en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

沈铭,E⁃mail:mingshen85@yahoo.com

中图分类号:R329.2

文献标识码:A

文章编号:1007-4368(2021)06-810-07

DOI:10.7655/NYDXBNS20210604

参考文献 1
FRÖHLICH L F.Micrornas at the interface between osteo⁃ genesis and angiogenesis as targets for bone regeneration [J].Cells,2019,8(2):121
参考文献 2
SATIJA N K,SINGH V K,VERMA Y K,et al.Mesenchy⁃ mal stem cell⁃based therapy:a new paradigm in regenera⁃ tive medicine[J].J Cell Mol Med,2009,13(11/12):4385-4402
参考文献 3
TAKEUCHI R,KATAGIRI W,ENDO S,et al.Exosomes from conditioned media of bone marrow ⁃ derived mesen⁃ chymal stem cells promote bone regeneration by enhanc⁃ ing angiogenesis[J].PLoS One,2019,14(11):e0225472
参考文献 4
ILANCHERAN S,MOODLEY Y,MANUELPILLAI U.Human fetal membranes:a source of stem cells for tissue regeneration and repair?[J].Placenta,2009,30(1):2-10
参考文献 5
TANG Z,WU X,HU L,et al.Circ⁃100290 positively regu⁃ lates angiogenesis induced by conditioned medium of hu⁃ man amnion⁃derived mesenchymal stem cells through miR⁃ 449a/eNOS and miR ⁃ 449a/VEGFA axes[J].Int J Biol Sci,2020,16(12):2131-2144
参考文献 6
PAROLINI O,ALVIANO F,BAGNARA G P,et al.Con⁃ cise review:isolation and characterization of cells from human term placenta:outcome of the first international workshop on placenta derived stem cells[J].Stem Cells,2008,26(2):300-311
参考文献 7
LEYVA⁃LEYVA M,BARRERA L,LÓPEZ⁃CAMARILLO C,et al.Characterization of mesenchymal stem cell sub⁃ populations from human amniotic membrane with dissimi⁃ lar osteoblastic potential[J].Stem Cells Dev,2013,22(8):1275-1287
参考文献 8
王娟,吴涛,何斌,等.circ_0001246 调节 miR⁃ NA30a对骨肉瘤化疗敏感性影响的机制研究[J].南京医科大学学报(自然科学版),2021,41(2):198-202
参考文献 9
冯勤超,邹贤,王国瑞,等.基于微阵列数据分析的甲状腺癌circRNA⁃miRNA调控预测模型研究[J].南京医科大学学报(自然科学版),2020,40(8):1140-1148
参考文献 10
LI R,JIANG J,SHI H,et al.CircRNA:a rising star in gas⁃ tric cancer[J].Cell Mol Life Sci,2020,77(9):1661-1680
参考文献 11
XIANG L,LI Y,CHENG L L.The biogenesis,functions,and challenges of circular RNAs[J].Molecular Cell,2018,71(3):428-442
参考文献 12
ZHOU Z B,HUANG G X,FU Q,et al.circRNA.33186 contributes to the pathogenesis of osteoarthritis by spong⁃ ing miR⁃127⁃5p[J].Mol Ther,2019,27(3):531-541
参考文献 13
LEGNINI I,DI TIMOTEO G,ROSSI F,et al.Circ ⁃ ZNF609 is a circular RNA that can be translated and functions in myogenesis[J].Mol Cell,2017,66(1):22
参考文献 14
DU W W,YANG W N,LIU E,et al.Foxo3 circular RNA retards cell cycle progression via forming ternary complex⁃ es with p21 and CDK2[J].Nucleic Acids Res,2016,44(6):2846-2858
参考文献 15
ZHANG M,HUANG N,YANG X,et al.A novel protein encoded by the circular form of the SHPRH gene sup⁃ presses glioma tumorigenesis[J].Oncogene,2018,37(13):1805-1814
参考文献 16
CHEN B,WEI W,HUANG X,et al.circEPSTI1 as a prog⁃ nostic marker and mediator of triple ⁃negative breast can⁃ cer progression[J].Theranostics,2018,8(14):4003-4015
参考文献 17
LI Z,HUANG C,BAO C,et al.Exon ⁃ intron circular RNAs regulate transcription in the nucleus[J].Nat Struct Mol Biol,2015,22(3):256-264
参考文献 18
HOLDT L M,STAHRINGER A,SASS K,et al.Circular non⁃coding RNA ANRIL modulates ribosomal RNA matu⁃ ration and atherosclerosis in humans[J].Nat Commun,2016,7:12429
参考文献 19
赵羲和,刘磊,邹华伟.环状RNA在胶质瘤中的研究进展[J].现代肿瘤医学,2021,29(8):1446-1449
参考文献 20
KIAIE N,AGHDAM R M,TAFTI S,et al.Stem cell⁃medi⁃ ated angiogenesis in tissue engineering constructs[J].Curr Stem Cell Res Ther,2019,14(3):249-258
参考文献 21
LI Y,JIN D,XIE W X,et al.Mesenchymal stem cells⁃de⁃ rived exosomes:a possible therapeutic strategy for osteo⁃ porosis[J].Curr Stem Cell Res Ther,2018,13(5):362-368
参考文献 22
OUYANG Z,TAN T,ZHANG X,et al.CircRNA hsa_circ_ 0074834 promotes the osteogenesis ⁃ angiogenesis cou⁃ pling process in bone mesenchymal stem cells(BMSCs)by acting as a ceRNA for miR⁃942⁃5p[J].Cell Death Dis,2019,10(12):932
参考文献 23
HE Z,RUAN X,LIU X,et al.FUS/circ_002136/miR⁃138⁃ 5p/SOX13 feedback loop regulates angiogenesis in glioma [J].J Exp Clin Cancer Res,2019,38(1):65
目录contents

