en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

许迪,E⁃mail:xudi@jsph.org.cn

中图分类号:R542.23

文献标识码:A

文章编号:1007-4368(2021)06-796-09

DOI:10.7655/NYDXBNS20210602

参考文献 1
张琪,王英,杨吉猛,等.心肌纤维化指标在病态窦房结综合征患者中的作用[J].南京医科大学学报(自然科学版),2020,40(9):1344-1347,1376
参考文献 2
TAMMI R H,PASSI A G,RILLA K,et al.Transcriptional and post ⁃translational regulation of hyaluronan synthesis [J].FEBS J,2011,278(9):1419-1428
参考文献 3
COSTELLOE S J,THEOCHARIDOU E,TSOCHATZIS E,et al.Hepascore and hyaluronic acid as markers of fibro⁃ sis in liver disease of mixed aetiology[J].Eur J Gastroen⁃ terol Hepatol,2015,27(3):313-320
参考文献 4
MERAN S,LUO D D,SIMPSON R,et al.Hyaluronan fa⁃ cilitates transforming growth factor⁃β1⁃dependent prolifer⁃ ation via CD44 and epidermal growth factor receptor inter⁃ action[J].J Biol Chem,2011,286(20):17618-17630
参考文献 5
TOLG C,HAMILTON S R,ZALINSKA E,et al.A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds[J].Am J Pathol,2012,181(4):1250-1270
参考文献 6
ALBEIROTI S,SOROOSH A,DE LA MOTTE C A.Hyal⁃ uronan’s role in fibrosis:a pathogenic factor or a passive player?[J].Biomed Res Int,2015,2015:790203
参考文献 7
ZHANG B,DU Y,HE Y,et al.INT⁃HA induces M2⁃like macrophage differentiation of human monocytes via TLR4⁃ miR ⁃ 935 pathway[J].Cancer Immunol Immunother,2019,68(2):189-200
参考文献 8
TOOLE B P.Hyaluronan:from extracellular glue to peri⁃ cellular cue[J].Nat Rev Cancer,2004,4(7):528-539
参考文献 9
Petrey A C,de la Motte C A.Hyaluronan,a crucial regula⁃ tor of inflammation[J].Front Immunol,2014,5:101
参考文献 10
WIGHT T N.Provisional matrix:a role for versican and hyaluronan[J].Matrix Biol,2017,60⁃61(7):38-56
参考文献 11
STERN R,ASARI A A,SUGAHARA K N.Hyaluronan fragments:an information⁃rich system[J].Eur J Cell Biol,2006,85(8):699-715
参考文献 12
WANG Y,MACK J A,MAYTIN E V.CD44 inhibits α⁃ SMA gene expression via a novel G⁃actin/MRTF⁃mediat⁃ ed pathway that intersects with TGFβR/p38MAPK signal⁃ ing in murine skin fibroblasts[J].J Biol Chem,2019,294(34):12779-12794
参考文献 13
CHEN C H,SUE Y M,CHENG C Y,et al.Oligo⁃fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway[J].Sci Rep,2017,7(1):40183
参考文献 14
KROLIKOSKI M,MONSLOW J,PURÉ E.The CD44⁃HA axis and inflammation in atherosclerosis:A temporal per⁃ spective[J].Matrix Biol,2019,78⁃79(5):201-218
参考文献 15
HELDIN P,KOLLIOPOULOS C,LIN C Y,et al.Involve⁃ ment of hyaluronan and CD44 in cancer and viral infec⁃ tions[J].Cell Signal,2020,65(1):109427
参考文献 16
SU Y J,LAI H M,CHANG Y W,et al.Direct reprogram⁃ ming of stem cell properties in colon cancer cells by CD44 [J].EMBO J,2011,30(15):3186-3199
参考文献 17
ALAMGEER M,NEIL W D,BANAKH I,et al.A phase IIa study of HA⁃irinotecan,formulation of hyaluronic acid and irinotecan targeting CD44 in extensive ⁃ stage small cell lung cancer[J].Invest New Drugs,2018,36(2):288-298
参考文献 18
AMBARTSUMIAN N,KLINGELHÖFER J,GRIGORIAN M.The multifaceted S100A4 protein in cancer and inflam⁃ mation[J].Methods Mol Biol,2019,1929:339-365
参考文献 19
KRAUS C,ROHDE D,WEIDENHAMMER C,et al.S100A1 in cardiovascular health and disease:closing the gap between basic science and clinical therapy[J].J Mol Cell Cardiol,2009,47(4):445-455
参考文献 20
XIA H,GILBERTSEN A,HERRERA J,et al.Calcium ⁃ binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis[J].J Clin Invest,2017,127(7):2586-2597
参考文献 21
QIAN L,HONG J,ZHANG Y,et al.Downregulation of S100A4 alleviates cardiac fibrosis via Wnt/β ⁃ Catenin pathway in mice[J].Cell Physiol Biochem,2018,46(6):2551-2560
参考文献 22
QIAN L,ZHANG Y,ZHU M,et al.Improvements in left ventricular regional and global systolic function following treatment with S100A4 ⁃ shRNA after myocardial infarc⁃ tion in mice[J].Quant Imaging Med Surg,2019,9(6):1066-1075
参考文献 23
SAMSON R,RAMACHANDRAN R,LE JEMTEL T H.Systolic heart failure:knowledge gaps,misconceptions,and future directions[J].Ochsner J,2014,14(4):569-575
参考文献 24
VRTOVEC B,POGLAJEN G,LEZAIC L,et al.Effects of intracoronary CD34+ stem cell transplantation in nonisch⁃ emic dilated cardiomyopathy patients:5 ⁃ year follow ⁃ up [J].Circ Res,2013,112(1):165-173
参考文献 25
LIAO H X,LEVESQUE M C,PATTON K,et al.Regula⁃ tion of human CD44H and CD44E isoform binding to hyal⁃ uronan by phorbol myristate acetate and anti⁃CD44 mono⁃ clonal and polyclonal antibodies[J].J Immunol,1993,151(11):6490-6499
参考文献 26
FUJIMOTO T,KAWASHIMA H,TANAKA T,et al.CD44 binds a chondroitin sulfate proteoglycan,aggrecan[J].Int Immunol,2001,13(3):359-366
目录contents

