en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

段磊,E⁃mail:duanlei@njmu.edu.cn

中图分类号:R318

文献标识码:A

文章编号:1007-4368(2021)06-838-09

DOI:10.7655/NYDXBNS20210608

参考文献 1
BEIK J,KHATERI M,KHOSRAVI Z,et al.Gold nanopar⁃ ticles in combinatorial cancer therapy strategies[J].Co⁃ ord Chem Rev,2019,387:299-324
参考文献 2
COUTO C,VITORINO R,DANIEL⁃DA⁃SILVA A L.Gold nanoparticle and bioconjugation:a pathway for proteomic applications[J].Crit Rev Biotechnol,2017,37(2):238-250
参考文献 3
STRIDE E,SEGERS T,LAJOINIE G,et al.Microbubble agents:new directions[J].Ultrasound Med Biol,2020,46(6):1326-1343
参考文献 4
LI Y,CHEN Y,DU M,et al.Ultrasound technology for molecular imaging:from contrast agents to multimodal im⁃ aging[J].ACS Biomater Sci Eng,2018,4(8):2716-2728
参考文献 5
CHOI H,CHOI W,KIM J,et al.Multifunctional nanodro⁃ plets encapsulating naphthalocyanine and perfluorohex⁃ ane for bimodal image⁃guided therapy[J].Biomacromole⁃ cules,2019,20(10):3767-3777
参考文献 6
YU M,XU X,CAI Y,et al.Perfluorohexane⁃cored nano⁃ droplets for stimulations ⁃ responsive ultrasonography and O⁃2⁃potentiated photodynamic therapy[J].Biomaterials,2018,175:61-71
参考文献 7
段磊,张宇璠,顾宁.基于微气泡的超声分子影像探针及其研究进展[J].南京医科大学学报(自然科学版),2017,37(2):129-138
参考文献 8
YOON Y I,PANG X,JUNG S,et al.Smart gold nanoparti⁃ cle ⁃ stabilized ultrasound microbubbles as cancer ther⁃ anostics[J].J Mater Chem B,2018,6(20):3235-3239
参考文献 9
BARMIN R A,RUDAKOVSKAYA P G,GUSLIAKOVA O I,et al.Air⁃filled bubbles stabilized by gold nanoparti⁃ cle/photodynamic dye hybrid structures for theranostics [J].Nanomaterials(Basel),2021,11(2):415
参考文献 10
WANG R,YANG H,FU R,et al.Biomimetic upconver⁃ sion nanoparticles and gold nanoparticles for novel simul⁃ taneous dual⁃modal imaging⁃guided photothermal therapy of cancer[J].Cancers,2020,12(11):3136
参考文献 11
UPPUTURI P K,PRAMANIK M.Recent advances in pho⁃ toacoustic contrast agents for in vivo imaging[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2020,12(4):e1618
参考文献 12
SHAKERI⁃ZADEH A,ZAREYI H,SHEERVALILOU R,et al.Gold nanoparticle⁃mediated bubbles in cancer nano⁃ technology[J].J Control Release,2020,330:49-60
参考文献 13
段磊,杨芳,何闻,等.聚合物微气泡的优化及其体内外超声成像研究[J].南京医科大学学报(自然科学版),2015,35(12):1691-1696
参考文献 14
LYTRA A,SBOROS V,GIANNAKOPOULOS A,et al.Modeling atomic force microscopy and shell mechanical properties estimation of coated microbubbles[J].Soft Matter,2020,16(19):4661-4681
参考文献 15
DOLLET B,MARMOTTANT P,GARBIN V.Bubble dy⁃ namics in soft and biological matter[M].USA:DAVIS S H,MOIN P,2019:331-355
参考文献 16
OEFFINGER B E,VAIDYA P,AYAZ I,et al.Preserving the integrity of surfactant ⁃ stabilized microbubble mem⁃ branes for localized oxygen delivery[J].Langmuir,2019,35(31SI):10068-10078
参考文献 17
DUAN L,YANG F,SONG L,et al.Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging[J].Soft Matter,2015,11(27):5492-5500
参考文献 18
OWEN J,CRAKE C,LEE J Y,et al.A versatile method for the preparation of particle ⁃ loaded microbubbles for multimodality imaging and targeted drug delivery[J].Drug Deliv Transl Res,2018,8(2SI):342-356
参考文献 19
HE W,YANG F,WU Y,et al.Microbubbles with surface coated by super paramagnetic iron oxide nanoparticles [J].Mater Lett,2012,68:64-67
参考文献 20
SASSAROLI E,LI K C P,O'NEILL B E.Linear behavior of a preformed microbubble containing light absorbing nanoparticles:insight from a mathematical model[J].J Acoust Soc Am,2009,126(5):2802-2813
参考文献 21
ZHU D,FAN F,HUANG C,et al.Bubble⁃generating poly⁃ mersomes loaded with both indocyanine green and doxoru⁃ bicin for effective chemotherapy combined with photother⁃ mal therapy[J].Acta Biomater,2018,75:386-397
参考文献 22
YIN T,WANG K,QIU C,et al.Simple structural indocya⁃ nine green ⁃loaded microbubbles for dual ⁃modality imag⁃ ing and multi⁃synergistic photothermal therapy in prostate cancer[J].Nanomedicine:NME,2020,28:102229
参考文献 23
DIXON A J,HU S,KLIBANOV A L,et al.Oscillatory dy⁃ namics and in vivo photoacoustic imaging performance of plasmonic nanoparticle ⁃ coated microbubbles[J].Small,2015,11(25):3066-3077
参考文献 24
CHENG X,SUN R,YIN L,et al.Light⁃triggered assembly of gold nanoparticles for photothermal therapy and photo⁃ acoustic imaging of tumors in vivo[J].Adv Mater,2017,29(6):1604894
参考文献 25
JAIN P K,LEE K S,EL⁃SAYED I H,et al.Calculated ab⁃ sorption and scattering properties of gold nanoparticles of different size,shape,and composition:applications in bio⁃ logical imaging and biomedicine[J].J Phys Chem B,2006,110(14):7238-7248
目录contents