    摘要

    目的:探究人羊膜间充质干细胞(human amnion-derived mesenchymal stem cell,hAMSC)条件培养上清(conditioned medium,CM)是否通过环状RNA⁃0001649(circ⁃0001649)促进人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC) 血管生成及其可能的机制。方法:将HUVEC分为对照组、CM刺激组、circ⁃0001649敲低后CM刺激组(si⁃circ⁃0001649+CM刺激组)、敲低对照加CM刺激组(si⁃NC+CM刺激组),检测各组HUVEC的血管生成能力和迁移能力,以及血管内皮生长因子A(vas⁃ cular endothelial growth factor A,VEGFA)、基质金属蛋白酶 9(matrix metalloproteinase 9,MMP9)的水平。同时通过敲低 circ⁃ 0001649后转染miR⁃203a⁃inhibitor进行拯救实验验证hAMSC⁃CM促进HUVEC血管生成的作用机制。结果:hAMSC培养上清 (hAMSC⁃CM)明显提高 HUVEC 的血管生成和迁移能力,促进 VEGFA 和 MMP9 以及细胞内 circ⁃0001649 的表达。敲低 circ⁃ 0001649后降低了hAMSC⁃CM对HUVEC血管生成和迁移能力的影响。生物信息学分析以及拯救实验发现circ⁃0001649可以通过结合miR⁃203a,减少miR⁃203a对VEGFA以及MMP9的抑制作用,促进hAMSC⁃CM对HUVEC的成血管和迁移能力。结论:hAMSC⁃CM可上调HUVEC细胞内circ⁃0001649表达,通过其竞争性结合miR⁃203a,促进VEGFA和MMP9表达进而发挥促血管生成作用。

    Abstract

    Objective:This study aims to investigate whether conditioned medium from human amnion⁃derived mesenchymal stem cells(hAMSC⁃CM)promotes angiogenesis of human umbilical vein endothelial cells(HUVEC)via circRNA⁃0001649(circ⁃0001649). Methods:HUVECs were divided into control group,conditioned medium stimulation group(CM ⁃ group),conditioned medium stimulation after knockdown of circ ⁃0001649 group(si ⁃circ ⁃0001649+ CM group)and knockdown control with conditioned medium stimulation group(si⁃NC+CM group). And the angiogenic and migratory abilities of HUVECs in each group were then detected,as well as the expression of VEGFA and MMP9. After that,inhibition of miR⁃203a followed by down⁃regulation of circ⁃0001649 in HUVECs treated with hAMSC ⁃ CM were functional performed to confirm the relative mechanism. Results:The hAMSC ⁃ CM significantly increased the angiogenic and migratory capacity of HUVECs,the protein levels of VEGFA and MMP9,and the expression of intracellular circ ⁃ 0001649. Knockdown of circ ⁃ 0001649 inhibited the effect of hAMSCs ⁃ CM on the angiogenesis and migratory of HUVECs. Bioinformatic analysis and a series of experiments revealed that circ⁃0001649 could promote the angiogenic and migratory ability of hAMSC ⁃ CM on HUVECs by binding miR ⁃ 203a and then reduced the inhibition of miR ⁃ 203a on VEGFA and MMP9. Conclusion:The hAMSC ⁃ CM up ⁃ regulated circ ⁃ 0001649 in HUVECs,which could binding miR ⁃ 203a in a ceRNA manner,and promoted angiohenesis by increasing VEGFA and MMP9 expression.