    摘要

    目的:研究低分子量透明质酸(low molecular weight hyaluronic acid,LMW⁃HA)对小鼠心脏成纤维细胞(cardiac fibro⁃ blast,CF)表型转化的促进作用,探讨CD44和S100A4在此过程中的作用。方法:从ICR乳小鼠的心脏中分离提取CF并培养, 使用LMW⁃HA进行刺激,采用CCK⁃8和EdU染色测细胞增殖程度,免疫印迹(Western blot,WB)、实时定量PCR、免疫荧光确定纤维化程度,对CD44和S100A4蛋白质核分离并通过WB和免疫荧光明确核转移。CD44抑制剂BRIC⁃235处理后再次检测上述指标。结果:CCK⁃8增殖与EdU染色实验确定LMW⁃HA的最佳刺激浓度为0.8 mg/mL。WB、PCR和免疫荧光表明LMW⁃HA 的刺激使心脏纤维化标志物(α⁃SMA和Collagen 3)的水平显著增加,CD44保持不变,S100A4随时间逐渐增加,同时CD44和 S100A4蛋白转移到细胞核内。CD44抑制剂BRIC⁃235能抑制这些改变。结论:LMW⁃HA的刺激能够促进小鼠CF的表型转化从而促进心肌纤维化,该过程是通过与CD44结合并促进S100A4转移入细胞核内激活下游通路实现的。

    Abstract

    Objective:This study aimed to investigate the promotion effect of low molecular weight hyaluronic acid(LMW⁃HA)on phenotypic transformation of mice cardiac fibroblasts and the role of CD44 and S100A4 in this process. Methods:Cardiac fibroblasts (CFs)were isolated and cultured from neonatal ICR miceandthen stimulated by LMW⁃HA. The proliferation of CFs was measured by CCK ⁃ 8 and EdU. Western blot(WB),quantitative RT ⁃ PCR and immunofluorescence were used to determine myocardial fibrosis. Nuclear and cytoplasmic proteins of CD44 and S100A4 were extracted to specify the nuclear translocation by WB and immunofluorescence. Above indicators were measured again after CFs treated with the CD44 inhibitor BRIC⁃235. Results:CCK⁃8 and EdU determined that the optimal concentration of LMW ⁃ HA stimulation was 0.8mg/mL. WB,qRT ⁃ PCR and immunofluorescence showed that LMW⁃HA stimulation significantly increased the level of myocardial fibrosis markers(α⁃SMA and Collagen 3),but CD44 remained unchanged,and S100A4 gradually increased with time.The proteins of CD44 and S100A4 were transferred into the nucleus at the same time. BRIC⁃235 can inhibit these changes. Conclusion:LMW⁃HA can promote the differentiation of micecardiac fibroblasts, which is regulated by the nuclear translocation of CD44 and S100A4 and the activation of downstream signaling pathway.