    摘要

    目的:构建两种结构的金纳米颗粒⁃微气泡复合材料,既能作为超声成像造影剂,又可以利用金纳米颗粒的表面等离激元效应进行光热转换。方法:一种是将金纳米颗粒包裹在微气泡气体内核中的包金微气泡(gold encapsulated microbub⁃ ble,AuMB),另一种是通过共价键结合的方式将金纳米颗粒装载到微气泡表面的载金微气泡(polyethyleneimine⁃gold loaded mi⁃ crobubble,PEI⁃AuMB),对这两类金纳米颗粒⁃微气泡复合材料进行理化性质的表征,通过体外超声成像评估其超声造影能力, 通过体外光热实验评估其光热转换能力。结果:两种复合结构的微气泡均显示出比空白微气泡(microbubble,MB)更好的超声造影能力,其中PEI⁃AuMB在超声造影增强的持续时间上有更好的表现;两种复合结构的微气泡也显示出比单纯金纳米颗粒更优异的光热转换能力,AuMB有更好的光热治疗潜力。结论:金纳米颗粒⁃微气泡复合材料是具有潜力的诊疗一体化载体系统。

    Abstract

    Objective:Two gold nanoparticle⁃microbubble composites with different structures were constructed,which can be used as ultrasound imaging contrast agents and for photothermal conversion using the surface plasmonic excitonic effect of gold nanoparticles. Methods:One is gold encapsulated microbubble(AuMB)with gold nanoparticles encapsulated in a microbubble gas core,and the other is polyethyleneimine ⁃gold loaded microbubble(PEI ⁃AuMB)with gold nanoparticles loaded onto the microbubble surface by covalent bonding. These gold nanoparticle⁃microbubble composites were characterized for their physicochemical properties, and their ultrasound contrast capabilities were evaluated by in vitro ultrasound imaging. Their photothermal conversion ability was evaluated by in vitro photothermal experiments. Results:Both composite microbubbles showed better ultrasonography ability than blank microbubble(MB),among which PEI⁃AuMB showed better performance in the duration of ultrasonography enhancement;both composite microbubbles also showed superior photothermal conversion ability than gold nanoparticles alone,and AuMB had better photothermal therapeutic potential. Conclusion:All these results demonstrates that gold nanoparticle ⁃ microbubble composites are promising carrier systems for therapeutic integration.

  • 金纳米颗粒(gold nanoparticl,AuNP)作为一种等离激元纳米颗粒,具有良好的光热转换特性,可以高效吸收特定波长的光,通过表面等离激元共振作用实现光热转换,是一种优异的光热治疗剂[1],同时AuNP本身易于修饰且具有高稳定性,在生物相容性和细胞毒性等方面也表现出优异的性质,可与各种类型的生物分子或靶体结合实现功能化[2]。微气泡作为常见的超声造影剂,具有可修饰的膜壳材料和气体内核,不仅能有效提高超声图像的对比度,而且易于装载其他造影剂成分、药物及纳米材料[3],基于微气泡诊疗一体化平台的研究近年来受到了广泛关注[4-7]

  • 目前已有研究表明,AuNP与微气泡结合形成的金纳米颗粒⁃微气泡复合结构能使微气泡的非线性响应得到增强,影响其超声造影能力[8-9]。此外, AuNP与微气泡结合后,在一定强度连续近红外光的照射下,AuNP产生的热量不仅可以用于光热治疗[10],还会传导至微气泡的气芯,一方面引起周期性气体热膨胀现象,从而产生高强度的光声信号[11],另一方面当微气泡内核气体遇热迅速膨胀导致气泡破裂时,可损坏周围的癌细胞和组织,达到更好的治疗效果[12]。因此,金纳米颗粒⁃微气泡复合材料是一种具有潜力的、集光声/超声双模态造影、肿瘤治疗于一体的多功能造影剂。然而,基于金纳米材料和微气泡的诊疗一体化复合材料的研究仍不够深入和系统,AuNP与微气泡的不同结合方式对超声成像效果的影响、对光热效应的影响及作用机制鲜有报道。