  • 新生血管能够给新生组织提供氧及必要的营养物质,进而在新骨生成过程中发挥重要作用[1-2]。研究表明,来自骨髓间充质干细胞条件培养基的外泌体可以通过增强血管生成促进骨再生[3]。但骨髓间充质干细胞在促进血管新生的广泛应用中受到以下因素的限制:需要一定的侵入性操作,以及供体年龄依赖性分化导致的不稳定性[4]。研究表明人羊膜源间充质干细胞(human amnion⁃derived mesen⁃ chymal stem cell,hAMSC)同样显示了较强的促进血管生成的能力[5],具有稳定的活性[6],且采集方便,对供者无风险。与通常用于分离种子细胞的其他组织类型相比,捐献的羊膜组织数量丰富,较少产生伦理问题[7]。因此,hAMSC是一个具有发展前景的种子细胞。我们前期研究发现hAMSC的培养上清具有较强的促血管生成作用[5],然而机制尚不十分明确。

  • 环状RNA(circular RNA,circRNA)是一种在真核细胞中广泛表达的具有闭合环状结构的长链非编码RNA[8-10]。研究发现circRNA不仅是转录的副产品,还可以在疾病和发展过程中介导细胞增殖、迁移、侵袭和凋亡[11-13]。目前发现circRNA发挥功能的多种机制包括:①circRNA可充当分子海绵,吸附miRNA以减少其对mRNA的降解和翻译的抑制[14-16];②部分circRNA可调控基因转录[17];③ circRNA可与功能蛋白相互作用[18-19];④ circRNA可被翻译成蛋白[13]。我们前期研究发现,hAMSC培养上清(conditioned medium,CM)可促进人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC) 内多种circRNA的表达,其中包括circ⁃0001649。因此,本研究旨在探究circ⁃0001649是否参与hAMSC促血管生成的作用以及潜在机制。

  • 1 材料和方法

  • 1.1 材料

  • 胎牛血清、α⁃MEM培养基、DMEM培养基(Hy⁃ Clone公司,美国),过滤器(Merck公司,美国),基质胶(BD公司,美国),Image J(1.8.0版本;http://im⁃ agej.nih.gov/ij/);Transwell小室(北京康宁公司);Li⁃ pofectamine® 2000转染试剂、TRIzol® (Invitrogen公司,美国),抗GAPDH、血管内皮生长因子A(vascu⁃ lar endothelial growth factor A,VEGFA)、基质金属蛋白酶9(matrix metalloproteinase9,MMP9)单克隆抗体(Santa Cruz公司,美国)。

  • 1.2 方法

  • 1.2.1 细胞培养

  • hAMSC从足月妊娠(健康怀孕女性、妊娠期为38~41周)的女性供者胎盘中分离。本研究所有实验方法均通过南京医科大学伦理委员会批准 (PJ2013⁃037⁃001)。本研究涉及的研究均遵循《赫尔辛基宣言》,招募的每位捐献者对实验条款内容均已知情同意。

  • 细胞贴壁培养于含10%胎牛血清的α⁃MEM培养基中,青、链霉素终浓度为100U/mL。HUVEC贴壁培养于含10%胎牛血清的DMEM培养基中,青、链霉素终浓度为100U/mL。细胞均置于37℃含5%CO2的细胞培养箱中培养。

  • 1.2.2 条件培养基的收集

  • 当hAMSC在15cm培养皿中生长至70%~80%融合时,去除培养液,并用1× PBS洗涤3次后,换成30mL添加青霉素⁃链霉素(100U/mL青霉素、100g/mL链霉素)的DMEM∶α⁃MEM=1∶1的混合培养基在含5%CO2的细胞培养箱中培养。24h后收集30mL的培养基,4℃离心。然后,培养基经0.45 μm过滤器过滤,分装并储存在-80℃深低温冰箱作为CM使用。后续实验使用的hAMSC⁃CM含80%CM,我们之前的结果表明,这一比例理想地促进了HUVEC的生存能力。hAMSC来源于3个不同的供体,每个供体的hAMSC⁃CM进行了3次重复实验。采用无血清培养基作为对照。