  • 随着经济的发展、生活水平的提高及老龄化社会的到来,心血管疾病的发病率日益上升,心肌纤维化是心血管疾病的一个重要病理特征,最终可引起心功能不全等一系列严重病理损害,甚至导致死亡[1]

  • 细胞外基质沉积是心肌纤维化的主要病理特征,以往心肌纤维化的研究热点是胶原蛋白,然而除胶原蛋白外,透明质酸(hyaluronic acid,HA)也被认为是细胞外基质的重要成分。HA是一种自然形成的多聚糖,广泛分布于生物体内,由透明质酸合成酶合成[2]。研究显示纤维化组织中HA明显增多,因此HA被认为是心肌纤维化的特征之一,作为心肌纤维化的产物,被动参与纤维化的发生发展[3]。近年来随着对HA研究的进一步深入,尤其是一些研究证实HA不仅是纤维化的产物,更是作为纤维化的驱动因子,促进成纤维细胞的分化与增殖,主动参与心肌纤维化的发生发展[4-6]。上述研究发现, HA根据其不同的分子量而具有不同的功能,目前HA大致可分为3种[7]。初始合成的HA称为高分子量透明质酸(high molecular weight hyaluronic acid, HMW ⁃ HA)(>1 000kDa),在生理状态下HA以HMW ⁃HA形式存在,在炎症刺激或病理状态下, HMW⁃HA在透明质酸酶作用下会降解为低分子量透明质酸(low molecular weight hyaluronic acid, LMW⁃HA)(6~20kDa),后者是一种有生物活性的片段[8-10]。研究证实HMW⁃HA具有抗炎作用,保护细胞;LMW⁃HA则有致炎作用,促进细胞增殖及分化[911]

  • 研究表明LMW⁃HA在细胞表面的特异性受体为CD44,其广泛分布于包括成纤维细胞在内的多种细胞中[12]。在白细胞中,CD44与LMW⁃HA结合后仅15min即被覆盖到细胞的一极,同时HA进入细胞内[9]。LMW⁃HA与其受体CD44相结合后在调控细胞增殖等方面起非常重要的作用[13-14],多项研究表明CD44与LMW⁃HA相互结合后可参与肺、肝脏及肾脏组织的纤维化病理进程中。细胞膜表面的CD44在膜相关金属蛋白酶(membrane ⁃ associated metalloprotease,MMP)作用下可以被水解,胞外段向血浆和细胞外液释放,而胞内结构域则被剪切下,通过核膜进入细胞核内,发挥相应的功能。近几年对核型CD44的研究主要集中在肿瘤干细胞领域[15],研究提示当CD44转入细胞核内时可启动下游信号,使得细胞发生程序重调,从而调控细胞分化与增殖[1316-17]

  • S100A4蛋白是S100家族的一员,又称成纤维细胞特异性蛋白1,是器官纤维化的分子标志物,主要参与细胞的分化和增殖[18]。在肿瘤、肺、肾脏、肝脏及心脏纤维化组织中明显表达,但具体机制不明[19-20]。本课题组前期研究显示,缺氧刺激乳大鼠成纤维细胞及心梗小鼠模型中发现α⁃ SMA、 S100A4、β⁃catenin、Collegen 1和Collegen 3表达水平明显增高。而在心梗组小鼠心肌注射病毒转染S100A4敲低基因后,Masson染色提示胶原成分减少,超声心动图提示小鼠心功能明显改善[21-22]。上述实验进一步证实了S100A4在心肌纤维化发生发展过程中起到非常重要的作用。

  • LMW⁃HA与CD44结合后可以调控细胞增殖,同时也已证明S100A4与心肌纤维化有关,因此我们提出假设:LMW⁃HA能够通过CD44作用于S100A4蛋白,使其进入细胞核内,从而启动下游信号通路参与心脏纤维化。

  • 本研究旨在证明LMW⁃HA作为心肌纤维化的驱动因子,能促进小鼠心脏成纤维细胞(cardiac fi⁃ broblasts,CF)的分化与增殖,并明确其与细胞膜表面受体CD44结合后,能够诱导S100A4蛋白从胞浆进入细胞核内,最终促进心脏纤维化的发生,为针对HA和CD44的分子靶向治疗奠定基础。

  • 1 材料和方法

  • 1.1 材料

  • LMW ⁃ HA HA60K ⁃ 1(Lifecore公司,美国); DMEM高糖培养基、胎牛血清(FBS)、0.25%胰酶、 BSA(Gibco公司,美国);RIPA裂解液、PMSF、DEPC水、DAPI染色液、抗荧光猝灭封片液、BCA蛋白浓度测定试剂盒、SDS⁃PAGE凝胶配置试剂盒、细胞核蛋白与细胞浆蛋白抽提试剂盒(杭州碧云天公司);青霉素⁃链霉素混合物(HyClone公司,美国);Ⅱ型胶原酶(Worthington公司,美国);封闭用羊血清(北京中杉金桥);CCK⁃8细胞增殖⁃毒性检测试剂盒(DOJIN⁃ DO公司,日本);抗HistoneH3、抗α⁃SMA(CST公司,美国),抗CD44(Abcam公司,美国),BRIC⁃235(ARP公司,美国),抗Collagen 3(上海Proteintech公司),抗GAPDH、抗S100A4、山羊抗兔IgG⁃HRP、山羊抗小鼠IgG⁃HRP(合肥Biosharp公司),AlexaFluor 488标记的羊抗兔IgG、AlexaFluor 594标记的羊抗小鼠IgG(Jackson ImmunoResearch公司,美国);HiScript Ⅲ RT Super Mix for QPCR、Cham QSYBR qPCR Mas⁃ ter Mix(上海诺唯赞公司)。