  • 本研究的目标是制备出空白微气泡(microbub⁃ ble,MB),并将AuNP和微气泡通过不同的方式结合,构建两种结构的金纳米颗粒⁃微气泡复合材料,即包金微气泡(gold encapsulated microbubble, AuMB)和载金微气泡(polyethyleneimine⁃gold loaded microbubble,PEI⁃AuMB),对两类复合材料进行理化性质的评估,并在体外探讨结构改变对其超声造影能力和光热转换效率的影响,分析其影响机制。空白微气泡与两种金纳米颗粒⁃微气泡的结构如图1所示。

  • 1 材料和方法

  • 1.1 材料

  • 聚乙烯醇(polyvinyl alcohol,PVA)[重均分子量 (MW)=31 000]和N ⁃羟基硫代琥珀酰亚胺(N ⁃ hy⁃droxysulfosuccinimide,NHS)(上海阿拉丁控股集团有限公司);左旋聚乳酸[poly(L⁃lactic acid),PLLA] [重均分子量(MW)=30 000,山东岱岗生物科技有限公司];二氯甲烷(CH2Cl2)(上海国药集团化学试剂有限公司);AuNP和聚乙烯亚胺⁃金纳米颗粒(poly⁃ ethyleneimine⁃gold nanoparticle,PEI⁃AuNP)(南京东纳生物科技有限公司);1⁃乙基(⁃ 3⁃2甲基氨基丙基) 碳二亚胺盐酸性盐[1⁃(3⁃dimethylaminopropyl)⁃3⁃ ethylcarbodiimide hydrochloride,EDC·HCl](上海易恩化学技术有限公司);2⁃(N⁃吗啉)⁃乙磺酸(2⁃mor⁃ pholinoethanesulfonic acid monohydrate,MES)(Sigma公司,美国)。

  • 图1 空白微气泡、包金微气泡和载金微气泡的结构示意图

  • Fig.1 Schematic illustration of the structure of MB, AuMB and PEI⁃AuMB

  • 1.2 方法

  • 1.2.1 MB和AuMB的制备

  • 首先将0.15g的PLLA溶解到10mL的二氯甲烷中,向二氯甲烷溶液中加入2mL超纯水,使用超声波细胞破碎仪(南京先欧仪器制造有限公司)将得到的溶液乳化1min,功率为100W;然后将得到的乳液加入5%的PVA水溶液中,使用数控顶置式电子搅拌器(北京大龙兴创实验仪器有限公司)搅拌4h,得到微囊溶液;接着将得到的微囊溶液3 000r/min离心分离,并多次洗涤至上清液透明清澈,收集样品沉淀;最后将洗净后的样品加入西林瓶中冷冻干燥,同时向西林瓶中加入质量分数为5%的甘露醇作为冷冻保护剂,冷冻干燥完成后向西林瓶中缓慢冲入氮气,得到MB。

  • AuMB的制备方式和MB相似,只需要将第一步中的超纯水换成金纳米颗粒的水溶液。

  • 1.2.2 PEI⁃AuMB的制备

  • 首先将制备中使用的PVA水溶液按照段磊等[13] 的方法进行羧基化,按照制备MB的步骤制备出羧基化空白微囊。之后将离心洗涤后的微囊悬浮在MES缓冲液(50mmol/L,pH=5.4)中,向悬浮液中加入EDC·HCL(0.4mg/mL)和NHS(0.6mg/mL)激活微囊表面羧基,接着向激活后的悬浮液中加入PEI⁃AuNP,室温下孵育24h后洗净样品并收集样品沉淀。最后将洗净后的样品加入西林瓶中冷冻干燥,加入质量分数5%的甘露醇作为冷冻保护剂,冷冻干燥完成后向瓶中缓慢冲入氮气,得到PEI ⁃ AuMB。

  • 1.2.3 材料的特性表征

  • 使用透射电子显微镜(transmission electron microscope,TEM)(JEOL公司,日本)和扫描电子显微镜(scanning electron microscope,SEM)(JEOL公司,日本)观察MB、AuMB和PEI⁃AuMB的结构和形貌。使用粒度仪(Anton Paar公司,奥地利)测定MB、AuMB、PEI⁃AuMB和金纳米颗粒的粒径分布和Zeta电位。使用酶标仪(Thermo Fisher公司,美国) 测定MB、AuMB、PEI⁃AuMB和AuNP的紫外⁃可见光消光光谱。使用热分析仪(PerkinElmer公司,美国) 测定MB、AuMB和PEI⁃AuMB的差示扫描量热分析曲线。

  • 1.2.4 体外超声成像实验

  • 实验室制备了与人体软组织声阻抗相似的体模,体模中有一个用于注入样品的孔洞,将样品注入体模后,通过小动物超声系统(Visual Sonics公司,加拿大)进行成像,超声探头频率为18MHz。

  • 实验中AuMB、PEI⁃AuMB和MB的浓度均为1×108 个/mL,AuMB⁃1、AuMB⁃2、AuMB⁃3的载金浓度分别为5.5×10-3 、7.5×10-3、2.1×10-2 mg/mL,PEI ⁃ AuMB⁃1、PEI⁃AuMB⁃2、PEI⁃AuMB⁃3的载金浓度分别为1.6×10-2、3.4×10-2、4.8×10-2 mg/mL。所有实验都在相同条件下进行,即相同的温度、溶剂和超声成像参数。