  • 1.2.3 血管生成实验

  • 将HUVEC接种在预先铺有基质胶的96孔板上(50 μL每孔,37℃ 静置30min),接种密度为每孔4 000个细胞,用均添加了1%胎牛血清的hAMSC ⁃CM或对照培养基,在37℃含5%CO2的细胞培养箱中培养4~6h。实验独立重复3次,在100倍的光学显微镜下获取成管图像,然后在每孔中随机选取3个视野,使用Image J软件定量分析总成管长度。

  • 1.2.4 瘢痕愈合实验和Transwell穿梭实验

  • 待HUVEC在含有10%胎牛血清的DMEM培养基中(6孔板中每孔1×104 个细胞)长满形成单层后用移液管尖端刮出一条直线形成一个间隙,用1× PBS洗涤去除细胞碎片。换成含2%胎牛血清的hAMSC⁃CM(80%CM)或含2%胎牛血清的对照培养基培养13h。在0h和13h使用光学显微镜观察细胞迁移状态并获得显微图像(标记位置每孔3张)。对于每一幅图像,使用Image J软件测量缝隙的面积。实验独立重复3次,对于每一组,测量每个间隔内的3个随机位置。细胞的迁移率计算为[(0h的缝隙面积-13h的缝隙面积)/0h的缝隙面积],最终用各组与阴性对照组的比值显示,以对照组为标准化1。

  • Transwell穿梭实验:准备8.0 μm的Transwell小室和对数生长期的HUVEC。在下室中预先加入600mL含5%胎牛血清的hAMSC⁃CM(80%CM)或含5%胎牛血清的对照培养基,上室加入200mL无血清对照培养基(8 000个细胞)。小室放置在37℃ 培养箱孵育12h后,将附着在小室下表面的迁移细胞在室温下用含10%甲醇的0.1%结晶紫固定染色1h。实验独立重复3次,光学显微镜下观察并随机对3个视野的细胞进行计数和拍照。细胞的迁移率最终用各组与阴性对照组穿出细胞的比值显示,以对照组为标准化1。

  • 1.2.5 细胞转染

  • 针对circ⁃0001649的特异性小干扰RNA(siRNA) 和miR ⁃203a抑制剂购于广州锐博公司。siRNA (50nmol/L)或抑制剂(100nmol/L)用Lipofectamine® 2000转染试剂按照说明书步骤进行转染。

  • 1.2.6 蛋白印迹实验

  • 收集细胞进行裂解、离心收集总蛋白。使用10%SDS⁃PAGE电泳分离蛋白,并电转移至PVDF膜。在室温下用5%脱脂牛奶封闭1h后分别加入相应的一抗:GAPDH、VEGFA、MMP9,4℃孵育过夜,加入对应二抗,室温孵育1h。用ECL发光液进行增强化学发光检测,使用Image Lab软件计算条带灰度值。

  • 1.2.7 RNA提取与实时荧光定量PCR

  • 使用TRIzol® 提取总RNA后,使用Nanodrop2000分光光度法测量RNA的质量和浓度。用逆转录试剂盒将1 μg总RNA逆转录为cDNA,使用Hieff qPCR SYBR Green Master Mix和PCR检测系统进行实时荧光定量PCR(quantitative real⁃time PCR,qRT⁃ PCR)实验。分别用GAPDH和U6作为检测circ ⁃ RNA和miRNA的内参。用循环相对表达量计算阈值(Ct值)和2-ΔΔCt来表示目的基因相对表达量。

  • 1.2.8 分组处理

  • CM组:培养体系为hAMSC⁃CM(80%CM)培养基;CM+si⁃NC组:先在DMEM完全培养基条件下转染对照siRNA,再换成hAMSC ⁃CM(80%CM)培养基;CM+si⁃circ⁃0001649组:先在DMEM完全培养基条件下转染siRNA敲低circ⁃0001649,再换成hAM⁃ SC⁃CM(80%CM)培养基。使用miR⁃203a的类似物miR ⁃203a mimic和抑制剂miR ⁃203a ⁃inhibitor处理HUVEL细胞,分为:mimic⁃NC组、mimic组、inhibitor⁃ NC组、inhibitor组:在DMEM完全培养基培养下进行相应的转染;si⁃NC+inh⁃NC组、si⁃circ⁃0001649+ inh⁃NC组、si⁃circ⁃0001649+inh组、si⁃NC+inh组:在DMEM完全培养基培养下进行相应的共转染后换成hAMSC⁃CM(80%CM)培养基。

  • 1.3 统计学方法

  • 采用SPSS15.0进行统计分析。定量数据显示为平均值±标准差(x- ± s)。两组数据比较采用 t 检验。多组数据比较采用ANOVA⁃SNK检验。所有的统计检验都是双尾检验,P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 hAMSCs⁃CM通过促进circ⁃0001649 表达诱导HUVEC的成管和迁移

