en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

袁庆新,E⁃mail:yqx@njmu.edu.cn

中图分类号:R714.5

文献标识码:A

文章编号:1007-4368(2021)06-785-11

DOI:10.7655/NYDXBNS20210601

参考文献 1
BIANCO ⁃MIOTTO T,CRAIG J M,GASSER Y P,et al.Epigenetics and DOHaD:from basics to birth and beyond [J].J Dev Orig Health Dis,2017,8(5):513-519
参考文献 2
LAW C M,SHIELL A W,NEWSOME C A,et al.Fetal,in⁃ fant,and childhood growth and adult blood pressure:a longitudinal study from birth to 22 years of age[J].Circu⁃ lation,2002,105(9):1088-1092
参考文献 3
YUAN Q X,JY Z,TENG L P,et al.Intrauterine growth re⁃ tardation leads to the functional change of insulin secre⁃ tion in the newborn rats[J].Horm Metab Res,2010,42(7):491-495
参考文献 4
YUAN Q,CHEN L,LIU C,et al.Postnatal pancreatic is⁃ let β cell function and insulin sensitivity at different stag⁃ es of lifetime in rats born with intrauterine growth retarda⁃ tion[J].PLoS One,2011,6(10):e25167
参考文献 5
LI Y,DAI C,YUAN Y,et al.The mechanisms of lncRNA Tug1 in islet dysfunction in a mouse model of intrauterine growth retardation[J].Cell Biochem Funct,2020,38(8):1129-1138
参考文献 6
戴程婷,逸袁,李一卉,等.宫内发育迟缓新生大鼠胰WFS1的表达变化及其可能作用[J].南京医科大学学报(自然科学版),2020,40(5):658-662
参考文献 7
HENIKOFF S,GREALLY J M.Epigenetics,cellular mem⁃ ory and gene regulation[J].Curr Biol,2016,26(14):R644-R648
参考文献 8
BERNSTEIN B E,MEISSNER A,LANDER E S.The mammalian epigenome[J].Cell,2007,128(4):669-681
参考文献 9
MORÁN I,AKERMAN I,VAN DE BUNT M,et al.Hu⁃ man β cell transcriptome analysis uncovers lncRNAs that are tissue⁃specific,dynamically regulated,and abnormal⁃ ly expressed in type 2 diabetes[J].Cell Metab,2012,16(4):435-448
参考文献 10
KNOLL M,LODISH H F,SUN L.Long non⁃coding RNAs as regulators of the endocrine system[J].Nat Rev Endo⁃ crinol,2015,11(3):151-160
参考文献 11
GATFORD K L,SIMMONS R A,DE BLASIO M J,et al.Review:placental programming of postnatal diabetes and impaired insulin action after IUGR[J].Placenta,2010,31(Suppl):S60-S65
参考文献 12
ZUCKERWISE L,LI J,LU L,et al.H19 long noncoding RNA alters trophoblast cell migration and invasion by reg⁃ ulating TβR3 in placentae with fetal growth restriction [J].Oncotarget,2016,7(25):38398-38407
参考文献 13
MACKO A R,YATES D T,CHEN X,et al.Adrenal de⁃ medullation and oxygen supplementation independently increase glucose ⁃ stimulated insulin concentrations in fe⁃ tal sheep with intrauterine growth restriction[J].Endocri⁃ nology,2016,157(5):2104-2115
参考文献 14
SHEN L,ZHANG S,LI Q,et al.The landscape of non ⁃ coding RNA in an adult pig model of intrauterine growth restriction[J].Cell Physiol Biochem,2018,50(5):1764-1778
参考文献 15
HUANG S,XU Y,GE X,et al.Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabet⁃ ic nephropathy through activating Akt/mTOR signaling pathway[J].J Cell Physiol,2019,234(7):11200-11207
参考文献 16
ZHANG H,YAN Y,HU Q,et al.LncRNA MALAT1/mi⁃ croRNA let⁃7f/KLF5 axis regulates podocyte injury in dia⁃ betic nephropathy[J].Life Sci,2021,266:118794
参考文献 17
WANG N,ZHU Y,XIE M,et al.Long noncoding RNA meg3 regulates Mafa expression in mouse beta cells by in⁃ activating rad21,Smc3 or sin3α[J].Cell Physiol Bio⁃ chem,2018,45(5):2031-2043
参考文献 18
ZHU Y,LI Y,DAI C,et al.Inhibition of lincpint expres⁃ sion affects insulin secretion and apoptosis in mouse pan⁃ creatic β cells[J].Int J Biochem Cell Biol,2018,104:171-179
参考文献 19
YIN D D,ZHANG E B,YOU L H,et al.Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells[J].Cell Physiol Biochem,2015,35(5):1892-1904
参考文献 20
RASHID C S,LIEN Y C,BANSAL A,et al.Transcriptom⁃ ic analysis reveals novel mechanisms mediating islet dys⁃ function in the intrauterine growth⁃restricted rat[J].Endo⁃ crinology,FEB,2018,159(2):2017-00888
参考文献 21
GEORGIA S,BHUSHAN A.Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass[J].J Clin Invest,2004,114(7):963-968
参考文献 22
BERNAL ⁃MIZRACHI E,WEN W,STAHLHUT S,et al.Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy,hyperplasia,and hyperinsulinemia[J].J Clin Invest,2001,108(11):1631-1638
参考文献 23
BERNAL ⁃ MIZRACHI E,FATRAI S,JOHNSON J D,et al.Defective insulin secretion and increased susceptibili⁃ ty to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells[J].J Clin Invest,2004,114(7):928-936
参考文献 24
ZYGULA A,KOSINSKI P,WROCZYNSKI P,et al.Oxi⁃ dative stress markers differ in two placental dysfunction pathologies:Pregnancy ⁃ Induced hypertension and intra⁃ uterine growth restriction[J].Oxid Med Cell Longev,2020,2020:1323891
参考文献 25
NAHA R,ANEES A,CHAKRABARTY S,et al.Placental mitochondrial DNA mutations and copy numbers in intra⁃ uterine growth restricted(IUGR)pregnancy[J].Mitochon⁃ drion,2020,55:85-94
参考文献 26
RAINS M E,MUNCIE C B,PANG Y,et al.Oxidative stress and neurodevelopmental outcomes in rat offspring with intrauterine growth restriction induced by reduced uterine perfusion[J].Brain Sci,2021,11(1):78
参考文献 27
SIVITZ W A.Mitochondrial dysfunction in diabetes:from molecular mechanisms to functional significance and ther⁃ apeutic opportunities[J].Antioxid Redox Signal,2010,12(4):537-577
参考文献 28
AMARAL M E,DA C H,ANHÊ G F,et al.Participation of prolactin receptors and phosphatidylinositol 3 ⁃ kinase and MAP kinase pathways in the increase in pancreatic is⁃ let mass and sensitivity to glucose during pregnancy[J].J Endocrinol,2004,183(3):469-476
参考文献 29
CAO W,ZHOU G.LncRNA SNHG12 contributes prolifer⁃ ation,invasion and epithelial ⁃ mesenchymal transition of pancreatic cancer cells by absorbing miRNA ⁃ 320b[J].Biosci Rep,2020,40(6):BSR20200805
参考文献 30
WU Y,HUANG Y,CAI J,et al.LncRNA SNHG12 im⁃ proves cerebral ischemic ⁃ reperfusion injury by activating SIRT1/FOXO3a pathway through I nhibition of autophagy and oxidative stress[J].Curr Neurovasc Res,2020,17(4):394-401
参考文献 31
YAO P,LI Y L,CHEN Y,et al.Overexpression of long non⁃coding RNA Rian attenuates cell apoptosis from cere⁃ bral ischemia ⁃ reperfusion injury via Rian/miR ⁃ 144 ⁃ 3p/GATA3 signaling[J].Gene,2020,737:144411
参考文献 32
ZHONG L,JIA J,YE G.Rian/miR ⁃ 210⁃3p/Nfkb1 feed⁃ back loop promotes Hypoxia ⁃ Induced cell apoptosis in myocardial infarction through deactivating the PI3K/Akt signaling pathway[J].J Cardiovasc Pharmacol,2020,76(2):207-215
目录contents