  • 1.2.5 体外光热转换能力实验

  • 将0.2mL不同载金浓度的AuMB和PEI⁃AuMB加入到96孔板中,使用波长为520nm的激光照射15min,其中激光器的功率分别选用0.5、1.0、1.5、 2.0W,在激光照射过程中,使用热成像仪(FLIR公司,美国)实时记录溶液的温度,并设定MB和AuNP作为对照组。

  • 本实验中AuMB、PEI⁃AuMB和MB的浓度均为1× 108 个/mL,AuMB的载金浓度分别为5.5×10-3、7.5×10-3、 2.1×10-2 mg/mL,PEI⁃AuMB的载金浓度分别为1.6×10-2、3.4×10-2、4.8×10-2 mg/mL,AuNP浓度为4.0× 10-2 mg/mL。激光照射距离均为5cm,光斑直径为5mm。

  • 2 结果

  • 2.1 材料特性表征

  • 15 nm的AuNP包裹于微气泡气体内核中制备包AuMB,另外选用了15 nm的PEI⁃AuNP,通过PEI⁃ AuNP表面的氨基与微气泡表面的羧基偶联制备了载PEI⁃AuMB,AuNP和PEI⁃AuNP的光吸收特性及其纳米颗粒内核尺寸大小没有区别(图2)。对AuMB、PEI⁃AuMB和MB进行扫描电镜和透射电镜表征(图3):MB表面光滑,内部有清晰的膜壳结构; AuMB内核中可见尺度为15 nm的纳米颗粒,证实了AuNP在微气泡内核的成功装载,此外,其表面偶见少许纳米颗粒,这是因为制备过程中,少量未被包覆到微气泡内部的AuNP吸附到了微气泡表面;PEI ⁃AuMB的表面可见颗粒状物质,透射电镜结果也证实大量纳米颗粒分布于其膜壳表面,即是通过共价键偶联于微气泡表面。

  • 为研究AuNP的装载对微气泡粒径和稳定性的影响,对AuNP、PEI⁃AuNP、MB、AuMB和PEI⁃AuMB的粒径分布和Zeta电位进行了检测(图4)。AuNP的平均水动力尺寸为(84.18±34.07)nm,Zeta电位为 (-23.73±1.48)mV,聚乙烯亚胺修饰后的PEI⁃AuNP的平均水动力尺寸为(133.36±3.62)nm,Zeta电位改变为(29.50 ± 1.67)mV,MB的平均粒径为(0.59 ± 0.26)μm,Zeta电位为(-27.38±0.46)mV;AuMB和PEI ⁃AuMB的平均粒径分别为(0.63±0.38)μm和 (0.71±0.53)μm,与MB相比有些许增加,说明AuNP在MB内部及表面的装载对微气泡的粒径有一定影响。AuMB与MB的Zeta电位基本相同,在-27mV附近,说明将AuNP包裹到MB内部不会对其表面Zeta电位造成影响,保持了体系的稳定性。而PEI ⁃ AuMB的Zeta电位为(38.06±0.89)mV,与MB相比有明显变化,说明Zeta电位为正值的PEI⁃AuNP被装载到MB表面后,会对微气泡电位带来显著影响,也进一步印证了PEI⁃AuNP在MB表面成功装载,此外, PEI⁃AuMB的Zeta电位绝对值升高也显示了此体系稳定性提高。

  • 图2 AuNP和PEI⁃AuNP的透射电镜图片及紫外⁃可见光消光光谱

  • Fig.2 TEM images and optical extinction spectroscopy of AuNP and PEI⁃AuNP

  • 图3 MB、AuMB和PEI⁃AuMB的扫描电镜和透射电镜图片

  • Fig.3 SEM and TEM images of MB,AuMB and PEI⁃AuMB

  • 通过紫外⁃可见光消光光谱评估了AuNP⁃微气泡复合材料的光吸收特性。图5A是AuMB、PEI ⁃ AuMB、MB和AuNP的紫外⁃可见光消光光谱图。 AuNP的吸收峰在520nm附近,PEI ⁃AuMB在520nm附近也对应出现了1个明显的吸收峰。这一方面印证了AuNP在微气泡上的成功装载,另一方面也说明AuNP在微气泡表面的装载没有改变其光吸收特性;此外,AuMB在400~600nm范围内未有明显的吸收峰出现,说明当AuNP被包裹在微气泡内部时,受自身团聚方式及微气泡聚合物膜壳材料的影响,光吸收特性有所改变。对AuMB、PEI⁃AuMB和AuNP悬浮液的观察印证了以上光谱结果,PEI⁃ AuMB与AuNP颜色相近,均为浅玫红色,而AuMB呈浅紫色(图5B),这与PEI⁃AuMB和AuNP的吸收峰更为接近的结果相一致。

