en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张永杰,E⁃mail:zhangyongjie@njmu.edu.cn

中图分类号:R339.34

文献标识码:A

文章编号:1007-4368(2021)07-963-07

DOI:10.7655/NYDXBNS20210705

参考文献 1
汪瀚,李中武,朱玉敏,等.Bmi1基因沉默对人舌鳞癌细胞生物学功能的影响[J].南京医科大学学报(自然科学版),2016,36(1):39-45,50
参考文献 2
JIN J,LV X,CHEN L,et al.Bmi⁃1 plays a critical role in protection from renal tubulointerstitial injury by maintain⁃ ing redox balance[J].Aging Cell,2014,13(5):797-809
参考文献 3
ZHANG H W,DING J,JIN J L,et al.Defects in mesen⁃ chymal stem cell self⁃renewal and cell fate determination lead to an osteopenic phenotype in Bmi⁃1 null mice[J].J Bone Miner Res,2010,25(3):640-652
参考文献 4
ABDOUH M,CHATOO W,EL H J,et al.Bmi1 is down⁃ regulated in the aging brain and displays antioxidant and protective activities in neurons[J].PLoS One,2012,7(2):e31870
参考文献 5
CHATOO W,ABDOUH M,DAVID J,et al.The polycomb group gene Bmi1 regulates antioxidant defenses in neu⁃ rons by repressing p53 pro ⁃oxidant activity[J].J Neuro⁃ sci,2009,29(2):529-542
参考文献 6
GU M,SHEN L,BAI L,et al.Heterozygous knockout of the Bmi⁃1 gene causes an early onset of phenotypes asso⁃ ciated with brain aging[J].Age(Dordr),2014,36(1):129-139
参考文献 7
NAKAMURA S,OSHIMA M,YUAN J,et al.Bmi1 con⁃ fers resistance to oxidative stress on hematopoietic stem cells[J].PLoS One,2012,7(5):e36209
参考文献 8
LEUNG C,LINGBEEK M,SHAKHOVA O,et al.Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas [J].Nature,2004,428(6980):337-341
参考文献 9
ZENCAK D,LINGBEEK M,KOSTIC C,et al.Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation[J].J Neuro⁃ sci,2005,25(24):5774-5783
参考文献 10
BASSIOUNI M,DOS SANTOS A,AVCI H X,et al.Bmi1 loss in the organ of corti results in p16ink4a upregulation and reduced cell proliferation of otic progenitors in vitro [J].PLoS One,2016,11(10):e0164579
参考文献 11
SCAFOGLIO C,SMOLKA M,ZHOU H,et al.The co⁃re⁃ pressor SMRT delays DNA damage⁃induced caspase acti⁃ vation by repressing pro ⁃ apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation[J].PLoS One,2013,8(5):e59986
参考文献 12
MATSUOKA S,HUANG M,ELLEDGE S J.Linkage of ATM to cell cycle regulation by the Chk2 protein kinase [J].Science,1998,282(5395):1893-1897
参考文献 13
ZHANG Y,CHEN G,GU Z,et al.DNA damage check⁃ point pathway modulates the regulation of skeletal growth and osteoblastic bone formation by parathyroid hormone ⁃ related peptide[J].Int J Biol Sci,2018,14(5):508-517
参考文献 14
LIU J,CAO L,CHEN J C,et al.Bmi1 regulates mitochon⁃ drial function and the DNA damage response pathway[J].Nature,2009,459(7245):387-U100
参考文献 15
HE S,SHARPLESS N E.Senescence in health and dis⁃ ease[J].Cell,2017,169(6):1000-1011
参考文献 16
CILLIERS A M,DU PLESSIS J P,CLUR S A,et al.Junc⁃ tional ectopic tachycardia in six paediatric patients[J].Heart,1997,78(4):413-415
参考文献 17
MATHYS H,DAVILA ⁃VELDERRAIN J,PENG Z,et al.Single⁃cell transcriptomic analysis of Alzheimer’s disease [J].Nature,2019,570(7761):332-337
参考文献 18
KIM J U,WEISENBACH S L,ZALD D H.Ventral pre⁃ frontal cortex and emotion regulation in aging:a case for utilizing transcranial magnetic stimulation[J].Int J Geri⁃ atr Psychiatry,2019,34(2):215-222
参考文献 19
CLARKE L E,LIDDELOW S A,CHAKRABORTY C,et al.Normal aging induces A1⁃like astrocyte reactivity[J].Proc Natl Acad Sci U S A,2018,115(8):E1896-E1905
参考文献 20
BOLDRINI M,FULMORE C A,TARTT A N,et al.Hu⁃ man hippocampal neurogenesis persists throughout aging [J].Cell Stem Cell,2018,22(4):589
参考文献 21
HARRISON T M,MAASS A,ADAMS J N,et al.Tau de⁃ position is associated with functional isolation of the hip⁃ pocampus in aging[J].Nat Commun,2019,10(1):4900
参考文献 22
ZHANG Y L,KIM M S,JIA B S,et al.Hypothalamic stem cells control ageing speed partly through exosomal miR⁃ NAs[J].Nature,2017,548(7665):52
参考文献 23
CAI D,MICROINFLAMMATION K.Paradigm in aging and metabolic diseases[J].Cell Metab,2019,30(1):19-35
参考文献 24
MUNGER E L,EDLER M K,HOPKINS W D,et al.Astro⁃ cytic changes with aging and Alzheimer’s disease ⁃ type pathology in chimpanzees[J].J Comp Neurol,2019,527(7):1179-1195
参考文献 25
JY L,SOUROULLAS G P,DIEKMAN B O,et al.Cells ex⁃ hibiting strong p16(INK4a)promoter activation in vivo display features of senescence[J].Proc Natl Acad Sci U S A,2019,116(7):2603-2611
参考文献 26
BOLDUC J A,COLLINS J A,LOESER R F.Reactive oxy⁃ gen species,aging and articular cartilage homeostasis[J].Free Radic Biol Med,2019,132:73-82
参考文献 27
BANKS C J,ANDERSEN J L.Mechanisms of SOD1 regu⁃ lation by post⁃translational modifications[J].Redox Biol,2019,26:101270
目录contents