  • 1.2 方法

  • 1.2.1 细胞分离与培养

  • CF和心肌细胞(myocardial cell,MC)从南京医科大学实验动物中心提供的出生1~3d的SPF级ICR乳小鼠的心脏中分离,本研究经南京医科大学实验动物福利伦理委员会批准。分离出的细胞在含有10%胎牛血清和1%双抗的DMEM高糖培养基中培养,培养箱温度为37℃、CO2 为5%。使用0.25%的胰酶进行消化传代,细胞传至第3代后随机分组,用于实验。

  • 1.2.2 LMW⁃HA刺激

  • 将LMW⁃HA溶于10%FBS的DMEM高糖培养基中混匀,CF用无血清的培养基饥饿过夜后,换成含有LMW⁃HA的培养基。

  • 1.2.3 CD44抑制剂处理

  • 将CD44抑制剂BRIC⁃235提前24h加入培养皿中,37℃、5%CO2孵育24h后换成含有LMW⁃HA的培养基。

  • 1.2.4 CCK⁃8细胞增殖实验

  • 用胰酶将CF消化后进行细胞计数,在96孔板中按照每孔100 μL 3 000个细胞的密度加入细胞悬液,CF贴壁后加入LMW⁃HA刺激,一定时间后换成普通培养基继续孵育。向每孔加入10 μL CCK⁃8试剂,继续孵育1h后用酶标仪测定450nm处吸光度。

  • 1.2.5 Western blot检测

  • 针对细胞总蛋白,收取细胞并且冰上裂解,孵育15min,刮下蛋白后4℃ 12 000 g离心20min,收集上清液;使用试剂盒分别提取细胞浆蛋白与核蛋白。应用BCA法测定蛋白浓度,等量蛋白经SDS⁃ PAGE电泳后转移到PVDF膜上。室温下5%BSA封闭1h后,一抗4℃摇床孵育过夜。第2天二抗孵育2h,使用ECL高敏化学发光试剂检测目的蛋白的表达。

  • 1.2.6 实时定量PCR(qRT⁃PCR)检测

  • 收取细胞并用TRIzol法提取mRNA,用试剂盒对总mRNA进行逆转录(37℃ 15min,85℃ 5s)合成cDNA。用SYBRGreen法进行qRT ⁃ PCR检测, 95℃预变性30s,95℃ 10s、60℃ 30s共40个循环,最后退火。采用StepOne Plus实时PCR系统进行分析。

  • 1.2.7 免疫荧光检测

  • CF传代至共聚焦培养皿中,37℃ 5%CO2孵育过夜。第2天用4%多聚甲醛固定30min,0.3%Triton X⁃100破膜15min,5%NGS室温封闭1h,加入一抗4℃摇床过夜。第2天吸弃一抗,全程避光,荧光二抗室温孵育1h,吸弃二抗,DAPI染核6min,封片,使用激光共聚焦显微镜观察并拍照。

  • 1.3 统计学方法

  • 每组数据均来自3次独立的实验,所有统计分析均使用SPSS25.0进行。正态分布数据采用均数± 标准差(x- ± s)表示,两组间比较采用双尾未配对t检验,多重比较采用单因素方差分析和Tukey检验,所有结果均使用GraphPad Prism 8.0表示。P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 CD44与S100A4在CF中高表达

  • 首先检测ICR乳小鼠CF和MC中CD44和S100A4mRNA和蛋白的表达。 qRT⁃PCR对CD44和S100A4mRNA进行定量分析(图1A、B),Western blot对两者的蛋白进行定量分析(图1C~E)。结果表明,CF中CD44和S100A4的表达量均显著高于MC(P <0.01)。

  • 2.2 LMW⁃HA刺激的最佳浓度

  • CCK⁃8细胞增殖实验显示(图2A),分别用不同浓度的LMW⁃HA刺激CF,当浓度≥0.2mg/mL时CF的增殖与对照组相比差异有统计学意义(P <0.05), 0.8mg/mL LMW ⁃ HA作用下,CF的增殖最明显。 EdU染色法同样证明了0.2mg/mL的LMW⁃HA已经开始对CF的增殖产生影响(图2B)。因此,后续实验采用0.8mg/mL的LMW⁃HA对CF进行刺激并培养。