  • 与对照组相比,HUVEC与hAMSC⁃CM共同孵育24h后,细胞内circ⁃0001649的表达水平明显升高 (图1A),提示circ⁃0001649可能参与了hAMSC⁃CM的促血管生成过程。为了验证这一猜想,转染siRNA来敲低HUVEC中circ ⁃ 0001649的表达(图1B)。 hAMSC⁃CM刺激组与对照组相比,HUVEC的成管能力和迁移能力均提高。然而当在HUVEC中敲低circ⁃0001649后,其成管能力和迁移能力均减弱(图1C、D、E)。说明circ⁃0001649在hAMSC⁃CM促血管生成过程中起着重要作用。同时也检测了成血管相关蛋白,得到的结果一致:hAMSC⁃CM刺激后HU⁃ VEC细胞内VEGFA和MMP9蛋白表达水平升高,敲低circ⁃0001649则抑制了蛋白表达(图1F)。

  • 图1 hAMSC⁃CM通过促进circ⁃0001649表达诱导HUVEC的成管和迁移

  • Fig.1 The up⁃regulation of circ⁃0001649in HUVEC induced by hAMSC⁃CM promoted the angiogenesis and migration of HUVEC

  • 2.2 circ ⁃ 0001649 通过miR ⁃ 203a提高VEGFA/MMP9表达促进HUVEC的成管和迁移

  • circ⁃RNA可作为内源性竞争性RNA与miRNA结合而发挥作用,经circular RNA interactome网站 (https://circinteractome.nia.nih.gov/) 预测circ ⁃ 0001649与miR⁃203a之间存在结合位点(图2A),提示两者可能结合。同时通过miRTarBase网站 (http://mirtarbase.cuhk.edu.cn/php/index.php)预测, VEGFA和MMP9是miR⁃203a的靶基因。本研究结果显示,miR⁃203a的类似物miR⁃203a⁃mimic和抑制剂miR ⁃203a ⁃inhibitor分别抑制和促进VEGFA和MMP9的蛋白表达(图2B),提示VEGFA和MMP9可能是miR⁃203a的靶基因。为了验证circ⁃0001649是否通过结合miR⁃203a发挥作用,对circ⁃0001649敲低的HUVEC细胞中分别转染miR⁃203a抑制剂miR⁃ 203a ⁃inhibitor和对照inhibitor ⁃ NC来进行拯救实验。qRT⁃PCR检测结果显示转染miR⁃203a⁃inhibitor后并不影响circ⁃0001649的敲低效率(图2C),但是与inhibitor⁃NC相比,转染miR⁃203a⁃inhibitor却能部分逆转circ⁃0001649敲低引起的成管和迁移能力的降低(图2D、E、F)。同时与此一致的是,蛋白印迹实验结果同样显示:miR⁃203a⁃inhibitor能部分恢复因敲低circ⁃0001649而引起的VEGFA和MMP9蛋白水平的下降(图2G)。以上实验证实了hAMSCs⁃CM的促血管生成作用可部分通过上调HUVEC细胞内circ⁃ 0001649的表达来实现,circ⁃0001649与miR⁃203a存在内源性竞争,促进下游VEGFA和MMP9表达。

  • 图2 circ⁃0001649通过miR⁃203a提高VEGFA/MMP9表达促进HUVEC的成管和迁移

  • Fig.2 Circ⁃0001649promoted angiogenesis and migration of HUVEC through increasing VEGFA/MMP9by miR⁃203a

  • 3 讨论

  • 由于先天性原因和后天的外伤、肿瘤、炎症,颌骨缺损在临床中较为常见。其不仅可以导致咀嚼及语言功能障碍,还可导致颅颌面畸形,从生理、心理两方面对患者造成严重影响。近年来出现了一种新型的材料——组织工程化骨,给治疗颌面部骨缺损提供了新的思路。组织工程化骨通过采取合适的支架材料复合生物活性分子及种子细胞,于体外构建结构功能与自然骨相近的组织工程材料。