    摘要

    目的:通过全转录组测序比较宫内发育迟缓(intrauterine growth retardation,IUGR)新生鼠与正常新生鼠胰腺长链非编码RNA(long noncoding RNA,LncRNA)及信使RNA(messenger RNA,mRNA)表达谱的差别,探讨IUGR胰岛发育障碍及发生成年糖尿病的潜在机制。方法:建立IUGR新生鼠及正常新生鼠模型,对两种小鼠胰腺进行全转录组测序,分别对LncRNA和 mRNA数据进行基因本体论(gene ontology,GO)分析,基于京都基因与基因组百科全书数据库(Kyoto encyclopedia of genes and genomes,KEEG)进行富集分析,全转录组数据联合分析后挑选与胰岛发育相关、表达差异高的LncRNA进行验证。结果:IUGR 新生鼠和正常新生鼠差异表达LncRNA 294个,其中上调83个,下调211个;差异表达mRNA 2000个,其中1711个上调,289 个下调。 LncRNA靶基因及差异mRNA的GO显示:生物学途径(biological process,BP)均集中于细胞过程、生物调节及代谢过程;细胞组件(cellular component,CC)集中在细胞及器官等过程;分子功能(molecular function,MF)集中于整合、催化活性、转运活性等。KEEG富集分析显示差异表达的LncRNA靶基因及mRNA主要集中于PI3K⁃Akt通路、MAPK通路及Foxo通路上。对差异表达LncRNA Snhg12、Rian的验证显示,它们在IUGR鼠与正常鼠中存在明显表达差异,与测序结果一致,且受糖浓度调节。结论:本研究分析并部分验证了IUGR差异表达的LncRNA和mRNA,有助于进一步探讨IUGR新生鼠胰岛发育障碍及发生成年糖尿病的潜在机制及LncRNA在其中的作用。

    Abstract

    Objective:This study compared the expression spectrum of long noncoding RNA(lncRNA)and messenger RNA (mRNA)in pancreatic tissue between intrauterine growth retardation(IUGR)and normal neonatal mice,and then explored the potential mechanism of islet developmental disorders in IUGR mice and development of diabetes later in their adulthood. Methods:IUGR and normal neonatal mice models were established,whole transcriptome sequencing in pancreas of two groups were performed,and then gene ontology(GO)and Kyoto Encyclopedia of gene and genomes(KEEG)enrichment analysis were conducted. To further analyse the whole transcriptome sequencing information,we selected several lncRNAs with high differential expression for validation,which were also reported to be involved in islet development. Results:Total 294 lncRNAs were differentially expressed between IUGR and normal neonatal mice,among which 83 were up⁃regulated and 211 were down⁃regulated. There were 2000 differentially expressed mRNAs,of which 1711 were up ⁃ regulated and 289 were down ⁃ regulated. The GO analysis of lncRNA target genes and differential mRNAs showed:biological pathways(BP)are concentrated in cellular processes,biological regulation and metabolic processes;cell components (CC)are concentrated in cell and organ processes;molecular function(MF)mainly focuses on integration,catalytic activity,transportation activity,etc. KEEG enrichment analysis highlights the involvement of PI3K ⁃ Akt pathway,MAPK pathway and Foxo pathway. Through verified experiments,the selected lncRNA Snhg12 and Rian showed significant differences between IUGR mice and normal mice,which is consistent with the sequencing results,and the expression were regulated by glucose concentration. Conclusion: This study analyzed and partially verified the lncRNA and mRNA differentially expressed in IUGR,which is helpful to explore the potential mechanism of islet developmental disorders and later adult diabetes in mice born with IUGR,especially the role of lncRNAs.