  • 为研究AuNP的装载对微气泡膜壳性质的影响,对MB、AuMB和PEI⁃AuMB进行了差示扫描量热法(differential scanning calorimetry,DSC)分析(图6)。可以看到相较于MB的单峰,AuMB和PEI ⁃ AuMB的DSC曲线均出现了熔融双峰。对于AuMB来说,大部分AuNP在制备过程中被包裹于其膜壳内核,相互聚集并通过分子间作用力吸附在微气泡膜壳内表面,少部分未被包裹的AuNP吸附到微气泡膜壳外表面,DSC检测时,随着温度的升高,在微气泡膜壳材料熔融之前,纳米粒子与膜壳之间的吸附力先被破坏,产生了微小的吸热峰;而对PEI⁃AuMB来说,随着温度升高,由PEI⁃AuMB膜壳表面羧基与PEI ⁃AuNP表面氨基构成的共价键被破坏,共价键断裂产生了吸热峰,也使得PEI⁃AuMB的DSC曲线出现了两个熔融峰。DSC分析结果表明AuMB和PEI⁃AuMB的膜壳性质与MB的膜壳性质存在差异。

  • 图4 MB、AuMB、PEI⁃AuMB、AuNP和PEI⁃AuNP的粒径分布和Zeta电位分布

  • Fig.4 Particle size distribution and Zeta potential distribution of MB,AuMB,PEI⁃AuMB,AuNP and PEI⁃AuNP

  • 图5 不同微气泡的紫外⁃可见光消光光谱及其在自然光下的颜色

  • Fig.5 Optical extinction spectroscopy and color of sus⁃ pension solution of AuMB,PEI⁃AuMB,MB and AuNP

  • 2.2 体外超声成像

  • 为了研究AuNP⁃微气泡复合材料的超声造影能力,选用了MB以及不同载金浓度的AuMB⁃1、AuMB ⁃ 2、AuMB ⁃ 3和PEI ⁃ AuMB ⁃ 1、PEI ⁃ AuMB ⁃ 2、PEI ⁃ AuMB ⁃ 3,并通过自制的体模进行超声成像(图7A~D)。各浓度的AuMB和PEI⁃AuMB相比于MB都有更强的超声信号,并且当装载的AuNP浓度升高时,超声信号强度也随之提高,说明AuNP的装载改变了微气泡的超声造影性能。此外,我们还进一步比较了AuMB和PEI⁃AuMB的超声造影能力。,相比于PEI⁃AuMB,AuMB在造影初期表现出了更强的图像增强能力,而随着时间的延长,PEI⁃AuMB表现出更好的持续显影能力(图7E)。

  • 2.3 体外光热转换能力

  • 对AuMB和PEI⁃AuMB的体外光热转换能力进行了研究,以评估它们用于光热治疗的潜力。图8A和图9A是MB、AuNP、AuMB和PEI⁃AuMB在激光照射下的光热升温曲线。可以发现随着激光照射时间的增加,3种载金浓度的AuMB和PEI ⁃ AuMB温度均得到提高,且相比于单独的AuNP, AuMB和PEI⁃AuMB有着更强的光热转换能力。同时,我们还研究了微气泡载金浓度与光热转换能力的关系(图8C,图9C),可以发现,在相同功率激光的介导下,AuMB和PEI⁃AuMB在15min内的最高温度与载金浓度呈正相关。图8B、D和图9B、D研究了AuMB(载金浓度为5.5×10-3 mg/mL)与PEI⁃AuMB (载金浓度为3.4×10-2 mg/mL)的光热转换能力与激光功率的关系。结果表明,AuMB和PEI⁃AuMB的光热转换能力随激光功率的提高而增强,两者呈正相关。图8E和图9E研究了AuMB(载金浓度为5.5×10-3 mg/mL)与PEI⁃AuMB(载金浓度为3.4× 10-2 mg/mL)在激光照射下的光热稳定性,可以发现在每个激光照射周期内,AuMB和PEI⁃AuMB的光热转换能力几乎没有改变,这表明AuMB和PEI⁃AuMB具有良好的光热稳定性。

  • 图6 MB、AuMB和PEI⁃AuMB的差示扫描量热分析

  • Fig.6 Differential scanning calorimetry curve of MB,AuMB and PEI⁃AuMB

  • 图7 MB、AuMB和PEI⁃AuMB的超声成像图片

  • Fig.7 Ultrasound images of MB, AuMB and PEI⁃AuMB

  • 图8 MB、AuNP和AuMB在激光照射下的温度变化曲线和光热转换稳定性曲线

  • Fig.8 Temperature variation curve of MB,AuNP and AuMB under laser irradiation,photothermal conversion stability of AuMBs under laser irradiation

  • 图9 MB、AuNP和PEI⁃AuMB在激光照射下的温度变化曲线和光热转换稳定性曲线

  • Fig.9 Temperature variation curve of MB,AuNP and PEI⁃AuMB under laser irradiation,photothermal conversion sta⁃ bility of PEI⁃AuMBs under laser irradiation

  • 此外,我们还对比了AuMB(载金浓度为5.5× 10-3 mg/mL)与PEI⁃AuMB(载金浓度为1.6×10-2 mg/mL) 的光热转换能力(图10)。结果表明,载金浓度较低的AuMB反而比载金浓度高的PEI⁃AuMB表现出了更强的光热转换能力。

