Mechanisms of autophagy in met⁃ abolic stress response[J].J Mol Biol,2020,432(1):28-52

    • [9] NASCIMBENI A C,GIORDANO F,DUPONT N,et al.ER ⁃plasma membrane contact sites contribute to autophago⁃ some biogenesis by regulation of local PI3P synthesis[J].EMBO J,2017,36(14):2018-2033

    • [10] ZHAO Y G,LIU N,MIAO G,et al.The ER contact pro⁃ teins VAPA/B interact with multiple autophagy proteins to modulate autophagosome biogenesis[J].Curr Biol,2018,28(8):1234-1245.e4

    • [11] ZHUANG X,CHUNG K,LUO M,et al.Autophagosome biogenesis and the endoplasmic reticulum:a plant per⁃ spective[J].Trends Plant Sci,2018,23(8):677-692

    • [12] NAKATOGAWA H.Mechanisms governing autophago⁃ some biogenesis[J].Nat Rev Mol Cell Biol,2020,21(8):439-458

    • [13] FENG Y,HE D,YAO Z,et al.The machinery of macroau⁃ tophagy[J].Cell Res,2014,24(1):24-41

    • [14] MATSUZAWA⁃ISHIMOTO Y,HWANG S,CADWELL K.Autophagy and inflammation[J].Annu Rev Immunol,2018,36:73-101

    • [15] HIROSE K,IWATA A,TAMACHI T,et al.Allergic air⁃ way inflammation:key players beyond the Th2 cell path⁃ way[J].Immunol Rev,2017,278(1):145-161

    • [16] LAMBRECHT B N,HAMMAD H,FAHY J V.The cyto⁃ kines of asthma[J].Immunity,2019,50(4):975-991

    • [17] SALAZAR F,GHAEMMAGHAMI A M.Allergen recogni⁃ tion by innate immune cells:critical role of dendritic and epithelial cells[J].Front Immunol,2013,4:356

    • [18] BONSER L R,ERLE D J.The airway epithelium in asth⁃ ma[J].Adv Immunol,2019,142:1-34

    • [19] DEBEUF N,LAMBRECHT B N.Eicosanoid control over antigen presenting cells in asthma[J].Front Immunol,2018,9:2006

    • [20] XIA F,DENG C,JIANG Y,et al.IL4(interleukin 4)in⁃ duces autophagy in B cells leading to exacerbated asthma [J].Autophagy,2018,14(3):450-464

    • [21] CHEN Z H,WU Y F,WANG P L,et al.Autophagy is es⁃ sential for ultrafine particle ⁃ induced inflammation and mucus hyperproduction in airway epithelium[J].Autoph⁃ agy,2016,12(2):297-311

    • [22] XU X C,WU Y F,ZHOU J S,et al.Autophagy inhibitors suppress environmental particulate matter⁃induced airway inflammation[J].Toxicol Lett,2017,280:206-212

    • [23] WU Y F,LI Z Y,DONG L L,et al.Inactivation of MTOR promotes autophagy⁃mediated epithelial injury in particu⁃ late matter⁃induced airway inflammation[J].Autophagy,2020,16(3):435-450

    • [24] JIANG X,FANG L,WU H,et al.TLR2 regulates allergic airway inflammation and autophagy through PI3K/Akt sig⁃ naling pathway[J].Inflammation,2017,40(4):1382-1392

    • [25] LIN Y,TAN D,KAN Q,et al.The protective effect of nar⁃ ingenin on airway remodeling after mycoplasma pneu⁃ moniae infection by inhibiting autophagy ⁃ mediated lung inflammation and fibrosis[J].Mediators Inflamm,2018,2018:8753894

    • [26] ZOU H,WANG L X,WANG M,et al.MTOR ⁃ mediated autophagy is involved in the protective effect of ketamine on allergic airway inflammation[J].J Immunol Res,2019,2019:5879714

    • [27] WANG X,GAO Y,YANG Q,et al.Pingchuanning decoc⁃ tion attenuates airway inflammation by suppressing au⁃ tophagy via phosphatidylinositol 3 ⁃ kinase/protein kinase B/mammalian target of rapamycin signaling pathway in rat models of asthma[J].J Cell Biochem,2019,120(3):3833-3844

    • [28] PAPI A,BRIGHTLING C,PEDERSEN S E,et al.Asthma [J].Lancet,2018,391(10122):783-800