    摘要

    目的:探索细胞周期检测点激酶2(cell⁃cycle checkpoint kinase 2,Chk2)敲除是否能改善由B淋巴瘤Mo⁃MLV插入区 1(B cell⁃specific MLV integration site⁃1,Bmi⁃1)缺失所致的小鼠脑衰老表型。方法:取2月龄Bmi⁃1基因敲除(Bmi⁃1-/-)小鼠、 Chk2基因敲除(Chk2-/-)小鼠、Bmi⁃1和Chk2双敲(Bmi⁃1-/-Chk2-/-)小鼠以及同窝野生型(wild type,WT)小鼠脑组织,通过免疫组织化学染色检测不同组小鼠脑组织皮层、海马、下丘脑中NeuN、GFAP、Iba1、p16等指标的变化,通过Western blot检测不同组小鼠脑皮质中p16、SOD1、SOD2蛋白表达量的差异。结果:与同窝WT小鼠相比,Bmi⁃1/小鼠在上述脑区中NeuN、Iba1阳性细胞百分率明显减少,GFAP与p16的阳性细胞百分率明显增加,SOD1、SOD2蛋白表达量明显降低,p16蛋白表达量明显上升,而在 Chk2-/-小鼠中NeuN、Iba1阳性细胞百分率则增加,GFAP与p16的阳性细胞百分率明显减少,SOD1、SOD2蛋白表达量明显上调,p16蛋白表达量明显下降;与Bmi⁃1-/-小鼠相比,Bmi⁃1-/-Chk2-/-小鼠在上述脑区中NeuN、Iba1阳性细胞百分率明显增加, GFAP与p16的阳性细胞百分率明显减少,SOD1和SOD2蛋白表达量明显上升,p16蛋白表达量明显下降。论:Chk2敲除可通过增强抗氧化能力,从而改善由Bmi⁃1缺失所致的小鼠脑衰老表型。