  • 2.3 LMW⁃HA刺激后CF的表型转化

  • PCR和Western blot显示,CF中的心肌纤维化标志物α⁃SMA和Collagen 3的表达在LMW⁃HA刺激8h时开始增加,刺激12h时显著增加(P <0.01); CD44mRNA和蛋白的表达不随时间变化(P > 0.05);LMW⁃HA刺激8h后S100A4mRNA和蛋白表达时开始缓慢增加(P <0.05),刺激12h后显著增加 (P <0.01,图3A、B)。采用α⁃SMA和S100A4细胞免疫荧光染色观察到,CF在LMW⁃HA的作用下向肌成纤维细胞分化(图3C)。

  • 2.4 LMW⁃HA刺激使CD44 与S100A4 蛋白从胞浆进入胞核

  • 为了研究CD44与S100A4蛋白是否从胞浆进入胞核,对细胞浆蛋白与核蛋白进行分离,然后通过Western blot证明,LMW⁃HA刺激仅15min后,胞浆中的CD44蛋白表达量即开始降低(图4A),同时胞核中的CD44蛋白逐渐增加(P <0.05,图4B),而S100A4蛋白在30min后的变化才有统计学意义 (P <0.01)。结合总蛋白的表达,可以得出CD44蛋白从胞浆进入了胞核,而S100A4核蛋白虽然也在合成,但是主要来源于胞浆。免疫荧光结果也能印证这2个蛋白的核转移(图4C)。

  • 图1 CD44与S100A4在乳小鼠CF与MC中的表达

  • Fig.1 Expressions of CD44and S100A4in neonatal mice CF and MC

  • 图2 不同浓度的LMW⁃HA刺激CF的增殖情况

  • Fig.2 The proliferation of CF stimulated by different concentrations of LMW⁃HA

  • 2.5 CD44 抑制剂存在时LMW⁃HA刺激后CF的表型转化

  • PCR和Western blot结果均显示,BRIC⁃235本身对细胞无影响,不会导致CF中的心脏纤维化标志物的增加(P >0.05,图5)。同时LMW⁃HA的刺激纤维化作用被逆转,α⁃SMA、Collagen 3和S100A4的表达不增加,CD44的表达依然不变(P >0.05)。

  • 2.6 BRIC⁃235能抑制CD44与S100A4蛋白从胞浆进入胞核的过程

  • Western blot结果显示,BRIC⁃235预处理细胞24h,无论是否有LMW⁃HA的存在,胞浆和胞核中的CD44和S100A4蛋白的表达量均没有改变(P > 0.05,图6A、B)。免疫荧光结果也证明了其对CD44和S100A4蛋白核转移的抑制作用(图6C)。

  • 3 讨论

  • 心肌纤维化是众多心血管疾病及心脏老化的一个重要的病理特征,导致的心室重构会严重影响心功能,目前药物治疗主要围绕阻断神经⁃内分泌系统抑制心室重构来展开[23],已知血管紧张素转化酶抑制剂和血管紧张素Ⅱ受体拮抗剂均有逆转心室重构的作用,但其确切效果并不佳;此外,干细胞移植和基因治疗研究正在逐步深入,但疗效尚不确切[24]。因此寻找抑制心肌纤维化逆转心室重构的新靶点迫在眉睫。

  • 图3 LMW⁃HA刺激后心肌纤维化标志物与CD44的表达量变化

  • Fig.3 The expressions of myocardial fibrosis markers and CD44after LMW⁃HA stimulation

  • 近年来细胞微环境的作用颇受关注。HA是细胞外基质的重要组成成分,本研究首先明确相较于MC,CF中的CD44与S100A4高表达,因此选择CF作为研究对象。接着,本研究发现LMW⁃HA可促进CF的表型转化,刺激8h后开始分化为肌成纤维细胞,促进心肌纤维化。进一步研究提示,LMW⁃HA刺激CF后1h,细胞核内的S100A4明显增多同时胞浆内的S100A4减少,并且细胞膜表面的特异性受体CD44也有此种趋势。我们根据以上结果推测, LMW⁃HA促进CF纤维化的机制可能与CD44的结合及S100A4的核转移相关。最后为明确该假设,本研究使用了CD44抑制剂BRIC⁃235重复上述实验,发现CF向肌成纤维细胞表型的转化被抑制,同时CD44与S100A4的核转移也未发生,表明LMW⁃HA促进CF纤维化的机制是与CD44结合并介导S100A4的核转移。

  • 图4 LMW⁃HA刺激对CD44与S100A4蛋白核转移的影响

  • Fig.4 Effects of LMW⁃HA stimulation on nuclear translocation of CD44and S100A4proteins