    关键词

    IUGR胰腺发育转录组测序LncRNA糖尿病

  • 糖尿病是严重危害人类健康的疾病,其病因可以追溯到胚胎发育,宫内发育迟缓(intrauterine growth retardation,IUGR)是指胎儿出生体重低于胎龄平均体重的第10百分位数,是一种常见的产科并发症,IUGR与糖尿病、肥胖、高血压等代谢病的发生发展密切相关[1-2]。我们前期研究发现,IUGR新生鼠胰重、体重、胰重/体重小于正常鼠,胰腺组织免疫荧光显示IUGR新生鼠胰岛面积明显减少,胰岛素染色减弱,胰岛较正常少且松散,成年后IUGR鼠表现出明显的胰岛素抵抗,甚至发生糖尿病[3-6]。为明确IUGR鼠发生胰岛素抵抗及2型糖尿病的病因,我们对IUGR新生鼠进行测序及转录组分析。

  • 表观遗传是指在基因序列不发生改变的情况下,基因表达发生改变[7],并且可以持续影响后代[8]。表观遗传可分为DNA甲基化、非编码RNA的影响、组蛋白的翻译后修饰、遗传印记等,其中长链非编码RNA(long noncoding RNA,LncRNA)近年来备受关注。LncRNA是指转录本大于200bp的RNA,具有典型的mRNA结构,位于细胞质或细胞核内,不具有编码蛋白的能力。Morán等[9] 在人胰岛细胞转录组中发现并且鉴定出了128条LncRNA,部分被证实参与胚胎胰腺发育。后来在小鼠胰腺中也发现调控胰岛发育的LncRNA[10]。但目前相关研究不多,且具体机制仍不明确。

  • 本研究通过孕期给予8%的低蛋白饲料构建IU⁃ GR小鼠模型,对IUGR及正常新生鼠胰腺组织进行高通量测序转录组分析,探寻IUGR新生鼠胰腺基因组表达差异,揭示相关LncRNA在IUGR糖尿病发病中的作用及影响,为糖尿病发病机制研究提供新思路及治疗方法。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 实验动物

  • 8周龄C57BL/6小鼠购于南京医科大学动物中心,饲养于南京医科大学峨眉岭动物房,小鼠适应环境1周后,傍晚以雌鼠∶雄鼠=2∶1进行合笼,次日清晨以阴道有精栓且涂片发现精子为确定妊娠。本研究经南京医科大学实验动物福利伦理委员会批准。

  • 对照组:孕鼠自受孕开始饲以标准繁殖饲料(蛋白含量为20%);IUGR组:孕鼠自受孕开始饲以低蛋白饲料(蛋白质含量为8%且等热量)至小鼠出生。

  • IUGR造模成功标准:新生小鼠出生体重低于孕周正常对照组体重的第十百分位或平均体重的2个标准差。

  • 1.1.2 胰腺组织

  • 将新生正常小鼠、IUGR小鼠取出,分别称重,将符合IUGR小鼠体重的小鼠取出,将小鼠麻醉、固定、剖开腹腔、取出胰腺组织,放于液氮中。新生正常小鼠、IUGR小鼠各3只。

  • 1.2 方法

  • 1.2.1 样本采集

  • 按照TRIzol试剂(Invitrogen公司,美国)说明书提取RNA,经DEPC水溶解后,按照Nano Drop分光光度仪测定RNA浓度和纯度。采用Primer⁃ScriptTM RT reagent Kit with gDNA Eraser试剂盒(TakaRa公司,日本)进行逆转录反应。

  • 1.2.2 测序、质量评估

  • 小鼠胰腺RNA提取及质检、基因检测及数据分析由广州基迪奥生物科技有限公司进行。用Illumina HiSeq TM 4000进行测序,并对数据样本进行过滤、质量评估,合格后进行数据分析。

  • 1.2.3 生物信息学分析

  • 通过Tophat对筛选出来的高质量样本比对核糖体RNA的reads,去除核糖体RNA对结果的干预。使用Cufflinks根据Tophat的比对结果来重构转录本,根据组装出来的转录本在参考基因组上的位置以及转录本长度≥200bp且exon数目≥2,筛选出新的转录本并进行新LncRNA预测。对转录本进行定量分析,并根据FDR<0.05,且|log2Fc|>1计算两组样本LncRNA、mRNA的表达差异。使用RNA plex、LncRNA与mRNA的表达量相关性Pearson相关系数分析等方法预测LncRNA靶基因及其功能,对LncRNA靶基因、mRNA进行基因本体论(gene ontology,GO)与京都基因与基因组百科全书数据库 (Kyoto encyclopedia of genes and genomes,KEEG)信号通路聚类分析。GO富集结果包括:生物学途径 (biological process,BP)、细胞组件(cellular compo⁃ nent,CC)、分子功能(molecular function,MF)。

  • 1.2.4 qRT⁃PCR反应

  • 采用SYBR Premix Ex TaqTM(TakaRa公司,日本) 将cDNA进行实时荧光定量PCR进行差异LncRNA的验证。反应体系为模板cDNA 2 μL,TB GreenPremix Ex Taq 10 μL,荧光定量PCR参比染料(ROX) 0.4 μL,正义引物(F Primer)0.4 μL,反义引物(R primer)0.4 μL,灭菌ddH2O 6.8 μL。反应条件:预变性95℃ 30s;95℃ 5s,60℃ 30s40个循环。根据熔解曲线判断引物的特异性及扩增效率,采用2-ΔΔct法对基因相对表达量进行分析。引物序列如表1所示。

  • 1.2.5 MIN6细胞培养

  • MIN6细胞培养基的主要成分为高糖DMEM培养基、15%胎牛血清(FBS),双抗(100U/mL青霉素和100 μg/mL链霉素)、2.5mmol/L β⁃巯基乙醇。细胞置于5%CO2、37℃的恒温培养箱中培养,每天更换新鲜培养基,细胞融合度达80%传代。

  • 表1 PCR引物序列

  • Table1 PCR primer sequences

  • 1.2.6 不同糖浓度刺激

  • 选择无糖培养基,利用葡萄糖粉配置11.1、 16.7、25.0、33.3mmol/L不同糖浓度的培养基;将MIN6细胞接种于6孔培养板中,待细胞贴壁后,加入无糖低血清(0.25%)培养基培养6~8h后,分别加入不同糖浓度培养基2mL,做好标记,放入培养箱, 24h收取细胞并提取RNA。