    • [29] MCALINDEN K D,DESHPANDE D A,GHAVAMI S,et al.Autophagy activation in asthma airways remodeling [J].Am J Respir Cell Mol Biol,2019,60(5):541-553

    • [30] CHENG Z,WANG X,DAI L,et al.Suppression of mi⁃ croRNA ⁃384 enhances autophagy of airway smooth mus⁃ cle cells in asthmatic mouse[J].Oncotarget,2017,8(40):67933-67941

    • [31] LOU L,TIAN M,CHANG J,et al.MiRNA⁃192⁃5p attenu⁃ ates airway remodeling and autophagy in asthma by target⁃ ing MMP⁃16 and ATG7[J].Biomed Pharmacother,2019,122:109692

    • [32] GU W,CUI R,DING T,et al.Simvastatin alleviates air⁃ way inflammation and remodelling through up ⁃ regulation of autophagy in mouse models of asthma[J].Respirology,2017,22(3):533-541

    • [33] FISCHER K D,HALL S C,AGRAWAL D K.Vitamin D supplementation reduces induction of epithelial ⁃ mesen⁃ chymal transition in allergen sensitized and challenged mice[J].PLoS One,2016,11(2):e0149180

    • [34] LAMOUILLE S,XU J,DERYNCK R.Molecular mecha⁃ nisms of epithelial ⁃ mesenchymal transition[J].Nat Rev Mol Cell Biol,2014,15(3):178-196

    • [35] YANG J,ANTIN P,BERX G,et al.Guidelines and defini⁃ tions for research on epithelial ⁃ mesenchymal transition [J].Nat Rev Mol Cell Biol,2020,21(6):341-352

    • [36] WANG X,ZHOU Y,PENG Y,et al.Bromodomain ⁃con⁃ taining protein 4 contributes to renal fibrosis through the induction of epithelial ⁃ mesenchymal transition[J].Exp Cell Res,2019,383(2):111507

    • [37] PAIN M,BERMUDEZ O,LACOSTE P,et al.Tissue re⁃ modelling in chronic bronchial diseases:from the epitheli⁃ al to mesenchymal phenotype[J].Eur Respir Rev,2014,23(131):118-130

    • [38] LIU T,LIU Y H,MILLER M,et al.Autophagy plays a role in FSTL1⁃induced epithelial mesenchymal transition and airway remodeling in asthma[J].Am J Physiol Lung Cell Mol Physiol,2017,313(1):L27-L40

    • [39] POON A H,CHOUIALI F,TSE S M,et al.Genetic and histologic evidence for autophagy in asthma pathogenesis [J].J Allergy Clin Immunol,2012,129(2):569-571

    • [40] YIN H,ZHANG S,SUN Y,et al.MicroRNA ⁃34/449 tar⁃ gets IGFBP ⁃ 3 and attenuates airway remodeling by sup⁃ pressing Nur77⁃mediated autophagy[J].Cell Death Dis,2017,8(8):e2998

    • [41] LI B B,CHEN Y L,PANG F.MicroRNA ⁃ 30a targets ATG5 and attenuates airway fibrosis in asthma by sup⁃ pressing autophagy[J].Inflammation,2019,43(1):44-53

    • [42] DICKINSON J D,ALEVY Y,MALVIN N P,et al.IL13 activates autophagy to regulate secretion in airway epithe⁃ lial cells[J].Autophagy,2016,12(2):397-409

    • [43] ZHANG Y,TANG H,YUAN X,et al.TGF ⁃ beta3 pro⁃ motes MUC5AC hyper⁃expression by modulating autopha⁃ gy pathway in airway epithelium[J].EBioMedicine,2018,33:242-252

    • [44] AGARRABERES F,DICE J.A molecular chaperone com⁃ plex at the lysosomal membrane is required for protein translocation[J].J Cell Sci,2001,114(13):2491-2499

    • [45] ROBERT G,JACQUEL A,AUBERGER P.Chaperone ⁃ mediated autophagy and its emerging role in hematologi⁃ cal malignancies[J].Cells,2019,8(10):1260

    • [46] CUERVO A,DICE J.Regulation of lamp2a levels in the lysosomal membrane [J].Traffic(Copenhagen,Den⁃ mark),2000,1(7):570-583