  • 促进血管生成是促进骨再生及构建组织工程化骨的重要策略,因为骨的愈合或重塑都需要新生血管来提供氧和营养物质以维持正常代谢。通过干细胞促进血管新生已被认为是一种潜在的解决方案[20]。既往研究表明,骨髓间充质干细胞分泌多种相关生长因子和细胞因子,如VEGF、胰岛素样生长因子1、肝细胞生长因子等,以旁分泌方式促进骨再生过程中的血管新生[21]。但骨髓间充质干细胞在促进血管新生的应用中受到以下因素的限制:需要一定的侵入性操作,可能对供者产生一定损伤,以及供体年龄依赖性分化导致的不稳定性。于是较容易获得、稳定性较好、且涉及伦理问题较少的hAMSC具有更好的应用前景。同样,本课题组之前的数据显示,hAMSC能明显增强HUVEC的血管生成[5]

  • 近年来circRNA由于其在血管新生中发挥重要作用而备受关注。例如circRNA hsa_circ_0074834通过作为miR⁃942⁃5p的ceRNA进而增加ZEB1和VEGF的表达来促进骨髓间充质干细胞的成骨⁃血管生成耦合过程[22];circ⁃002136通过与miR⁃138⁃5p结合缓解对转录因子SOX13的抑制,促进SPON2表达进而调控胶质瘤血管生成[23];circ⁃0003204通过促进E⁃cadherin表达,降低N⁃cadherin和Vimentin的表达进而抑制氧化修饰低密度脂蛋白诱导的血管内皮细胞增殖和血管生成等。本研究探讨了cir⁃ cRNA在促血管生成过程中的作用。结果表明, hAMSC⁃CM可显著上调HUVEC中circ⁃0001649的表达。此前其他研究表明circ⁃0001649可通过与多个miRNA结合进而抑制肝细胞癌进展,在视网膜母细胞瘤中circ⁃0001649的下调与其不良预后有关,并通过AKT/mTOR信号通路调控细胞增殖和凋亡。本研究通过生物信息学分析和拯救实验,发现circ⁃0001649可通过与miR⁃203a结合上调VEGFA、 MMP9的表达进而发挥促血管生成因子的作用。然而,hAMSC⁃CM上调HUVEC中circ⁃0001649表达的具体机制尚不清楚。推测可能是hAMSC⁃CM中含有的一些生长因子和细胞因子进入HUVEC中,通过一系列信号转导,促进circ⁃0001649转录。这些还需要通过后续实验进一步研究。

  • 综上,本研究表明circ⁃0001649参与了hAMSC⁃ CM诱导的HUVEC的血管生成。这种促血管生成作用可能是部分通过上调HUVEC细胞内circ ⁃ 0001649表达来实现的,circ⁃0001649与miR⁃203a内源性竞争,促进下游VEGFA和MMP9表达。本研究为探究hAMSC促进血管新生的作用机制提供了新思路。

  • 参考文献

    • [1] FRÖHLICH L F.Micrornas at the interface between osteo⁃ genesis and angiogenesis as targets for bone regeneration [J].Cells,2019,8(2):121

    • [2] SATIJA N K,SINGH V K,VERMA Y K,et al.Mesenchy⁃ mal stem cell⁃based therapy:a new paradigm in regenera⁃ tive medicine[J].J Cell Mol Med,2009,13(11/12):4385-4402

    • [3] TAKEUCHI R,KATAGIRI W,ENDO S,et al.Exosomes from conditioned media of bone marrow ⁃ derived mesen⁃ chymal stem cells promote bone regeneration by enhanc⁃ ing angiogenesis[J].PLoS One,2019,14(11):e0225472

    • [4] ILANCHERAN S,MOODLEY Y,MANUELPILLAI U.Human fetal membranes:a source of stem cells for tissue regeneration and repair?[J].Placenta,2009,30(1):2-10

    • [5] TANG Z,WU X,HU L,et al.Circ⁃100290 positively regu⁃ lates angiogenesis induced by conditioned medium of hu⁃ man amnion⁃derived mesenchymal stem cells through miR⁃ 449a/eNOS and miR ⁃ 449a/VEGFA axes[J].Int J Biol Sci,2020,16(12):2131-2144

    • [6] PAROLINI O,ALVIANO F,BAGNARA G P,et al.Con⁃ cise review:isolation and characterization of cells from human term placenta:outcome of the first international workshop on placenta derived stem cells[J].Stem Cells,2008,26(2):300-311

    • [7] LEYVA⁃LEYVA M,BARRERA L,LÓPEZ⁃CAMARILLO C,et al.Characterization of mesenchymal stem cell sub⁃ populations from human amniotic membrane with dissimi⁃ lar osteoblastic potential[J].Stem Cells Dev,2013,22(8):1275-1287

    • [8] 王娟,吴涛,何斌,等.circ_0001246 调节 miR⁃ NA30a对骨肉瘤化疗敏感性影响的机制研究[J].南京医科大学学报(自然科学版),2021,41(2):198-202