  • 1.3 统计学方法

  • 使用SPSS21.0软件分析实验结果,基因表达量均以均值±标准差(x- ± s)表示,两组间采用独立样本 t检验,多组间比较采用单因素方差分析。P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 LncRNA的相关分析

  • 2.1.1 LncRNA总数与差异情况

  • 在正常、IUGR新生鼠中共鉴定出30 426个LncRNA。两组中表达差异的LncRNA有294个,其中上调83个,下调211个。差异表达LncRNA的火山图和热图见图1。表2显示了部分高差异表达的LncRNA。

  • 2.1.2 差异LncRNA靶基因KEEG信号通路与GO功能富集分析

  • LncRNA与mRNA的调控包括Antisense、Cis、Trans调控。Antisense是指一部分反义LncRNA与正义链的mRNA结合而调控基因沉默、转录及mRNA稳定性。Cis是指同一染色体上临近mRNA的转录激活与表达调控,一般选取LncRNA上下游10kb范围内的基因作为此LncRNA的Cis调控靶基因。Trans是指LncRNA的功能与其共表达的蛋白编码基因相关,通过样本间LncRNA与蛋白编码基因的表达量相关分析或共表达分析方法来预测其靶基因。

  • Antisense:差异LncRNA Antisense靶基因KEEG、GO富集分析如图2所示,按照KEEG信号通路富集分析中基因数量,前5位分别是“metabolic pathway”(512个基因)、“pathway in cancer”(206个基因)、“MAPK signaling pathway”(167个基因)、 “PI3K⁃Akt signaling pathway”(158个基因)、“Ras sig⁃ naling pathway”(140个基因)(图2A)。按照GO分析基因表达数目可知,BP中前5位的是“cellular pro⁃ cess”“single⁃organism process”“biological regulation” “metabolicprocess”“response to stimulus”,CC前5位是“cell”“cell part”“organelle”“membrane”“member part”,MF前5位是“binding”“catalytic activity” “transporter activity”“molecular function regulator” “nucleic and binding transcription factor activity”(图2B)。

  • Cis:差异LncRNA Cis调控靶基因GO、KEEG富集分析如图3所示。按照KEEG信号通路富集分析中基因数量,前5位分别是“metabolic pathway”(839个基因)、“pathway in cancer”(285个基因)、“Endo⁃ cytosis”(228个基因)、“HTLV⁃1infection”(181个基因)、“Proteoglycans in cancer”(171个基因)(图3A)。按照GO分析基因表达数目可知,BP中前5位是“cellular process”“single⁃organism process”“biolog⁃ ical regulation”“metabolicprocess”“response to stimu⁃ lus”,CC前5位是“cell”“cellpart”“organelle”“mem⁃ brane”“organelle part”,MF前5位是“binding”“cata⁃ lytic activity”“transporter activity”“molecular func⁃ tion regulator”“nucleic and binding transcription fac⁃ tor activity”(图3B)。

  • 图1 IUGR、正常新生小鼠差异表达LncRNA

  • Fig.1 Differentially expressed LncRNAs between IUGR and normal neonatal mice

  • 表2 部分差异上调或下调的LncRNAs

  • Table2 Part differentially up⁃ or down⁃regulated LncRNAs

  • Trans:差异LncRNA Trans调控靶基因GO、 KEEG富集分析如图4所示。按照KEEG信号通路富集分析中基因数量,前5位分别是“pathway in cancer”(260个基因)、“Neuroactive ligand ⁃ receptor interaction”(173个基因)、“HTLV⁃1infection”(166个基因)、“cAMP signaling pathway”(157个基因)、“Ad⁃ renergic signaling in cardiomyocytes”(138个基因)(图4A)。按照GO分析基因表达数目可知:BP中前5位是“cellular process”“single⁃organism process”“bi⁃ ological regulation”“metabolic process”“response to stimulus”,CC前5位是“cell”“cell part”“organelle” “membrane”“membrane part”,MF前5位是“binding” “catalytic activity”“transporter activity”“molecular transducer activity“”signal transducer activity”(图4B)。

  • 图2 差异LncRNA Antisense作用靶基因KEEG和GO富集分析

  • Fig.2 The KEEG and GO enrichment analysis of differentially expressed LncRNA antisense target genes

  • 图3 差异LncRNA Cis作用靶基因KEEG、GO富集分析

  • Fig.3 The KEEG and GO enrichment analysis of differentially expressed LncRNA Cis target genes

  • 2.2 mRNA相关分析

  • 2.2.1 mRNA表达差异情况

  • 在正常、IUGR新生鼠中共检测出66 652个mRNA,2 000个差异表达mRNA,其中1 711个上调, 289个下调,部分差异表达mRNA如表3所示。

  • 2.2.2 差异mRNA GO功能与KEEG信号通路富集分析

  • mRNA差异表达KEEG和GO信号通路富集分析见图5。按照KEEG信号通路富集分析中基因数量比,前5位分别是“PI3K ⁃Akt signaling pathway” (111个基因)、“Endocytosis”(104个基因)“MAPK signaling pathway”(100个基因)、“Rap1signaling pathway”(86个基因)、“FoxO signaling pathway”(64个基因)(图5A)。按照GO分析基因表达数目可知: BP中前5位是“cellular process”“biological regula⁃ tion”“metabolic process”“response to simullus”“de⁃ velopmental process”,CC前5位是“cell”“cell part” “organelle”“organelle part”“membrane”,MF前五5位是“binding”“catalytic activity”“molecular function regulator”“nucleic and binding transcription factor ac⁃ tivity”“molecular function regulator”(图5B)。

  • 图4 差异LncRNA Trans作用靶基因KEEG和GO富集分析

  • Fig.4 The KEEG and GO enrichment analysis of differentially expressed LncRNA Trans target genes