    Abstract

    Objective:To explore whether the cell cycle checkpoint kinase 2(cell⁃cycle checkpoint kinase 2,Chk2)knockout could alleviate the brain aging phenotype of B cell⁃specific MLV integration site⁃1(B cell⁃specific MLV integration site⁃1,Bmi⁃1)deficiency mice. Methods:The two ⁃month ⁃old of Bmi ⁃1 gene knockout(Bmi ⁃1-/-)mice,Chk2 gene knockout(Chk2-/-)mice,Bmi ⁃1 and Chk2 double knockout(Bmi ⁃1-/-Chk2-/-)mice and wild type(wild type,WT)littermates were used in this study. The expression of NeuN, GFAP,Iba1 and p16 in the cerebral cortex,hippocampus and hypothalamus of the above four groups of mice were detected by immunohistochemical staining. The expression of p16,SOD1 and SOD2 protein in the cerebral cortex of the above four groups were analyzed by Western blot. Results:Compared with the WT littermates,the percentages of NeuN and Iba1 positive cells in the above brain regions were significantly decreased,the percentage of GFAP and p16 positive cells were significantly increased,the protein expression levels of SOD1 and SOD2 were significantly decreased,and the protein expression levels of p16 were significantly increased in the Bmi ⁃ 1-/- mice. However,in Chk2-/- mice,the percentages of NeuN and Iba1 positive cells were increased,the percentage of GFAP and p16 positive cells were significantly decreased,the protein expressions of SOD1 and SOD2 were significantly increased,and the protein expression of p16 were significantly decreased. Compared with the Bmi⁃1-/- mice,Chk2 knockout increased the percentage of NeuN and Iba1 positive cells in the above brain regions,decreased the percentage of GFAP and p16 positive cells,increased the protein expressions of SOD1 and SOD2,and decreased the protein expressions of p16 in the Bmi ⁃ 1-/- Chk2-/- mice significantly. Conclusion:Chk2 knockout can attenuate the brain aging phenotype induced by Bmi ⁃ 1 deficiency in mice by enhancing the antioxidant capacity

    关键词

    衰老Bmi⁃1Chk2抗氧化

    Keywords

    brainagingBmi⁃1Chk2antioxidant

  • B淋巴瘤Mo⁃MLV插入区1(B cell⁃specific MLV integration site⁃1,Bmi⁃1)是转录抑制因子多梳基因家族成员[1],可通过抑制p16INK4a /Rb和p19AFR/p53途径参与调节细胞周期和细胞衰老[2-3],并在各种细胞的抗氧化防御中发挥重要作用[4-7]。Bmi⁃1在各类神经细胞(包括神经干细胞、神经元和星形胶质细胞等) 中均有表达,并在脑发育过程中具有重要作用[8-9]。既往研究显示,Bmi⁃1在老年人脑和老年小鼠脑中表达下调,提示Bmi⁃1与大脑衰老有关[4]。通过对利用基因重组技术建立的Bmi⁃1基因敲除(Bmi⁃1-/-)小鼠的研究发现,Bmi⁃1缺乏的小鼠出现成熟前衰老的表型,神经系统和造血功能缺陷[10],抗氧化能力降低[2]

  • 细胞周期检查点激酶2(cell⁃cycle checkpoint ki⁃ nase2,Chk2)是重要的DNA损伤检查点调节器[11],当Chk2被激活时,能够迅速通过磷酸化,阻滞细胞周期进程,导致细胞发生程序性死亡[12-13]。先前研究表明,敲除Chk2基因(Chk2-/-)可以改善小鼠Bmi⁃ 1缺失引起的多器官表型,并延长其生存时间[13-14],但Chk2基因敲除是否能纠正Bmi⁃1缺失小鼠的脑衰老表型,尚未见文献报道。因此,我们通过配笼生成Bmi ⁃ 1和Chk2双基因敲除小鼠(Bmi1-/-Chk2-/-),比较同窝WT、Bmi1-/-、Chk2-/-和Bmi1-/-Chk2-/-小鼠不同脑区的表型及抗氧化酶等的表达变化,以进一步验证Chk2敲除是否可通过中断DNA损伤应答途径,增强抗氧化能力,从而改善由Bmi⁃1缺失所致的小鼠脑衰老表型。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 动物