    • [47] VALDOR R,MOCHOLI E,BOTBOL Y,et al.Chaperone⁃ mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activa⁃ tion[J].Nat Immunol,2014,15(11):1046-1054

    • [48] PEREZ L,MCLETCHIE S,GARDINER G J,et al.LAMP⁃ 2C inhibits MHC class Ⅱ presentation of cytoplasmic an⁃ tigens by disrupting chaperone⁃mediated autophagy[J].J Immunol,2016,196(6):2457-2465

    • [49] SCHULIGA M.NF ⁃ kappaB Signaling in chronic inflam⁃ matory airway disease[J].Biomolecules,2015,5(3):1266-1283

    • [50] CUERVO A,HU W,LIM B,et al.IkappaB is a substrate for a selective pathway of lysosomal proteolysis[J].Mol Biol Cell,1998,9(8):1995-2010

    • [51] OKU M,SAKAI Y.Three distinct types of microautopha⁃ gy based on membrane dynamics and molecular machiner⁃ ies[J].Bioessays,2018,40(6):e1800008

    • [52] SATO M,UEDA E,KONNO A,et al.Glucocorticoids neg⁃ atively regulates chaperone mediated autophagy and mi⁃ croautophagy[J].Biochem Biophys Res Commun,2020,528(1):199-205

  • 参考文献

    • [1] ALLEN E A,BAEHRECKE E H.Autophagy in animal de⁃ velopment[J].Cell Death Differ,2020,27(3):903-918

    • [2] ZHANG P,ZHENG Z,LING L,et al.W09,a novel au⁃ tophagy enhancer,induces autophagy ⁃ dependent cell apoptosis via activation of the EGFR ⁃ mediated RAS ⁃ RAF1⁃MAP2K⁃MAPK1/3 pathway[J].Autophagy,2017,13(7):1093-1112

    • [3] ALLAVENA G,CUOMO F,BAUMGARTNER G,et al.Suppressed translation as a mechanism of initiation of CASP8(caspase 8)⁃dependent apoptosis in autophagy⁃de⁃ ficient NSCLC cells under nutrient limitation[J].Autoph⁃ agy,2018,14(2):252-268

    • [4] KING B C,KULAK K,KRUS U,et al.Complement com⁃ ponent C3 is highly expressed in human pancreatic islets and prevents beta cell death via ATG16L1 interaction and autophagy regulation[J].Cell Metab,2019,29(1):202-210.e6

    • [5] 孙洁,邵庆,刘庆淮.自噬在视网膜母细胞瘤中的研究进展[J].南京医科大学学报(自然科学版),2020,40(5):736-737

    • [6] RACANELLI A C,KIKKERS S A,CHOI A M K,et al.Autophagy and inflammation in chronic respiratory dis⁃ ease[J].Autophagy,2018,14(2):221-232

    • [7] FUCHS Y,STELLER H.Live to die another way:modes of programmed cell death and the signals emanating from dying cells[J].Nat Rev Mol Cell Biol,2015,16(6):329-344

    • [8] GROSS A S,GRAEF M.Mechanisms of autophagy in met⁃ abolic stress response[J].J Mol Biol,2020,432(1):28-52

    • [9] NASCIMBENI A C,GIORDANO F,DUPONT N,et al.ER ⁃plasma membrane contact sites contribute to autophago⁃ some biogenesis by regulation of local PI3P synthesis[J].EMBO J,2017,36(14):2018-2033

    • [10] ZHAO Y G,LIU N,MIAO G,et al.The ER contact pro⁃ teins VAPA/B interact with multiple autophagy proteins to modulate autophagosome biogenesis[J].Curr Biol,2018,28(8):1234-1245.e4

    • [11] ZHUANG X,CHUNG K,LUO M,et al.Autophagosome biogenesis and the endoplasmic reticulum:a plant per⁃ spective[J].Trends Plant Sci,2018,23(8):677-692

    • [12] NAKATOGAWA H.Mechanisms governing autophago⁃ some biogenesis[J].Nat Rev Mol Cell Biol,2020,21(8):439-458

    • [13] FENG Y,HE D,YAO Z,et al.The machinery of macroau⁃ tophagy[J].Cell Res,2014,24(1):24-41

    • [14] MATSUZAWA⁃ISHIMOTO Y,HWANG S,CADWELL K.Autophagy and inflammation[J].Annu Rev Immunol,2018,36:73-101