  • 表3 部分差异上调或下调的mRNA

  • Table3 Differentially up⁃ or down⁃regulated mRNAs

  • 2.3 LncRNA⁃mRNA共表达网络

  • 对差异Lnc RNA和差异mRNA关系均进行了Antisense、Cis、Trans作用分析,具体关系如图6~8所示,图中红色表示差异表达LncRNA,绿色表示差异表达mRNA。在3种作用关系中,差异LncRNA与差异mRNA在Trans作用上相关性强,作用丰富。

  • 2.4 差异表达基因验证

  • 通过对差异表达LncRNA及其作用分析,高差异表达LncRNA如表4所示,从中挑选了差异表达且与生长发育相关的LncRNA Snhg12、LncRNA Ri⁃ an在IUGR、正常新生小鼠中进行验证,表达结果如图9所示,与测序结果一致。

  • 为验证基因与糖尿病相关性,我们测定了MIN6细胞在不同糖浓度下基因表达情况(图10)。LncRNA Snhg12在低糖浓度(5.0、11.1、16.7mmol/L)、高糖浓度(33.3mmol/L)下表达量较正常糖浓度增加; LncRNA Rian在低糖浓度(5、11.1、16.7mmol/L)、高糖浓度(33.3mmol/L)下表达量较正常糖浓度下降,即Lnc RNA Snhg12、Rian表达受糖浓度调控。

  • 3 讨论

  • IUGR作为产科并发症,产后及成年后可引起糖尿病、心血管疾病等一系列代谢病,在鼠[511]、人[12] 及其他灵长类动物[13-14] 中均有验证,但IUGR引起糖耐量异常的具体机制目前仍不明确。本研究通过高通量测序对IUGR的转录组进行分析,旨在探究LncRNA在IUGR胰岛发育及成年发生2型糖尿病中的作用。

  • 图5 IUGR、正常新生小鼠差异表达mRNAs KEEG和GO富集分析图

  • Fig.5 The KEEG and GO enrichment analysis of differentially expressed mRNAs

  • 图6 差异LncRNA与差异mRNA的Antisense作用图

  • Fig.6 The Antisense between differentially expressed LncRNA and mRNA

  • 随着RNA组学的发展,LncRNA被认为是参与胰岛发育、糖尿病及其并发症以及IUGR发病过程中的新型调节因子。H19下调导致IUGR胎盘绒毛膜外滋养细胞迁移和侵袭减少[12]。LncRNA NEAT1通过激活Akt/mTOR信号通路促进小鼠肾系膜细胞的增殖和纤维化,加速糖尿病肾病进程[15]。LncRNA MALAT1通过抑制microRNA let⁃7f、激活KLF5促进肾足突细胞损伤,加重糖尿病肾病[16]。在人[9] 和小鼠[10] 中均发现LncRNA可能参与胰腺发育和胰岛β 细胞分化。LncRNA MEG3在人、小鼠中具有高度同源性,全基因组关联研究(GAWS)发现MEG3是与糖尿病易感性相关的LncRNA,在2型糖尿病患者胰岛中表达显著下调。通过在MIN6细胞中干扰Meg3,发现Meg3通过促进Rad21/Smc3/Sin3α的表达,使胰岛素合成关键转录因子MafA表达下调,从而减少胰岛素合成及分泌[17]。本课题组前期研究亦发现了LncRNA Lncpint在小鼠胰岛中高表达,促进胰岛素合成和分泌,维持胰岛β细胞功能[18];Ln⁃ cRNA TUG1在小鼠胰腺中低表达,是小鼠发生2型糖尿病的重要原因[19]。本研究在IUGR小鼠中也发现了LncRNA TUG1表达下调,LncRNA TUG1在细胞核中通过绑定PRC2的催化亚基EZH2,介导EZH2结合于Hes1的启动子区,影响H3K27me3的水平,抑制HES1的转录表达,维持胰岛β细胞的功能。为深入全面探讨LncRNA在IUGR胰腺发育中的作用及机制,对IUGR新生鼠胰腺进行全转录组测序及分析。

  • 图7 差异LncRNA与差异mRNA的Cis作用图

  • Fig.7 The Cis between differentially expressed LncRNAs and mRNAs

  • 图8 差异表达LncRNA与差异表达mRNA的Trans作用图

  • Fig.8 The Trans between differentially expressed LncRNAs and mRNAs

  • 表4 高差异表达LncRNA

  • Table4 LncRNAs with high differential expression

  • 图9 LncRNA Snhg12(A)、LncRNA Rian(B)在IUGR、正常新生小鼠中的表达

  • Fig.9 The expression of LncRNA Snhg12(A)and Ln⁃ cRNA Rian(B)between IUGR and normal neo⁃ natal mice

  • 图10 不同糖浓度下MIN6细胞中LncRNA Snhg12(A)、 LncRNA Rian(B)的表达

  • Fig.10 The expression of LncRNA Snhg12(A)and Ln⁃ cRNA Rian(B)in response to various glucose concentrations in MIN6cells

  • LncRNA靶基因和差异mRNA GO分析中,BP均集中于细胞过程、生物调节及代谢过程,CC集中在细胞及器官等过程,MF集中于整合、催化活性、转运活性等。这些功能及成分中的基因均可对IU⁃ GR胰岛发育及糖尿病产生影响,例如能量代谢、碳水化合物代谢、脂质代谢等的变化及一些离子通道转运体的变化,这与Rashid等[20] 关于IUGR发生2型糖尿病的相关转录分析一致。