  • 图10 MB、AuMB和PEI⁃AuMB在激光照射下的光热升温曲线

  • Fig.10 Temperature variation curve of MB, AuMB and PEI⁃AuMB under laser irradiation

  • 3 讨论

  • 本研究将AuNP装载到了微气泡的表面及气体内核中,构建了两种结构的AuNP⁃微气泡复合材料,并对其超声造影和光热转换能力进行了评估和比较。

  • 微气泡的超声造影能力与其膜壳的力学性质相关,而影响力学性质的关键因素是膜壳结构[14-16]。结合DSC分析的结果,AuMB和PEI⁃AuMB超声造影能力增强的原因主要有以下两个方面:一方面,AuNP的装载使得微气泡膜壳的厚度和组成改变,从而影响了微气泡的力学特性,改善了超声造影的能力;另一方面,当微气泡破损后,残存的AuNP聚集在一起,也可能对超声造影有增益效果[17]。此外,载金浓度更高的微气泡表现出了更强的造影能力,这说明在一定装载范围内,更高浓度的AuNP在微气泡表面或气体内核中的不均匀堆积会产生复杂的线性和非线性信号[18],使得具有更高AuNP装载量的微气泡能够表现出更好的图像亮度。通过对比AuMB和PEI⁃AuMB的超声造影能力发现,AuMB在造影初期表现出了更强的图像增强能力,这是因为在制备过程中,AuNP在AuMB的气芯内团聚,导致AuMB的收缩被抑制,降低了AuMB气体的扩散速率,增强了超声造影的效果[19],但AuNP在AuMB内的团聚也会导致AuMB刚性增强,在超声波的作用下迅速破裂,导致在整个超声造影过程中信号的迅速衰弱;而随着时间的延长,PEI⁃AuMB表现出更好的持续显影能力,这是因为外部装载的AuNP仅有一部分与微气泡的表面膜壳相连,其他部分暴露在介质中,具有较高的自由度,在超声波的作用下,微气泡振动的不对称性得到增强,从而提高了超声造影的效果和持续时间[20]

  • 除MB、AuMB和PEI⁃AuMB的超声造影能力不同外,本研究结果还表明,AuMB和PEI⁃AuMB相比于单独的AuNP具有更好的光热转换能力,主要原因有以下两点:①相比于自由分散在溶液中的AuNP,AuMB和PEI⁃AuMB中的AuNP有更高的稳定性和聚集浓度[21-22],提高了光热转换效率;②AuNP温度升高后会与微气泡气体内核发生作用,引起微气泡振荡[23],提高了产热能力。此外,AuMB表现出了比PEI⁃AuMB更好的光热转换能力,这是因为当AuNP包裹于微气泡气体内核中时发生团聚,使AuNP的光热转换能力增强[24],且体系散热能力较弱;而当AuNP偶联在微气泡膜壳表面时,PEI ⁃ AuMB上的AuNP仅是堆积排列在微气泡膜壳表面,从AuMB与PEI⁃AuMB的悬浮液颜色也可以发现这一点。

  • 综上所述,本研究证明了AuNP的装载可改变微气泡的声学性质,更有利于增强超声成像,同时,在激光照射下,装载AuNP的微气泡比单独的AuNP具有更强的光热转换能力。由于两种微气泡结构的差异,在性能上它们也各有特点,AuMB具有更好的光热转换能力;PEI⁃AuMB有更稳定的持续超声造影增强能力。因此,AuNP⁃微气泡复合材料是良好的超声造影剂和潜在的光热治疗剂。此外,金纳米材料的形状会影响其光吸收特性[25],在后续研究中会对其他不同形状的金纳米材料(如金纳米棒、金纳米笼等)与微纳气泡的结合进行研究,同时, AuNP也是一种潜在的光声造影剂,且AuNP⁃微气泡复合材料还可以与其他靶向分子或药物偶联,靶向病灶部位进行超声/光声成像和光热/药物治疗,是具有良好应用前景的诊疗一体化载体平台。

  • 参考文献

    • [1] BEIK J,KHATERI M,KHOSRAVI Z,et al.Gold nanopar⁃ ticles in combinatorial cancer therapy strategies[J].Co⁃ ord Chem Rev,2019,387:299-324

    • [2] COUTO C,VITORINO R,DANIEL⁃DA⁃SILVA A L.Gold nanoparticle and bioconjugation:a pathway for proteomic applications[J].Crit Rev Biotechnol,2017,37(2):238-250

    • [3] STRIDE E,SEGERS T,LAJOINIE G,et al.Microbubble agents:new directions[J].Ultrasound Med Biol,2020,46(6):1326-1343

    • [4] LI Y,CHEN Y,DU M,et al.Ultrasound technology for molecular imaging:from contrast agents to multimodal im⁃ aging[J].ACS Biomater Sci Eng,2018,4(8):2716-2728

    • [5] CHOI H,CHOI W,KIM J,et al.Multifunctional nanodro⁃ plets encapsulating naphthalocyanine and perfluorohex⁃ ane for bimodal image⁃guided therapy[J].Biomacromole⁃ cules,2019,20(10):3767-3777