    • [15] HIROSE K,IWATA A,TAMACHI T,et al.Allergic air⁃ way inflammation:key players beyond the Th2 cell path⁃ way[J].Immunol Rev,2017,278(1):145-161

    • [16] LAMBRECHT B N,HAMMAD H,FAHY J V.The cyto⁃ kines of asthma[J].Immunity,2019,50(4):975-991

    • [17] SALAZAR F,GHAEMMAGHAMI A M.Allergen recogni⁃ tion by innate immune cells:critical role of dendritic and epithelial cells[J].Front Immunol,2013,4:356

    • [18] BONSER L R,ERLE D J.The airway epithelium in asth⁃ ma[J].Adv Immunol,2019,142:1-34

    • [19] DEBEUF N,LAMBRECHT B N.Eicosanoid control over antigen presenting cells in asthma[J].Front Immunol,2018,9:2006

    • [20] XIA F,DENG C,JIANG Y,et al.IL4(interleukin 4)in⁃ duces autophagy in B cells leading to exacerbated asthma [J].Autophagy,2018,14(3):450-464

    • [21] CHEN Z H,WU Y F,WANG P L,et al.Autophagy is es⁃ sential for ultrafine particle ⁃ induced inflammation and mucus hyperproduction in airway epithelium[J].Autoph⁃ agy,2016,12(2):297-311

    • [22] XU X C,WU Y F,ZHOU J S,et al.Autophagy inhibitors suppress environmental particulate matter⁃induced airway inflammation[J].Toxicol Lett,2017,280:206-212

    • [23] WU Y F,LI Z Y,DONG L L,et al.Inactivation of MTOR promotes autophagy⁃mediated epithelial injury in particu⁃ late matter⁃induced airway inflammation[J].Autophagy,2020,16(3):435-450

    • [24] JIANG X,FANG L,WU H,et al.TLR2 regulates allergic airway inflammation and autophagy through PI3K/Akt sig⁃ naling pathway[J].Inflammation,2017,40(4):1382-1392

    • [25] LIN Y,TAN D,KAN Q,et al.The protective effect of nar⁃ ingenin on airway remodeling after mycoplasma pneu⁃ moniae infection by inhibiting autophagy ⁃ mediated lung inflammation and fibrosis[J].Mediators Inflamm,2018,2018:8753894

    • [26] ZOU H,WANG L X,WANG M,et al.MTOR ⁃ mediated autophagy is involved in the protective effect of ketamine on allergic airway inflammation[J].J Immunol Res,2019,2019:5879714

    • [27] WANG X,GAO Y,YANG Q,et al.Pingchuanning decoc⁃ tion attenuates airway inflammation by suppressing au⁃ tophagy via phosphatidylinositol 3 ⁃ kinase/protein kinase B/mammalian target of rapamycin signaling pathway in rat models of asthma[J].J Cell Biochem,2019,120(3):3833-3844

    • [28] PAPI A,BRIGHTLING C,PEDERSEN S E,et al.Asthma [J].Lancet,2018,391(10122):783-800

    • [29] MCALINDEN K D,DESHPANDE D A,GHAVAMI S,et al.Autophagy activation in asthma airways remodeling [J].Am J Respir Cell Mol Biol,2019,60(5):541-553

    • [30] CHENG Z,WANG X,DAI L,et al.Suppression of mi⁃ croRNA ⁃384 enhances autophagy of airway smooth mus⁃ cle cells in asthmatic mouse[J].Oncotarget,2017,8(40):67933-67941

    • [31] LOU L,TIAN M,CHANG J,et al.MiRNA⁃192⁃5p attenu⁃ ates airway remodeling and autophagy in asthma by target⁃ ing MMP⁃16 and ATG7[J].Biomed Pharmacother,2019,122:109692

    • [32] GU W,CUI R,DING T,et al.Simvastatin alleviates air⁃ way inflammation and remodelling through up ⁃ regulation of autophagy in mouse models of asthma[J].Respirology,2017,22(3):533-541

    • [33] FISCHER K D,HALL S C,AGRAWAL D K.Vitamin D supplementation reduces induction of epithelial ⁃ mesen⁃ chymal transition in allergen sensitized and challenged mice[J].PLoS One,2016,11(2):e0149180