  • 差异LncRNA靶基因KEEG分析及差异mRNA KEEG分析表明,PI3K⁃Akt、Foxo、MAPK通路在IUGR新生鼠中存在明显表达差异。PI3k⁃Akt在增殖、分化、凋亡、葡萄糖代谢等方面均有重要作用,在胰岛β细胞中PI3K/Akt的激活可以促进胰岛素的分泌[21],胰岛β细胞中Akt的过表达和持续激活可以促进细胞增殖[22],而Akt的抑制也会导致胰岛素分泌减少[23]。Foxo可被活性氧(reactive oxygen spe⁃ cies,ROS)激活,从而在多种细胞过程如细胞增殖、葡萄糖代谢、细胞周期控制、氧化应激反应等中发挥作用。在人类IUGR胎儿[24-25] 和IUGR鼠[26] 中均存在氧化应激和ROS物质的增加。ROS可以通过抑制MAPK通路引起细胞死亡的细胞内通路[27], MAPK通路可以通过ERK1/2促进孕鼠胰岛增殖等[28]。因而这些通路均可能成为IUGR鼠胰腺发育异常及成年发生2型糖尿病的可能机制。

  • 经过对差异LncRNA及其靶基因、差异mRNA的GO和KEEG分析,发现LncRNA Snhg12、Rian可能分别通过MAPK、PI3K/AKT通路影响胰腺发育及增殖。LncRNA Snhg12在多种癌症增殖迁移中发挥作用,Cao等[29]指出LncRNA Snhg12通过与miRNA ⁃ 320b的海绵化作用促进胰腺癌细胞增殖、迁移; LncRNA Snhg12通过激活SIRTI/FOXO3a抑制自噬和氧化应激改善脑缺血灌注[30]。LncRNA Rian在细胞增殖凋亡中发挥重要作用,研究表明Rian的过表达会减少细胞凋亡[31];也可以通过PI3K/AKT影响细胞增殖[32]。本研究对LncRNA Snhg12及Rian在IUGR新生鼠胰腺中进行了验证,其表达结果与测序结果一致。通过在MIN6细胞中进行不同糖浓度刺激实验,结果表明LncRNA Snhg12、Rian表达受糖浓度影响,其可能在IUGR发生糖尿病的过程中发挥作用。测序结果也预测了LncRNA Snhg12可能会影响Trnau1ap的表达,从而影响胰岛发育及糖尿病发生;LncRNA Rian可能通过影响Sky的表达发挥作用,具体机制仍需进一步研究。

  • 本研究通过对IUGR新生小鼠及正常新生小鼠转录组差异表达基因分析,筛选出了差异LncRNA及mRNA,并通过GO、KEEG分析提出了IUGR鼠胰岛发育障碍和成年2型糖尿病发生的可能机制。未来将针对差异表达明显的LncRNA在IUGR胰岛发育异常过程中的机制及功能进行进一步研究。

  • 参考文献

    • [1] BIANCO ⁃MIOTTO T,CRAIG J M,GASSER Y P,et al.Epigenetics and DOHaD:from basics to birth and beyond [J].J Dev Orig Health Dis,2017,8(5):513-519

    • [2] LAW C M,SHIELL A W,NEWSOME C A,et al.Fetal,in⁃ fant,and childhood growth and adult blood pressure:a longitudinal study from birth to 22 years of age[J].Circu⁃ lation,2002,105(9):1088-1092

    • [3] YUAN Q X,JY Z,TENG L P,et al.Intrauterine growth re⁃ tardation leads to the functional change of insulin secre⁃ tion in the newborn rats[J].Horm Metab Res,2010,42(7):491-495

    • [4] YUAN Q,CHEN L,LIU C,et al.Postnatal pancreatic is⁃ let β cell function and insulin sensitivity at different stag⁃ es of lifetime in rats born with intrauterine growth retarda⁃ tion[J].PLoS One,2011,6(10):e25167

    • [5] LI Y,DAI C,YUAN Y,et al.The mechanisms of lncRNA Tug1 in islet dysfunction in a mouse model of intrauterine growth retardation[J].Cell Biochem Funct,2020,38(8):1129-1138

    • [6] 戴程婷,逸袁,李一卉,等.宫内发育迟缓新生大鼠胰WFS1的表达变化及其可能作用[J].南京医科大学学报(自然科学版),2020,40(5):658-662

    • [7] HENIKOFF S,GREALLY J M.Epigenetics,cellular mem⁃ ory and gene regulation[J].Curr Biol,2016,26(14):R644-R648

    • [8] BERNSTEIN B E,MEISSNER A,LANDER E S.The mammalian epigenome[J].Cell,2007,128(4):669-681

    • [9] MORÁN I,AKERMAN I,VAN DE BUNT M,et al.Hu⁃ man β cell transcriptome analysis uncovers lncRNAs that are tissue⁃specific,dynamically regulated,and abnormal⁃ ly expressed in type 2 diabetes[J].Cell Metab,2012,16(4):435-448

    • [10] KNOLL M,LODISH H F,SUN L.Long non⁃coding RNAs as regulators of the endocrine system[J].Nat Rev Endo⁃ crinol,2015,11(3):151-160

    • [11] GATFORD K L,SIMMONS R A,DE BLASIO M J,et al.Review:placental programming of postnatal diabetes and impaired insulin action after IUGR[J].Placenta,2010,31(Suppl):S60-S65

    • [12] ZUCKERWISE L,LI J,LU L,et al.H19 long noncoding RNA alters trophoblast cell migration and invasion by reg⁃ ulating TβR3 in placentae with fetal growth restriction [J].Oncotarget,2016,7(25):38398-38407

    • [13] MACKO A R,YATES D T,CHEN X,et al.Adrenal de⁃ medullation and oxygen supplementation independently increase glucose ⁃ stimulated insulin concentrations in fe⁃ tal sheep with intrauterine growth restriction[J].Endocri⁃ nology,2016,157(5):2104-2115

    • [14] SHEN L,ZHANG S,LI Q,et al.The landscape of non ⁃ coding RNA in an adult pig model of intrauterine growth restriction[J].Cell Physiol Biochem,2018,50(5):1764-1778

    • [15] HUANG S,XU Y,GE X,et al.Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabet⁃ ic nephropathy through activating Akt/mTOR signaling pathway[J].J Cell Physiol,2019,234(7):11200-11207

    • [16] ZHANG H,YAN Y,HU Q,et al.LncRNA MALAT1/mi⁃ croRNA let⁃7f/KLF5 axis regulates podocyte injury in dia⁃ betic nephropathy[J].Life Sci,2021,266:118794