    • [9] 冯勤超,邹贤,王国瑞,等.基于微阵列数据分析的甲状腺癌circRNA⁃miRNA调控预测模型研究[J].南京医科大学学报(自然科学版),2020,40(8):1140-1148

    • [10] LI R,JIANG J,SHI H,et al.CircRNA:a rising star in gas⁃ tric cancer[J].Cell Mol Life Sci,2020,77(9):1661-1680

    • [11] XIANG L,LI Y,CHENG L L.The biogenesis,functions,and challenges of circular RNAs[J].Molecular Cell,2018,71(3):428-442

    • [12] ZHOU Z B,HUANG G X,FU Q,et al.circRNA.33186 contributes to the pathogenesis of osteoarthritis by spong⁃ ing miR⁃127⁃5p[J].Mol Ther,2019,27(3):531-541

    • [13] LEGNINI I,DI TIMOTEO G,ROSSI F,et al.Circ ⁃ ZNF609 is a circular RNA that can be translated and functions in myogenesis[J].Mol Cell,2017,66(1):22

    • [14] DU W W,YANG W N,LIU E,et al.Foxo3 circular RNA retards cell cycle progression via forming ternary complex⁃ es with p21 and CDK2[J].Nucleic Acids Res,2016,44(6):2846-2858

    • [15] ZHANG M,HUANG N,YANG X,et al.A novel protein encoded by the circular form of the SHPRH gene sup⁃ presses glioma tumorigenesis[J].Oncogene,2018,37(13):1805-1814

    • [16] CHEN B,WEI W,HUANG X,et al.circEPSTI1 as a prog⁃ nostic marker and mediator of triple ⁃negative breast can⁃ cer progression[J].Theranostics,2018,8(14):4003-4015

    • [17] LI Z,HUANG C,BAO C,et al.Exon ⁃ intron circular RNAs regulate transcription in the nucleus[J].Nat Struct Mol Biol,2015,22(3):256-264

    • [18] HOLDT L M,STAHRINGER A,SASS K,et al.Circular non⁃coding RNA ANRIL modulates ribosomal RNA matu⁃ ration and atherosclerosis in humans[J].Nat Commun,2016,7:12429

    • [19] 赵羲和,刘磊,邹华伟.环状RNA在胶质瘤中的研究进展[J].现代肿瘤医学,2021,29(8):1446-1449

    • [20] KIAIE N,AGHDAM R M,TAFTI S,et al.Stem cell⁃medi⁃ ated angiogenesis in tissue engineering constructs[J].Curr Stem Cell Res Ther,2019,14(3):249-258

    • [21] LI Y,JIN D,XIE W X,et al.Mesenchymal stem cells⁃de⁃ rived exosomes:a possible therapeutic strategy for osteo⁃ porosis[J].Curr Stem Cell Res Ther,2018,13(5):362-368

    • [22] OUYANG Z,TAN T,ZHANG X,et al.CircRNA hsa_circ_ 0074834 promotes the osteogenesis ⁃ angiogenesis cou⁃ pling process in bone mesenchymal stem cells(BMSCs)by acting as a ceRNA for miR⁃942⁃5p[J].Cell Death Dis,2019,10(12):932

    • [23] HE Z,RUAN X,LIU X,et al.FUS/circ_002136/miR⁃138⁃ 5p/SOX13 feedback loop regulates angiogenesis in glioma [J].J Exp Clin Cancer Res,2019,38(1):65

  • 参考文献

    • [1] FRÖHLICH L F.Micrornas at the interface between osteo⁃ genesis and angiogenesis as targets for bone regeneration [J].Cells,2019,8(2):121

    • [2] SATIJA N K,SINGH V K,VERMA Y K,et al.Mesenchy⁃ mal stem cell⁃based therapy:a new paradigm in regenera⁃ tive medicine[J].J Cell Mol Med,2009,13(11/12):4385-4402

    • [3] TAKEUCHI R,KATAGIRI W,ENDO S,et al.Exosomes from conditioned media of bone marrow ⁃ derived mesen⁃ chymal stem cells promote bone regeneration by enhanc⁃ ing angiogenesis[J].PLoS One,2019,14(11):e0225472

    • [4] ILANCHERAN S,MOODLEY Y,MANUELPILLAI U.Human fetal membranes:a source of stem cells for tissue regeneration and repair?[J].Placenta,2009,30(1):2-10