    • [34] LAMOUILLE S,XU J,DERYNCK R.Molecular mecha⁃ nisms of epithelial ⁃ mesenchymal transition[J].Nat Rev Mol Cell Biol,2014,15(3):178-196

    • [35] YANG J,ANTIN P,BERX G,et al.Guidelines and defini⁃ tions for research on epithelial ⁃ mesenchymal transition [J].Nat Rev Mol Cell Biol,2020,21(6):341-352

    • [36] WANG X,ZHOU Y,PENG Y,et al.Bromodomain ⁃con⁃ taining protein 4 contributes to renal fibrosis through the induction of epithelial ⁃ mesenchymal transition[J].Exp Cell Res,2019,383(2):111507

    • [37] PAIN M,BERMUDEZ O,LACOSTE P,et al.Tissue re⁃ modelling in chronic bronchial diseases:from the epitheli⁃ al to mesenchymal phenotype[J].Eur Respir Rev,2014,23(131):118-130

    • [38] LIU T,LIU Y H,MILLER M,et al.Autophagy plays a role in FSTL1⁃induced epithelial mesenchymal transition and airway remodeling in asthma[J].Am J Physiol Lung Cell Mol Physiol,2017,313(1):L27-L40

    • [39] POON A H,CHOUIALI F,TSE S M,et al.Genetic and histologic evidence for autophagy in asthma pathogenesis [J].J Allergy Clin Immunol,2012,129(2):569-571

    • [40] YIN H,ZHANG S,SUN Y,et al.MicroRNA ⁃34/449 tar⁃ gets IGFBP ⁃ 3 and attenuates airway remodeling by sup⁃ pressing Nur77⁃mediated autophagy[J].Cell Death Dis,2017,8(8):e2998

    • [41] LI B B,CHEN Y L,PANG F.MicroRNA ⁃ 30a targets ATG5 and attenuates airway fibrosis in asthma by sup⁃ pressing autophagy[J].Inflammation,2019,43(1):44-53

    • [42] DICKINSON J D,ALEVY Y,MALVIN N P,et al.IL13 activates autophagy to regulate secretion in airway epithe⁃ lial cells[J].Autophagy,2016,12(2):397-409

    • [43] ZHANG Y,TANG H,YUAN X,et al.TGF ⁃ beta3 pro⁃ motes MUC5AC hyper⁃expression by modulating autopha⁃ gy pathway in airway epithelium[J].EBioMedicine,2018,33:242-252

    • [44] AGARRABERES F,DICE J.A molecular chaperone com⁃ plex at the lysosomal membrane is required for protein translocation[J].J Cell Sci,2001,114(13):2491-2499

    • [45] ROBERT G,JACQUEL A,AUBERGER P.Chaperone ⁃ mediated autophagy and its emerging role in hematologi⁃ cal malignancies[J].Cells,2019,8(10):1260

    • [46] CUERVO A,DICE J.Regulation of lamp2a levels in the lysosomal membrane [J].Traffic(Copenhagen,Den⁃ mark),2000,1(7):570-583

    • [47] VALDOR R,MOCHOLI E,BOTBOL Y,et al.Chaperone⁃ mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activa⁃ tion[J].Nat Immunol,2014,15(11):1046-1054

    • [48] PEREZ L,MCLETCHIE S,GARDINER G J,et al.LAMP⁃ 2C inhibits MHC class Ⅱ presentation of cytoplasmic an⁃ tigens by disrupting chaperone⁃mediated autophagy[J].J Immunol,2016,196(6):2457-2465

    • [49] SCHULIGA M.NF ⁃ kappaB Signaling in chronic inflam⁃ matory airway disease[J].Biomolecules,2015,5(3):1266-1283

    • [50] CUERVO A,HU W,LIM B,et al.IkappaB is a substrate for a selective pathway of lysosomal proteolysis[J].Mol Biol Cell,1998,9(8):1995-2010

    • [51] OKU M,SAKAI Y.Three distinct types of microautopha⁃ gy based on membrane dynamics and molecular machiner⁃ ies[J].Bioessays,2018,40(6):e1800008

    • [52] SATO M,UEDA E,KONNO A,et al.Glucocorticoids neg⁃ atively regulates chaperone mediated autophagy and mi⁃ croautophagy[J].Biochem Biophys Res Commun,2020,528(1):199-205