  • 实验用2月龄Bmi1-/-小鼠、Chk2-/-小鼠、Bmi1-/-Chk2-/-小鼠及同窝野生型(wild type,WT)对照小鼠各6只,雌雄不限。动物饲养、管理及使用均严格按照南京医科大学实验动物管理规范进行(IACUC: 1809007)。

  • 1.1.2 试剂

  • 兔抗NeuN单克隆抗体(Abcam公司,英国),小鼠抗GFAP单克隆抗体(Millipore公司,美国),兔抗Iba1单克隆抗体(Abcam公司,英国),兔抗p16多克隆抗体(Santa Cruz公司,美国),鼠抗GAPDH单克隆抗体(Proteintech公司,美国),兔抗SOD1、SOD2单克隆抗体(Abcam公司,英国)。羊抗鼠、羊抗兔IgG(武汉博士德公司),羊抗兔IgG⁃HRP、羊抗小鼠IgG⁃HRP(KPL公司,美国),Elite ABC Kit(Vector公司,美国)。

  • 1.2 方法

  • 1.2.1 动物基因型鉴定

  • 将新生仔鼠剪尾(约5mm),参见Miao等[213] 方法结合PCR反应,鉴定小鼠基因型,引物序列见表1。

  • 表1 PCR引物序列

  • Table1 Sequences of PCR primers

  • 1.2.2 组织取材及切片

  • 采用3%戊巴比妥钠(4mg/100g体重)深度麻醉小鼠后,经心脏行生理盐水灌洗,取脑,沿大脑纵裂切开分左右两半,左侧半脑经4%多聚甲醛固定后,梯度酒精脱水、石蜡包埋后行矢状位石蜡切片,片厚5 μm,右侧半脑分脑区冻存,用于提取组织蛋白进行Western blot实验。

  • 1.2.3 免疫组织化学染色

  • 石蜡切片经37℃ 30min烘干后,行常规脱蜡水化,然后用3%过氧化氢处理30min以灭活内源性过氧化物酶,10%正常羊血清封闭1h,滴加一抗兔抗NeuN单克隆抗体(1∶200)、小鼠抗GFAP单克隆抗体(1∶200)、兔抗Iba1单克隆抗体(1∶200)、兔抗p16多克隆抗体(1∶200),4℃孵育过夜,加生物素标记的羊抗鼠IgG(1∶100)、羊抗兔IgG(1∶100)室温孵育1h,滴加Elite ABC混合液室温孵育30min,加DAB底物(武汉博士德公司)室温避光孵育5~8min,苏木精复染20s,1%盐酸酒精分色2~3s,流水蓝化3min,常规梯度酒精脱水,二甲苯透明,中性树胶封片。正置显微镜采集图像,用Image Pro Plus 6.0软件分析NeuN、Iba1、p16阳性细胞百分率(%),GFAP阳性面积百分率(%),每个动物每个相应脑区至少计数3张切片,结果取平均值。

  • 1.2.4 Western blot实验

  • 组织按质量/体积比约1∶20加入RIPA后剪碎、匀浆,冰上静置30min,13 000r/min 4℃离心15min,提取蛋白并用BCA法进行定量,100℃金属浴10min,使蛋白变性后置-80℃冰箱保存。10%SDS⁃PAGE胶,每组蛋白加样20 μg,110V恒压电泳2h后, 280mA恒流转膜90min,蛋白湿转至硝酸纤维素膜上,含5%脱脂奶粉的PBST37℃封闭1h,加入适量一抗:鼠抗GAPDH单克隆抗体(1∶2 000)、兔抗SOD1、SOD2单克隆抗体(1∶1 000)、兔抗p16多克隆抗体(1∶1 000),4℃孵育过夜,PBST洗涤后,加入相应特异性二抗(1∶2 000),摇床室温反应1h。洗膜后,滴加ECL发光混合液,自动成像仪曝光,保存显影图像。采用Image⁃Pro Plus 6.0软件进行分析,

  • 1.3 统计学方法

  • 采用GraphPad Prism 8.0软件进行数据分析及作图。各组计量数据以均数±标准差(x- ± s)表示。采用单因素方差分析(one⁃way ANOVA)进行多组间数据比较,多组间数据两两比较用SNK法,P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 Chk2敲除可促进Bmi⁃1-/-小鼠不同脑区小胶质细胞的发育以及神经元的分化与成熟