    • [6] YU M,XU X,CAI Y,et al.Perfluorohexane⁃cored nano⁃ droplets for stimulations ⁃ responsive ultrasonography and O⁃2⁃potentiated photodynamic therapy[J].Biomaterials,2018,175:61-71

    • [7] 段磊,张宇璠,顾宁.基于微气泡的超声分子影像探针及其研究进展[J].南京医科大学学报(自然科学版),2017,37(2):129-138

    • [8] YOON Y I,PANG X,JUNG S,et al.Smart gold nanoparti⁃ cle ⁃ stabilized ultrasound microbubbles as cancer ther⁃ anostics[J].J Mater Chem B,2018,6(20):3235-3239

    • [9] BARMIN R A,RUDAKOVSKAYA P G,GUSLIAKOVA O I,et al.Air⁃filled bubbles stabilized by gold nanoparti⁃ cle/photodynamic dye hybrid structures for theranostics [J].Nanomaterials(Basel),2021,11(2):415

    • [10] WANG R,YANG H,FU R,et al.Biomimetic upconver⁃ sion nanoparticles and gold nanoparticles for novel simul⁃ taneous dual⁃modal imaging⁃guided photothermal therapy of cancer[J].Cancers,2020,12(11):3136

    • [11] UPPUTURI P K,PRAMANIK M.Recent advances in pho⁃ toacoustic contrast agents for in vivo imaging[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2020,12(4):e1618

    • [12] SHAKERI⁃ZADEH A,ZAREYI H,SHEERVALILOU R,et al.Gold nanoparticle⁃mediated bubbles in cancer nano⁃ technology[J].J Control Release,2020,330:49-60

    • [13] 段磊,杨芳,何闻,等.聚合物微气泡的优化及其体内外超声成像研究[J].南京医科大学学报(自然科学版),2015,35(12):1691-1696

    • [14] LYTRA A,SBOROS V,GIANNAKOPOULOS A,et al.Modeling atomic force microscopy and shell mechanical properties estimation of coated microbubbles[J].Soft Matter,2020,16(19):4661-4681

    • [15] DOLLET B,MARMOTTANT P,GARBIN V.Bubble dy⁃ namics in soft and biological matter[M].USA:DAVIS S H,MOIN P,2019:331-355

    • [16] OEFFINGER B E,VAIDYA P,AYAZ I,et al.Preserving the integrity of surfactant ⁃ stabilized microbubble mem⁃ branes for localized oxygen delivery[J].Langmuir,2019,35(31SI):10068-10078

    • [17] DUAN L,YANG F,SONG L,et al.Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging[J].Soft Matter,2015,11(27):5492-5500

    • [18] OWEN J,CRAKE C,LEE J Y,et al.A versatile method for the preparation of particle ⁃ loaded microbubbles for multimodality imaging and targeted drug delivery[J].Drug Deliv Transl Res,2018,8(2SI):342-356

    • [19] HE W,YANG F,WU Y,et al.Microbubbles with surface coated by super paramagnetic iron oxide nanoparticles [J].Mater Lett,2012,68:64-67

    • [20] SASSAROLI E,LI K C P,O'NEILL B E.Linear behavior of a preformed microbubble containing light absorbing nanoparticles:insight from a mathematical model[J].J Acoust Soc Am,2009,126(5):2802-2813

    • [21] ZHU D,FAN F,HUANG C,et al.Bubble⁃generating poly⁃ mersomes loaded with both indocyanine green and doxoru⁃ bicin for effective chemotherapy combined with photother⁃ mal therapy[J].Acta Biomater,2018,75:386-397

    • [22] YIN T,WANG K,QIU C,et al.Simple structural indocya⁃ nine green ⁃loaded microbubbles for dual ⁃modality imag⁃ ing and multi⁃synergistic photothermal therapy in prostate cancer[J].Nanomedicine:NME,2020,28:102229

    • [23] DIXON A J,HU S,KLIBANOV A L,et al.Oscillatory dy⁃ namics and in vivo photoacoustic imaging performance of plasmonic nanoparticle ⁃ coated microbubbles[J].Small,2015,11(25):3066-3077

    • [24] CHENG X,SUN R,YIN L,et al.Light⁃triggered assembly of gold nanoparticles for photothermal therapy and photo⁃ acoustic imaging of tumors in vivo[J].Adv Mater,2017,29(6):1604894

    • [25] JAIN P K,LEE K S,EL⁃SAYED I H,et al.Calculated ab⁃ sorption and scattering properties of gold nanoparticles of different size,shape,and composition:applications in bio⁃ logical imaging and biomedicine[J].J Phys Chem B,2006,110(14):7238-7248

  • 参考文献

    • [1] BEIK J,KHATERI M,KHOSRAVI Z,et al.Gold nanopar⁃ ticles in combinatorial cancer therapy strategies[J].Co⁃ ord Chem Rev,2019,387:299-324

    • [2] COUTO C,VITORINO R,DANIEL⁃DA⁃SILVA A L.Gold nanoparticle and bioconjugation:a pathway for proteomic applications[J].Crit Rev Biotechnol,2017,37(2):238-250

    • [3] STRIDE E,SEGERS T,LAJOINIE G,et al.Microbubble agents:new directions[J].Ultrasound Med Biol,2020,46(6):1326-1343