    • [5] TANG Z,WU X,HU L,et al.Circ⁃100290 positively regu⁃ lates angiogenesis induced by conditioned medium of hu⁃ man amnion⁃derived mesenchymal stem cells through miR⁃ 449a/eNOS and miR ⁃ 449a/VEGFA axes[J].Int J Biol Sci,2020,16(12):2131-2144

    • [6] PAROLINI O,ALVIANO F,BAGNARA G P,et al.Con⁃ cise review:isolation and characterization of cells from human term placenta:outcome of the first international workshop on placenta derived stem cells[J].Stem Cells,2008,26(2):300-311

    • [7] LEYVA⁃LEYVA M,BARRERA L,LÓPEZ⁃CAMARILLO C,et al.Characterization of mesenchymal stem cell sub⁃ populations from human amniotic membrane with dissimi⁃ lar osteoblastic potential[J].Stem Cells Dev,2013,22(8):1275-1287

    • [8] 王娟,吴涛,何斌,等.circ_0001246 调节 miR⁃ NA30a对骨肉瘤化疗敏感性影响的机制研究[J].南京医科大学学报(自然科学版),2021,41(2):198-202

    • [9] 冯勤超,邹贤,王国瑞,等.基于微阵列数据分析的甲状腺癌circRNA⁃miRNA调控预测模型研究[J].南京医科大学学报(自然科学版),2020,40(8):1140-1148

    • [10] LI R,JIANG J,SHI H,et al.CircRNA:a rising star in gas⁃ tric cancer[J].Cell Mol Life Sci,2020,77(9):1661-1680

    • [11] XIANG L,LI Y,CHENG L L.The biogenesis,functions,and challenges of circular RNAs[J].Molecular Cell,2018,71(3):428-442

    • [12] ZHOU Z B,HUANG G X,FU Q,et al.circRNA.33186 contributes to the pathogenesis of osteoarthritis by spong⁃ ing miR⁃127⁃5p[J].Mol Ther,2019,27(3):531-541

    • [13] LEGNINI I,DI TIMOTEO G,ROSSI F,et al.Circ ⁃ ZNF609 is a circular RNA that can be translated and functions in myogenesis[J].Mol Cell,2017,66(1):22

    • [14] DU W W,YANG W N,LIU E,et al.Foxo3 circular RNA retards cell cycle progression via forming ternary complex⁃ es with p21 and CDK2[J].Nucleic Acids Res,2016,44(6):2846-2858

    • [15] ZHANG M,HUANG N,YANG X,et al.A novel protein encoded by the circular form of the SHPRH gene sup⁃ presses glioma tumorigenesis[J].Oncogene,2018,37(13):1805-1814

    • [16] CHEN B,WEI W,HUANG X,et al.circEPSTI1 as a prog⁃ nostic marker and mediator of triple ⁃negative breast can⁃ cer progression[J].Theranostics,2018,8(14):4003-4015

    • [17] LI Z,HUANG C,BAO C,et al.Exon ⁃ intron circular RNAs regulate transcription in the nucleus[J].Nat Struct Mol Biol,2015,22(3):256-264

    • [18] HOLDT L M,STAHRINGER A,SASS K,et al.Circular non⁃coding RNA ANRIL modulates ribosomal RNA matu⁃ ration and atherosclerosis in humans[J].Nat Commun,2016,7:12429

    • [19] 赵羲和,刘磊,邹华伟.环状RNA在胶质瘤中的研究进展[J].现代肿瘤医学,2021,29(8):1446-1449

    • [20] KIAIE N,AGHDAM R M,TAFTI S,et al.Stem cell⁃medi⁃ ated angiogenesis in tissue engineering constructs[J].Curr Stem Cell Res Ther,2019,14(3):249-258

    • [21] LI Y,JIN D,XIE W X,et al.Mesenchymal stem cells⁃de⁃ rived exosomes:a possible therapeutic strategy for osteo⁃ porosis[J].Curr Stem Cell Res Ther,2018,13(5):362-368

    • [22] OUYANG Z,TAN T,ZHANG X,et al.CircRNA hsa_circ_ 0074834 promotes the osteogenesis ⁃ angiogenesis cou⁃ pling process in bone mesenchymal stem cells(BMSCs)by acting as a ceRNA for miR⁃942⁃5p[J].Cell Death Dis,2019,10(12):932

    • [23] HE Z,RUAN X,LIU X,et al.FUS/circ_002136/miR⁃138⁃ 5p/SOX13 feedback loop regulates angiogenesis in glioma [J].J Exp Clin Cancer Res,2019,38(1):65