  • 为了明确Chk2敲除对Bmi⁃1-/-小鼠小胶质细胞发育以及神经元分化、成熟的影响,我们采用免疫组化的方法检测小胶质细胞标志物Iba1、神经元特异性核蛋白NeuN的表达,分析比较了2月龄Bmi1-/-、 Chk2-/-、Bmi1-/-Chk2-/-及同窝WT对照小鼠大脑皮层、海马及下丘脑区Iba1、NeuN阳性细胞百分率的变化。结果显示,与同窝WT小鼠相比,Iba1和NeuN阳性细胞百分率在Chk2-/-小鼠海马区及下丘脑区明显增加,而在大脑皮层虽有增加趋势,但差异无统计学意义;Bmi1-/-小鼠以上脑区的Iba1和NeuN阳性率明显减少;与Bmi1-/-小鼠相比,Bmi1-/- Chk2-/-小鼠以上脑区的Iba1和NeuN阳性率明显增加,但尚未达到WT小鼠水平(图1、2)。这些结果说明Chk2敲除能够促进Bmi1-/-小鼠大脑皮层、海马及下丘脑区小胶质细胞的发育及神经元的分化与成熟。

  • 2.2 Chk2敲除可通过增强抗氧化能力缓解由Bmi⁃ 1缺失所致的小鼠脑衰老表型

  • 为了研究Chk2敲除对Bmi⁃1-/-小鼠脑衰老表型的影响以及可能机制,我们采用免疫组化的方法检测了2月龄Bmi1-/-、Chk2-/-、Bmi1-/-Chk2-/-及同窝WT对照小鼠脑中轻度反应型星形胶质细胞标志物GFAP及衰老指标p16的表达情况。结果显示,与同窝WT小鼠相比,Bmi1-/-小鼠、Bmi1-/-Chk2-/-小鼠海马和下丘脑区均出现GFAP阳性星形胶质细胞的激活,且胞体肥大、表达增强,而Bmi1-/-Chk2-/-小鼠的GFAP阳性率明显低于Bmi1-/-小鼠,但尚未达到WT小鼠水平(图3)。与WT小鼠相比,p16阳性细胞百分率及蛋白表达量在Chk2-/-小鼠大脑皮层、海马区及下丘脑区虽有减少趋势,但差异无统计学意义; 而Bmi1-/-小鼠以上脑区的p16阳性率及蛋白表达量均明显增加;与Bmi1-/-小鼠相比,Bmi1-/-Chk2-/-小鼠以上脑区的p16阳性率显著降低,但尚未达到WT小鼠水平(图4、5)。这些结果说明Chk2敲除能够缓解由Bmi⁃1缺失所致的小鼠衰老表型。

  • 采用Western blot验检测2月龄Bmi1-/-、Chk2-/-、 Bmi1-/-Chk2-/-及同窝WT对照小鼠大脑皮层SOD1及SOD2的表达量,结果显示,与同窝WT小鼠相比, SOD1和SOD2蛋白表达量在Chk2-/-小鼠脑内明显增加,而在Bmi1-/-小鼠和Bmi1-/-Chk2-/-小鼠脑内则明显减少(图5);与Bmi1-/-小鼠相比,Bmi1-/-Chk2-/- 小鼠脑内的SOD1和SOD2蛋白表达量显著上调,但尚未达到WT小鼠水平(图5)。以上结果说明,Chk2敲除可通过增强抗氧化能力缓解由Bmi⁃1缺失所致的小鼠脑衰老表型。

  • 3 讨论

  • 衰老在生命进程中是一个不可逆的过程,但有希望通过增强或减弱某些基因的功能来延缓它的进程[15]。既往研究表明,Chk2敲除可以部分挽救Bmi⁃1缺失小鼠的相关表型[16],但对于Bmi⁃1缺失小鼠脑衰老表型的影响尚不明确。故本实验中,我们通过比较Bmi⁃1和Chk2双基因敲除的Bmi1⁃/⁃Chk2-/-小鼠与Bmi1-/-、Chk2-/-及同窝WT小鼠不同脑区的脑衰老表型,探索Chk2敲除对Bmi⁃1缺失小鼠脑衰老的影响。