    • [4] LI Y,CHEN Y,DU M,et al.Ultrasound technology for molecular imaging:from contrast agents to multimodal im⁃ aging[J].ACS Biomater Sci Eng,2018,4(8):2716-2728

    • [5] CHOI H,CHOI W,KIM J,et al.Multifunctional nanodro⁃ plets encapsulating naphthalocyanine and perfluorohex⁃ ane for bimodal image⁃guided therapy[J].Biomacromole⁃ cules,2019,20(10):3767-3777

    • [6] YU M,XU X,CAI Y,et al.Perfluorohexane⁃cored nano⁃ droplets for stimulations ⁃ responsive ultrasonography and O⁃2⁃potentiated photodynamic therapy[J].Biomaterials,2018,175:61-71

    • [7] 段磊,张宇璠,顾宁.基于微气泡的超声分子影像探针及其研究进展[J].南京医科大学学报(自然科学版),2017,37(2):129-138

    • [8] YOON Y I,PANG X,JUNG S,et al.Smart gold nanoparti⁃ cle ⁃ stabilized ultrasound microbubbles as cancer ther⁃ anostics[J].J Mater Chem B,2018,6(20):3235-3239

    • [9] BARMIN R A,RUDAKOVSKAYA P G,GUSLIAKOVA O I,et al.Air⁃filled bubbles stabilized by gold nanoparti⁃ cle/photodynamic dye hybrid structures for theranostics [J].Nanomaterials(Basel),2021,11(2):415

    • [10] WANG R,YANG H,FU R,et al.Biomimetic upconver⁃ sion nanoparticles and gold nanoparticles for novel simul⁃ taneous dual⁃modal imaging⁃guided photothermal therapy of cancer[J].Cancers,2020,12(11):3136

    • [11] UPPUTURI P K,PRAMANIK M.Recent advances in pho⁃ toacoustic contrast agents for in vivo imaging[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2020,12(4):e1618

    • [12] SHAKERI⁃ZADEH A,ZAREYI H,SHEERVALILOU R,et al.Gold nanoparticle⁃mediated bubbles in cancer nano⁃ technology[J].J Control Release,2020,330:49-60

    • [13] 段磊,杨芳,何闻,等.聚合物微气泡的优化及其体内外超声成像研究[J].南京医科大学学报(自然科学版),2015,35(12):1691-1696

    • [14] LYTRA A,SBOROS V,GIANNAKOPOULOS A,et al.Modeling atomic force microscopy and shell mechanical properties estimation of coated microbubbles[J].Soft Matter,2020,16(19):4661-4681

    • [15] DOLLET B,MARMOTTANT P,GARBIN V.Bubble dy⁃ namics in soft and biological matter[M].USA:DAVIS S H,MOIN P,2019:331-355

    • [16] OEFFINGER B E,VAIDYA P,AYAZ I,et al.Preserving the integrity of surfactant ⁃ stabilized microbubble mem⁃ branes for localized oxygen delivery[J].Langmuir,2019,35(31SI):10068-10078

    • [17] DUAN L,YANG F,SONG L,et al.Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging[J].Soft Matter,2015,11(27):5492-5500

    • [18] OWEN J,CRAKE C,LEE J Y,et al.A versatile method for the preparation of particle ⁃ loaded microbubbles for multimodality imaging and targeted drug delivery[J].Drug Deliv Transl Res,2018,8(2SI):342-356

    • [19] HE W,YANG F,WU Y,et al.Microbubbles with surface coated by super paramagnetic iron oxide nanoparticles [J].Mater Lett,2012,68:64-67

    • [20] SASSAROLI E,LI K C P,O'NEILL B E.Linear behavior of a preformed microbubble containing light absorbing nanoparticles:insight from a mathematical model[J].J Acoust Soc Am,2009,126(5):2802-2813

    • [21] ZHU D,FAN F,HUANG C,et al.Bubble⁃generating poly⁃ mersomes loaded with both indocyanine green and doxoru⁃ bicin for effective chemotherapy combined with photother⁃ mal therapy[J].Acta Biomater,2018,75:386-397

    • [22] YIN T,WANG K,QIU C,et al.Simple structural indocya⁃ nine green ⁃loaded microbubbles for dual ⁃modality imag⁃ ing and multi⁃synergistic photothermal therapy in prostate cancer[J].Nanomedicine:NME,2020,28:102229

    • [23] DIXON A J,HU S,KLIBANOV A L,et al.Oscillatory dy⁃ namics and in vivo photoacoustic imaging performance of plasmonic nanoparticle ⁃ coated microbubbles[J].Small,2015,11(25):3066-3077

    • [24] CHENG X,SUN R,YIN L,et al.Light⁃triggered assembly of gold nanoparticles for photothermal therapy and photo⁃ acoustic imaging of tumors in vivo[J].Adv Mater,2017,29(6):1604894

    • [25] JAIN P K,LEE K S,EL⁃SAYED I H,et al.Calculated ab⁃ sorption and scattering properties of gold nanoparticles of different size,shape,and composition:applications in bio⁃ logical imaging and biomedicine[J].J Phys Chem B,2006,110(14):7238-7248