    • [17] WANG N,ZHU Y,XIE M,et al.Long noncoding RNA meg3 regulates Mafa expression in mouse beta cells by in⁃ activating rad21,Smc3 or sin3α[J].Cell Physiol Bio⁃ chem,2018,45(5):2031-2043

    • [18] ZHU Y,LI Y,DAI C,et al.Inhibition of lincpint expres⁃ sion affects insulin secretion and apoptosis in mouse pan⁃ creatic β cells[J].Int J Biochem Cell Biol,2018,104:171-179

    • [19] YIN D D,ZHANG E B,YOU L H,et al.Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells[J].Cell Physiol Biochem,2015,35(5):1892-1904

    • [20] RASHID C S,LIEN Y C,BANSAL A,et al.Transcriptom⁃ ic analysis reveals novel mechanisms mediating islet dys⁃ function in the intrauterine growth⁃restricted rat[J].Endo⁃ crinology,FEB,2018,159(2):2017-00888

    • [21] GEORGIA S,BHUSHAN A.Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass[J].J Clin Invest,2004,114(7):963-968

    • [22] BERNAL ⁃MIZRACHI E,WEN W,STAHLHUT S,et al.Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy,hyperplasia,and hyperinsulinemia[J].J Clin Invest,2001,108(11):1631-1638

    • [23] BERNAL ⁃ MIZRACHI E,FATRAI S,JOHNSON J D,et al.Defective insulin secretion and increased susceptibili⁃ ty to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells[J].J Clin Invest,2004,114(7):928-936

    • [24] ZYGULA A,KOSINSKI P,WROCZYNSKI P,et al.Oxi⁃ dative stress markers differ in two placental dysfunction pathologies:Pregnancy ⁃ Induced hypertension and intra⁃ uterine growth restriction[J].Oxid Med Cell Longev,2020,2020:1323891

    • [25] NAHA R,ANEES A,CHAKRABARTY S,et al.Placental mitochondrial DNA mutations and copy numbers in intra⁃ uterine growth restricted(IUGR)pregnancy[J].Mitochon⁃ drion,2020,55:85-94

    • [26] RAINS M E,MUNCIE C B,PANG Y,et al.Oxidative stress and neurodevelopmental outcomes in rat offspring with intrauterine growth restriction induced by reduced uterine perfusion[J].Brain Sci,2021,11(1):78

    • [27] SIVITZ W A.Mitochondrial dysfunction in diabetes:from molecular mechanisms to functional significance and ther⁃ apeutic opportunities[J].Antioxid Redox Signal,2010,12(4):537-577

    • [28] AMARAL M E,DA C H,ANHÊ G F,et al.Participation of prolactin receptors and phosphatidylinositol 3 ⁃ kinase and MAP kinase pathways in the increase in pancreatic is⁃ let mass and sensitivity to glucose during pregnancy[J].J Endocrinol,2004,183(3):469-476

    • [29] CAO W,ZHOU G.LncRNA SNHG12 contributes prolifer⁃ ation,invasion and epithelial ⁃ mesenchymal transition of pancreatic cancer cells by absorbing miRNA ⁃ 320b[J].Biosci Rep,2020,40(6):BSR20200805

    • [30] WU Y,HUANG Y,CAI J,et al.LncRNA SNHG12 im⁃ proves cerebral ischemic ⁃ reperfusion injury by activating SIRT1/FOXO3a pathway through I nhibition of autophagy and oxidative stress[J].Curr Neurovasc Res,2020,17(4):394-401

    • [31] YAO P,LI Y L,CHEN Y,et al.Overexpression of long non⁃coding RNA Rian attenuates cell apoptosis from cere⁃ bral ischemia ⁃ reperfusion injury via Rian/miR ⁃ 144 ⁃ 3p/GATA3 signaling[J].Gene,2020,737:144411

    • [32] ZHONG L,JIA J,YE G.Rian/miR ⁃ 210⁃3p/Nfkb1 feed⁃ back loop promotes Hypoxia ⁃ Induced cell apoptosis in myocardial infarction through deactivating the PI3K/Akt signaling pathway[J].J Cardiovasc Pharmacol,2020,76(2):207-215

  • 参考文献

    • [1] BIANCO ⁃MIOTTO T,CRAIG J M,GASSER Y P,et al.Epigenetics and DOHaD:from basics to birth and beyond [J].J Dev Orig Health Dis,2017,8(5):513-519

    • [2] LAW C M,SHIELL A W,NEWSOME C A,et al.Fetal,in⁃ fant,and childhood growth and adult blood pressure:a longitudinal study from birth to 22 years of age[J].Circu⁃ lation,2002,105(9):1088-1092

    • [3] YUAN Q X,JY Z,TENG L P,et al.Intrauterine growth re⁃ tardation leads to the functional change of insulin secre⁃ tion in the newborn rats[J].Horm Metab Res,2010,42(7):491-495

    • [4] YUAN Q,CHEN L,LIU C,et al.Postnatal pancreatic is⁃ let β cell function and insulin sensitivity at different stag⁃ es of lifetime in rats born with intrauterine growth retarda⁃ tion[J].PLoS One,2011,6(10):e25167

    • [5] LI Y,DAI C,YUAN Y,et al.The mechanisms of lncRNA Tug1 in islet dysfunction in a mouse model of intrauterine growth retardation[J].Cell Biochem Funct,2020,38(8):1129-1138

    • [6] 戴程婷,逸袁,李一卉,等.宫内发育迟缓新生大鼠胰WFS1的表达变化及其可能作用[J].南京医科大学学报(自然科学版),2020,40(5):658-662

    • [7] HENIKOFF S,GREALLY J M.Epigenetics,cellular mem⁃ ory and gene regulation[J].Curr Biol,2016,26(14):R644-R648

    • [8] BERNSTEIN B E,MEISSNER A,LANDER E S.The mammalian epigenome[J].Cell,2007,128(4):669-681