  • 图1 Chk2敲除对Bmi⁃1-/-小鼠大脑皮层、海马、下丘脑区神经元发育的影响

  • Fig.1 Effects of Chk2knockout on neuronal development in the cerebral cortex,hippocampus and hypothalamus of Bmi⁃1-/- mice

  • 在脑衰老的研究中,大脑皮层[17-18]、海马[19-21]、下丘脑[22-23] 等脑区的形态与功能变化在脑衰老过程中具有重要意义,故本研究首先将上述脑区作为研究目标区域。研究结果显示,Iba1和NeuN阳性细胞率在Bmi1-/-小鼠的上述脑区均明显减少。与Bmi1-/- 小鼠相比,Bmi1-/-Chk2-/-小鼠以上脑区的Iba1和NeuN阳性细胞率明显增加,但仍未达野生型小鼠水平。这些结果说明Chk2敲除可促进Bmi1-/-鼠大脑皮层、海马及下丘脑区小胶质细胞的发育及神经元的分化与成熟。

  • 轻度反应型星形胶质细胞增生表明星形胶质细胞活化,是脑衰老的病理学特征之一[624]。同样,既往研究已证明p16的表达上调与激活是衰老的重要标志之一[25]。本研究研究结果显示,在2月龄时,与同窝WT小鼠相比,Bmi⁃1基因敲除小鼠小胶质细胞的发育、神经元的发育与成熟均受到阻碍,轻度反应型星形胶质细胞增生,即活化的星形胶质细胞增多(因皮质区GFAP阳性纤维分布极为稀疏,故本研究中未对该区GFAP阳性纤维进行分析),p16阳性细胞百分率及蛋白表达量均明显上升,与既往研究发现的Bmi1-/-小鼠成熟前衰老表型相一致。本研究结果同时表明与Bmi1-/-小鼠相比,Bmi1-/-Chk2-/- 小鼠的相应脑衰老表型得到明显改善,说明Chk2敲除能较好地改善Bmi⁃1缺失小鼠的脑衰老表型。

  • 研究表明,衰老进程中,体内活性氧(reactive oxygen species,ROS)水平会相应增加[26],而超氧化物歧化酶SOD1、SOD2均为重要的抗氧化酶,具有清除体内过剩ROS的功能[27]。为进一步明确Chk2敲除是否能够通过对细胞抗氧化能力的调节来延缓Bmi ⁃1缺失对脑衰老的影响,我们检测了2月龄Bmi1-/-、Chk2-/-、Bmi1-/-Chk2-/-及同窝WT对照小鼠脑内的抗氧化指标SOD1、SOD2的表达变化。结果显示,与同窝WT小鼠相比,SOD1和SOD2蛋白表达量在Chk2-/-小鼠脑中明显增加,Bmi1-/-Chk2-/-小鼠脑中SOD1和SOD2蛋白表达量较Bmi1-/-小鼠显著增多,但尚未达WT小鼠水平。结果说明,Chk2敲除对Bmi⁃1-/-小鼠脑内降低的抗氧化能力有明显的纠正作用,说明Chk2敲除可通过增强抗氧化能力而改善小鼠的脑衰老表型。

  • 图2 Chk2敲除对Bmi⁃1-/-小鼠大脑皮层、海马、下丘脑区小胶质细胞发育的影响

  • Fig.2 Effects of Chk2knockout on microglia development in the cerebral cortex,hippocampus and hypothalamus of Bmi⁃1-/- mice

  • 图3 Chk2敲除对Bmi⁃1-/-小鼠海马、下丘脑区星形胶质细胞发育的影响

  • Fig.3 Effects of Chk2knockout on astrocyte development in hippocampus and hypothalamus of Bmi⁃1-/- mice

  • 图4 Chk2敲除对Bmi⁃1-/-小鼠大脑皮层、海马、下丘脑区p16表达的影响

  • Fig.4 The effect of Chk2knockout on p16expression in cerebral cortex,hippocampus and hypothalamus of Bmi⁃1-/- mice