  • CD44是表观分子量85kDa的细胞膜糖蛋白,其结构类似于选择蛋白,其细胞外部分包含N端二硫键结合的结构域和O端糖基化的结构域。CD44是HA的主要细胞表面受体,其COOH末端的52个氨基酸对HA与CD44细胞外结构域的结合至关重要[25]。BRIC⁃235作为CD44的特异性抗体,可抑制HA与CD44的结合[26]。因此,BRIC⁃235具有作为心肌纤维化靶向治疗的潜力,可以阻断LMW⁃HA与CD44的结合,抑制CF向肌成纤维细胞分化。

  • 本研究一方面创新性地提出HA作为细胞外基质的重要组成成分,不仅是心肌纤维化的产物,更是作为纤维化的驱动因子,促进成纤维细胞的分化与增殖,主动参与到心肌纤维化的发生发展中,为我们更好地理解心肌纤维化的病理机制提供了新思路。另一方面,心肌纤维化的治疗一直是心血管疾病治疗中的难点,而首次提出LMW⁃HA/CD44通过促进S100A4核转移,与CD44结合调节下游通路从而促进纤维化的机制,为将来进一步阐述缺血性心肌纤维化分子机制打下了研究基础,也为今后临床分子治疗提供理论基础和新的靶点。

  • 图5 BRIC⁃235对成纤维细胞中心肌纤维化标志物及S100A4表达的影响

  • Fig.5 Effects of BRIC⁃235on expressions of myocardial fibrosis markers and S100A4

  • 然而,本研究依然有需要改进之处。首先,由于条件限制及时间紧张,本研究仅为体外细胞实验,后续在体实验模型并未能实现,未能进一步探讨病理状态下HA分解代谢对心功能的影响,以及相关分子治疗的安全性和有效性。其次,CD44与S100A4在细胞核内是通过激活何种下游通路来调控成纤维细胞的增殖,目前在心肌纤维化的领域尚无定论,需要更深入的研究。

  • 综上所述,LMW⁃HA具有高度致炎作用,而其与成纤维细胞膜特异性受体CD44结合后进一步形成了纤维化的驱动力,通过诱导S100A4蛋白向细胞核内转移,促进小鼠成纤维细胞的表型转化从而诱导心肌纤维化的发生。

  • 图6 BRIC⁃235对CD44与S100A4蛋白核转移过程的影响

  • Fig.6 Effect of BRIC⁃235on the nuclear translocation of CD44and S100A4proteins

  • 参考文献

    • [1] 张琪,王英,杨吉猛,等.心肌纤维化指标在病态窦房结综合征患者中的作用[J].南京医科大学学报(自然科学版),2020,40(9):1344-1347,1376

    • [2] TAMMI R H,PASSI A G,RILLA K,et al.Transcriptional and post ⁃translational regulation of hyaluronan synthesis [J].FEBS J,2011,278(9):1419-1428

    • [3] COSTELLOE S J,THEOCHARIDOU E,TSOCHATZIS E,et al.Hepascore and hyaluronic acid as markers of fibro⁃ sis in liver disease of mixed aetiology[J].Eur J Gastroen⁃ terol Hepatol,2015,27(3):313-320

    • [4] MERAN S,LUO D D,SIMPSON R,et al.Hyaluronan fa⁃ cilitates transforming growth factor⁃β1⁃dependent prolifer⁃ ation via CD44 and epidermal growth factor receptor inter⁃ action[J].J Biol Chem,2011,286(20):17618-17630

    • [5] TOLG C,HAMILTON S R,ZALINSKA E,et al.A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds[J].Am J Pathol,2012,181(4):1250-1270

    • [6] ALBEIROTI S,SOROOSH A,DE LA MOTTE C A.Hyal⁃ uronan’s role in fibrosis:a pathogenic factor or a passive player?[J].Biomed Res Int,2015,2015:790203

    • [7] ZHANG B,DU Y,HE Y,et al.INT⁃HA induces M2⁃like macrophage differentiation of human monocytes via TLR4⁃ miR ⁃ 935 pathway[J].Cancer Immunol Immunother,2019,68(2):189-200

    • [8] TOOLE B P.Hyaluronan:from extracellular glue to peri⁃ cellular cue[J].Nat Rev Cancer,2004,4(7):528-539

    • [9] Petrey A C,de la Motte C A.Hyaluronan,a crucial regula⁃ tor of inflammation[J].Front Immunol,2014,5:101

    • [10] WIGHT T N.Provisional matrix:a role for versican and hyaluronan[J].Matrix Biol,2017,60⁃61(7):38-56

    • [11] STERN R,ASARI A A,SUGAHARA K N.Hyaluronan fragments:an information⁃rich system[J].Eur J Cell Biol,2006,85(8):699-715