    • [9] MORÁN I,AKERMAN I,VAN DE BUNT M,et al.Hu⁃ man β cell transcriptome analysis uncovers lncRNAs that are tissue⁃specific,dynamically regulated,and abnormal⁃ ly expressed in type 2 diabetes[J].Cell Metab,2012,16(4):435-448

    • [10] KNOLL M,LODISH H F,SUN L.Long non⁃coding RNAs as regulators of the endocrine system[J].Nat Rev Endo⁃ crinol,2015,11(3):151-160

    • [11] GATFORD K L,SIMMONS R A,DE BLASIO M J,et al.Review:placental programming of postnatal diabetes and impaired insulin action after IUGR[J].Placenta,2010,31(Suppl):S60-S65

    • [12] ZUCKERWISE L,LI J,LU L,et al.H19 long noncoding RNA alters trophoblast cell migration and invasion by reg⁃ ulating TβR3 in placentae with fetal growth restriction [J].Oncotarget,2016,7(25):38398-38407

    • [13] MACKO A R,YATES D T,CHEN X,et al.Adrenal de⁃ medullation and oxygen supplementation independently increase glucose ⁃ stimulated insulin concentrations in fe⁃ tal sheep with intrauterine growth restriction[J].Endocri⁃ nology,2016,157(5):2104-2115

    • [14] SHEN L,ZHANG S,LI Q,et al.The landscape of non ⁃ coding RNA in an adult pig model of intrauterine growth restriction[J].Cell Physiol Biochem,2018,50(5):1764-1778

    • [15] HUANG S,XU Y,GE X,et al.Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabet⁃ ic nephropathy through activating Akt/mTOR signaling pathway[J].J Cell Physiol,2019,234(7):11200-11207

    • [16] ZHANG H,YAN Y,HU Q,et al.LncRNA MALAT1/mi⁃ croRNA let⁃7f/KLF5 axis regulates podocyte injury in dia⁃ betic nephropathy[J].Life Sci,2021,266:118794

    • [17] WANG N,ZHU Y,XIE M,et al.Long noncoding RNA meg3 regulates Mafa expression in mouse beta cells by in⁃ activating rad21,Smc3 or sin3α[J].Cell Physiol Bio⁃ chem,2018,45(5):2031-2043

    • [18] ZHU Y,LI Y,DAI C,et al.Inhibition of lincpint expres⁃ sion affects insulin secretion and apoptosis in mouse pan⁃ creatic β cells[J].Int J Biochem Cell Biol,2018,104:171-179

    • [19] YIN D D,ZHANG E B,YOU L H,et al.Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells[J].Cell Physiol Biochem,2015,35(5):1892-1904

    • [20] RASHID C S,LIEN Y C,BANSAL A,et al.Transcriptom⁃ ic analysis reveals novel mechanisms mediating islet dys⁃ function in the intrauterine growth⁃restricted rat[J].Endo⁃ crinology,FEB,2018,159(2):2017-00888

    • [21] GEORGIA S,BHUSHAN A.Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass[J].J Clin Invest,2004,114(7):963-968

    • [22] BERNAL ⁃MIZRACHI E,WEN W,STAHLHUT S,et al.Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy,hyperplasia,and hyperinsulinemia[J].J Clin Invest,2001,108(11):1631-1638

    • [23] BERNAL ⁃ MIZRACHI E,FATRAI S,JOHNSON J D,et al.Defective insulin secretion and increased susceptibili⁃ ty to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells[J].J Clin Invest,2004,114(7):928-936

    • [24] ZYGULA A,KOSINSKI P,WROCZYNSKI P,et al.Oxi⁃ dative stress markers differ in two placental dysfunction pathologies:Pregnancy ⁃ Induced hypertension and intra⁃ uterine growth restriction[J].Oxid Med Cell Longev,2020,2020:1323891

    • [25] NAHA R,ANEES A,CHAKRABARTY S,et al.Placental mitochondrial DNA mutations and copy numbers in intra⁃ uterine growth restricted(IUGR)pregnancy[J].Mitochon⁃ drion,2020,55:85-94

    • [26] RAINS M E,MUNCIE C B,PANG Y,et al.Oxidative stress and neurodevelopmental outcomes in rat offspring with intrauterine growth restriction induced by reduced uterine perfusion[J].Brain Sci,2021,11(1):78

    • [27] SIVITZ W A.Mitochondrial dysfunction in diabetes:from molecular mechanisms to functional significance and ther⁃ apeutic opportunities[J].Antioxid Redox Signal,2010,12(4):537-577

    • [28] AMARAL M E,DA C H,ANHÊ G F,et al.Participation of prolactin receptors and phosphatidylinositol 3 ⁃ kinase and MAP kinase pathways in the increase in pancreatic is⁃ let mass and sensitivity to glucose during pregnancy[J].J Endocrinol,2004,183(3):469-476

    • [29] CAO W,ZHOU G.LncRNA SNHG12 contributes prolifer⁃ ation,invasion and epithelial ⁃ mesenchymal transition of pancreatic cancer cells by absorbing miRNA ⁃ 320b[J].Biosci Rep,2020,40(6):BSR20200805

    • [30] WU Y,HUANG Y,CAI J,et al.LncRNA SNHG12 im⁃ proves cerebral ischemic ⁃ reperfusion injury by activating SIRT1/FOXO3a pathway through I nhibition of autophagy and oxidative stress[J].Curr Neurovasc Res,2020,17(4):394-401

    • [31] YAO P,LI Y L,CHEN Y,et al.Overexpression of long non⁃coding RNA Rian attenuates cell apoptosis from cere⁃ bral ischemia ⁃ reperfusion injury via Rian/miR ⁃ 144 ⁃ 3p/GATA3 signaling[J].Gene,2020,737:144411

    • [32] ZHONG L,JIA J,YE G.Rian/miR ⁃ 210⁃3p/Nfkb1 feed⁃ back loop promotes Hypoxia ⁃ Induced cell apoptosis in myocardial infarction through deactivating the PI3K/Akt signaling pathway[J].J Cardiovasc Pharmacol,2020,76(2):207-215