  • 图5 p16、SOD1、SOD2蛋白在2月龄WT、Bmi⁃1-/-、Chk2-/-、Bmi⁃1-/-Chk2-/-小鼠脑中的表达

  • Fig.5 The expression of p16,SOD1,SOD2protein in the brain of 2⁃month⁃old WT,Bmi⁃1-/-,Chk2-/-,and Bmi⁃1-/-Chk2-/- mice

  • 综上所述,本研究结果证实Chk2敲除可缓解Bmi⁃1缺失所致脑内的神经细胞发育障碍及增强其脑内的抗氧化能力,进而在延缓Bmi⁃1缺失所致的脑衰老中起重要作用。本研究将为延缓脑衰老进程的研究与临床药物研发提供新的靶点及初步的实验依据。

  • 参考文献

    • [1] 汪瀚,李中武,朱玉敏,等.Bmi1基因沉默对人舌鳞癌细胞生物学功能的影响[J].南京医科大学学报(自然科学版),2016,36(1):39-45,50

    • [2] JIN J,LV X,CHEN L,et al.Bmi⁃1 plays a critical role in protection from renal tubulointerstitial injury by maintain⁃ ing redox balance[J].Aging Cell,2014,13(5):797-809

    • [3] ZHANG H W,DING J,JIN J L,et al.Defects in mesen⁃ chymal stem cell self⁃renewal and cell fate determination lead to an osteopenic phenotype in Bmi⁃1 null mice[J].J Bone Miner Res,2010,25(3):640-652

    • [4] ABDOUH M,CHATOO W,EL H J,et al.Bmi1 is down⁃ regulated in the aging brain and displays antioxidant and protective activities in neurons[J].PLoS One,2012,7(2):e31870

    • [5] CHATOO W,ABDOUH M,DAVID J,et al.The polycomb group gene Bmi1 regulates antioxidant defenses in neu⁃ rons by repressing p53 pro ⁃oxidant activity[J].J Neuro⁃ sci,2009,29(2):529-542

    • [6] GU M,SHEN L,BAI L,et al.Heterozygous knockout of the Bmi⁃1 gene causes an early onset of phenotypes asso⁃ ciated with brain aging[J].Age(Dordr),2014,36(1):129-139

    • [7] NAKAMURA S,OSHIMA M,YUAN J,et al.Bmi1 con⁃ fers resistance to oxidative stress on hematopoietic stem cells[J].PLoS One,2012,7(5):e36209

    • [8] LEUNG C,LINGBEEK M,SHAKHOVA O,et al.Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas [J].Nature,2004,428(6980):337-341

    • [9] ZENCAK D,LINGBEEK M,KOSTIC C,et al.Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation[J].J Neuro⁃ sci,2005,25(24):5774-5783

    • [10] BASSIOUNI M,DOS SANTOS A,AVCI H X,et al.Bmi1 loss in the organ of corti results in p16ink4a upregulation and reduced cell proliferation of otic progenitors in vitro [J].PLoS One,2016,11(10):e0164579

    • [11] SCAFOGLIO C,SMOLKA M,ZHOU H,et al.The co⁃re⁃ pressor SMRT delays DNA damage⁃induced caspase acti⁃ vation by repressing pro ⁃ apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation[J].PLoS One,2013,8(5):e59986

    • [12] MATSUOKA S,HUANG M,ELLEDGE S J.Linkage of ATM to cell cycle regulation by the Chk2 protein kinase [J].Science,1998,282(5395):1893-1897

    • [13] ZHANG Y,CHEN G,GU Z,et al.DNA damage check⁃ point pathway modulates the regulation of skeletal growth and osteoblastic bone formation by parathyroid hormone ⁃ related peptide[J].Int J Biol Sci,2018,14(5):508-517

    • [14] LIU J,CAO L,CHEN J C,et al.Bmi1 regulates mitochon⁃ drial function and the DNA damage response pathway[J].Nature,2009,459(7245):387-U100

    • [15] HE S,SHARPLESS N E.Senescence in health and dis⁃ ease[J].Cell,2017,169(6):1000-1011