    • [12] WANG Y,MACK J A,MAYTIN E V.CD44 inhibits α⁃ SMA gene expression via a novel G⁃actin/MRTF⁃mediat⁃ ed pathway that intersects with TGFβR/p38MAPK signal⁃ ing in murine skin fibroblasts[J].J Biol Chem,2019,294(34):12779-12794

    • [13] CHEN C H,SUE Y M,CHENG C Y,et al.Oligo⁃fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway[J].Sci Rep,2017,7(1):40183

    • [14] KROLIKOSKI M,MONSLOW J,PURÉ E.The CD44⁃HA axis and inflammation in atherosclerosis:A temporal per⁃ spective[J].Matrix Biol,2019,78⁃79(5):201-218

    • [15] HELDIN P,KOLLIOPOULOS C,LIN C Y,et al.Involve⁃ ment of hyaluronan and CD44 in cancer and viral infec⁃ tions[J].Cell Signal,2020,65(1):109427

    • [16] SU Y J,LAI H M,CHANG Y W,et al.Direct reprogram⁃ ming of stem cell properties in colon cancer cells by CD44 [J].EMBO J,2011,30(15):3186-3199

    • [17] ALAMGEER M,NEIL W D,BANAKH I,et al.A phase IIa study of HA⁃irinotecan,formulation of hyaluronic acid and irinotecan targeting CD44 in extensive ⁃ stage small cell lung cancer[J].Invest New Drugs,2018,36(2):288-298

    • [18] AMBARTSUMIAN N,KLINGELHÖFER J,GRIGORIAN M.The multifaceted S100A4 protein in cancer and inflam⁃ mation[J].Methods Mol Biol,2019,1929:339-365

    • [19] KRAUS C,ROHDE D,WEIDENHAMMER C,et al.S100A1 in cardiovascular health and disease:closing the gap between basic science and clinical therapy[J].J Mol Cell Cardiol,2009,47(4):445-455

    • [20] XIA H,GILBERTSEN A,HERRERA J,et al.Calcium ⁃ binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis[J].J Clin Invest,2017,127(7):2586-2597

    • [21] QIAN L,HONG J,ZHANG Y,et al.Downregulation of S100A4 alleviates cardiac fibrosis via Wnt/β ⁃ Catenin pathway in mice[J].Cell Physiol Biochem,2018,46(6):2551-2560

    • [22] QIAN L,ZHANG Y,ZHU M,et al.Improvements in left ventricular regional and global systolic function following treatment with S100A4 ⁃ shRNA after myocardial infarc⁃ tion in mice[J].Quant Imaging Med Surg,2019,9(6):1066-1075

    • [23] SAMSON R,RAMACHANDRAN R,LE JEMTEL T H.Systolic heart failure:knowledge gaps,misconceptions,and future directions[J].Ochsner J,2014,14(4):569-575

    • [24] VRTOVEC B,POGLAJEN G,LEZAIC L,et al.Effects of intracoronary CD34+ stem cell transplantation in nonisch⁃ emic dilated cardiomyopathy patients:5 ⁃ year follow ⁃ up [J].Circ Res,2013,112(1):165-173

    • [25] LIAO H X,LEVESQUE M C,PATTON K,et al.Regula⁃ tion of human CD44H and CD44E isoform binding to hyal⁃ uronan by phorbol myristate acetate and anti⁃CD44 mono⁃ clonal and polyclonal antibodies[J].J Immunol,1993,151(11):6490-6499

    • [26] FUJIMOTO T,KAWASHIMA H,TANAKA T,et al.CD44 binds a chondroitin sulfate proteoglycan,aggrecan[J].Int Immunol,2001,13(3):359-366

  • 参考文献

    • [1] 张琪,王英,杨吉猛,等.心肌纤维化指标在病态窦房结综合征患者中的作用[J].南京医科大学学报(自然科学版),2020,40(9):1344-1347,1376

    • [2] TAMMI R H,PASSI A G,RILLA K,et al.Transcriptional and post ⁃translational regulation of hyaluronan synthesis [J].FEBS J,2011,278(9):1419-1428

    • [3] COSTELLOE S J,THEOCHARIDOU E,TSOCHATZIS E,et al.Hepascore and hyaluronic acid as markers of fibro⁃ sis in liver disease of mixed aetiology[J].Eur J Gastroen⁃ terol Hepatol,2015,27(3):313-320

    • [4] MERAN S,LUO D D,SIMPSON R,et al.Hyaluronan fa⁃ cilitates transforming growth factor⁃β1⁃dependent prolifer⁃ ation via CD44 and epidermal growth factor receptor inter⁃ action[J].J Biol Chem,2011,286(20):17618-17630

    • [5] TOLG C,HAMILTON S R,ZALINSKA E,et al.A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds[J].Am J Pathol,2012,181(4):1250-1270

    • [6] ALBEIROTI S,SOROOSH A,DE LA MOTTE C A.Hyal⁃ uronan’s role in fibrosis:a pathogenic factor or a passive player?[J].Biomed Res Int,2015,2015:790203

    • [7] ZHANG B,DU Y,HE Y,et al.INT⁃HA induces M2⁃like macrophage differentiation of human monocytes via TLR4⁃ miR ⁃ 935 pathway[J].Cancer Immunol Immunother,2019,68(2):189-200

    • [8] TOOLE B P.Hyaluronan:from extracellular glue to peri⁃ cellular cue[J].Nat Rev Cancer,2004,4(7):528-539

    • [9] Petrey A C,de la Motte C A.Hyaluronan,a crucial regula⁃ tor of inflammation[J].Front Immunol,2014,5:101

    • [10] WIGHT T N.Provisional matrix:a role for versican and hyaluronan[J].Matrix Biol,2017,60⁃61(7):38-56

    • [11] STERN R,ASARI A A,SUGAHARA K N.Hyaluronan fragments:an information⁃rich system[J].Eur J Cell Biol,2006,85(8):699-715

    • [12] WANG Y,MACK J A,MAYTIN E V.CD44 inhibits α⁃ SMA gene expression via a novel G⁃actin/MRTF⁃mediat⁃ ed pathway that intersects with TGFβR/p38MAPK signal⁃ ing in murine skin fibroblasts[J].J Biol Chem,2019,294(34):12779-12794

    • [13] CHEN C H,SUE Y M,CHENG C Y,et al.Oligo⁃fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway[J].Sci Rep,2017,7(1):40183

    • [14] KROLIKOSKI M,MONSLOW J,PURÉ E.The CD44⁃HA axis and inflammation in atherosclerosis:A temporal per⁃ spective[J].Matrix Biol,2019,78⁃79(5):201-218

    • [15] HELDIN P,KOLLIOPOULOS C,LIN C Y,et al.Involve⁃ ment of hyaluronan and CD44 in cancer and viral infec⁃ tions[J].Cell Signal,2020,65(1):109427

    • [16] SU Y J,LAI H M,CHANG Y W,et al.Direct reprogram⁃ ming of stem cell properties in colon cancer cells by CD44 [J].EMBO J,2011,30(15):3186-3199

    • [17] ALAMGEER M,NEIL W D,BANAKH I,et al.A phase IIa study of HA⁃irinotecan,formulation of hyaluronic acid and irinotecan targeting CD44 in extensive ⁃ stage small cell lung cancer[J].Invest New Drugs,2018,36(2):288-298

    • [18] AMBARTSUMIAN N,KLINGELHÖFER J,GRIGORIAN M.The multifaceted S100A4 protein in cancer and inflam⁃ mation[J].Methods Mol Biol,2019,1929:339-365

    • [19] KRAUS C,ROHDE D,WEIDENHAMMER C,et al.S100A1 in cardiovascular health and disease:closing the gap between basic science and clinical therapy[J].J Mol Cell Cardiol,2009,47(4):445-455

    • [20] XIA H,GILBERTSEN A,HERRERA J,et al.Calcium ⁃ binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis[J].J Clin Invest,2017,127(7):2586-2597

    • [21] QIAN L,HONG J,ZHANG Y,et al.Downregulation of S100A4 alleviates cardiac fibrosis via Wnt/β ⁃ Catenin pathway in mice[J].Cell Physiol Biochem,2018,46(6):2551-2560

    • [22] QIAN L,ZHANG Y,ZHU M,et al.Improvements in left ventricular regional and global systolic function following treatment with S100A4 ⁃ shRNA after myocardial infarc⁃ tion in mice[J].Quant Imaging Med Surg,2019,9(6):1066-1075

    • [23] SAMSON R,RAMACHANDRAN R,LE JEMTEL T H.Systolic heart failure:knowledge gaps,misconceptions,and future directions[J].Ochsner J,2014,14(4):569-575

    • [24] VRTOVEC B,POGLAJEN G,LEZAIC L,et al.Effects of intracoronary CD34+ stem cell transplantation in nonisch⁃ emic dilated cardiomyopathy patients:5 ⁃ year follow ⁃ up [J].Circ Res,2013,112(1):165-173

    • [25] LIAO H X,LEVESQUE M C,PATTON K,et al.Regula⁃ tion of human CD44H and CD44E isoform binding to hyal⁃ uronan by phorbol myristate acetate and anti⁃CD44 mono⁃ clonal and polyclonal antibodies[J].J Immunol,1993,151(11):6490-6499

    • [26] FUJIMOTO T,KAWASHIMA H,TANAKA T,et al.CD44 binds a chondroitin sulfate proteoglycan,aggrecan[J].Int Immunol,2001,13(3):359-366