    • [16] CILLIERS A M,DU PLESSIS J P,CLUR S A,et al.Junc⁃ tional ectopic tachycardia in six paediatric patients[J].Heart,1997,78(4):413-415

    • [17] MATHYS H,DAVILA ⁃VELDERRAIN J,PENG Z,et al.Single⁃cell transcriptomic analysis of Alzheimer’s disease [J].Nature,2019,570(7761):332-337

    • [18] KIM J U,WEISENBACH S L,ZALD D H.Ventral pre⁃ frontal cortex and emotion regulation in aging:a case for utilizing transcranial magnetic stimulation[J].Int J Geri⁃ atr Psychiatry,2019,34(2):215-222

    • [19] CLARKE L E,LIDDELOW S A,CHAKRABORTY C,et al.Normal aging induces A1⁃like astrocyte reactivity[J].Proc Natl Acad Sci U S A,2018,115(8):E1896-E1905

    • [20] BOLDRINI M,FULMORE C A,TARTT A N,et al.Hu⁃ man hippocampal neurogenesis persists throughout aging [J].Cell Stem Cell,2018,22(4):589

    • [21] HARRISON T M,MAASS A,ADAMS J N,et al.Tau de⁃ position is associated with functional isolation of the hip⁃ pocampus in aging[J].Nat Commun,2019,10(1):4900

    • [22] ZHANG Y L,KIM M S,JIA B S,et al.Hypothalamic stem cells control ageing speed partly through exosomal miR⁃ NAs[J].Nature,2017,548(7665):52

    • [23] CAI D,MICROINFLAMMATION K.Paradigm in aging and metabolic diseases[J].Cell Metab,2019,30(1):19-35

    • [24] MUNGER E L,EDLER M K,HOPKINS W D,et al.Astro⁃ cytic changes with aging and Alzheimer’s disease ⁃ type pathology in chimpanzees[J].J Comp Neurol,2019,527(7):1179-1195

    • [25] JY L,SOUROULLAS G P,DIEKMAN B O,et al.Cells ex⁃ hibiting strong p16(INK4a)promoter activation in vivo display features of senescence[J].Proc Natl Acad Sci U S A,2019,116(7):2603-2611

    • [26] BOLDUC J A,COLLINS J A,LOESER R F.Reactive oxy⁃ gen species,aging and articular cartilage homeostasis[J].Free Radic Biol Med,2019,132:73-82

    • [27] BANKS C J,ANDERSEN J L.Mechanisms of SOD1 regu⁃ lation by post⁃translational modifications[J].Redox Biol,2019,26:101270

  • 参考文献

    • [1] 汪瀚,李中武,朱玉敏,等.Bmi1基因沉默对人舌鳞癌细胞生物学功能的影响[J].南京医科大学学报(自然科学版),2016,36(1):39-45,50

    • [2] JIN J,LV X,CHEN L,et al.Bmi⁃1 plays a critical role in protection from renal tubulointerstitial injury by maintain⁃ ing redox balance[J].Aging Cell,2014,13(5):797-809

    • [3] ZHANG H W,DING J,JIN J L,et al.Defects in mesen⁃ chymal stem cell self⁃renewal and cell fate determination lead to an osteopenic phenotype in Bmi⁃1 null mice[J].J Bone Miner Res,2010,25(3):640-652

    • [4] ABDOUH M,CHATOO W,EL H J,et al.Bmi1 is down⁃ regulated in the aging brain and displays antioxidant and protective activities in neurons[J].PLoS One,2012,7(2):e31870

    • [5] CHATOO W,ABDOUH M,DAVID J,et al.The polycomb group gene Bmi1 regulates antioxidant defenses in neu⁃ rons by repressing p53 pro ⁃oxidant activity[J].J Neuro⁃ sci,2009,29(2):529-542

    • [6] GU M,SHEN L,BAI L,et al.Heterozygous knockout of the Bmi⁃1 gene causes an early onset of phenotypes asso⁃ ciated with brain aging[J].Age(Dordr),2014,36(1):129-139

    • [7] NAKAMURA S,OSHIMA M,YUAN J,et al.Bmi1 con⁃ fers resistance to oxidative stress on hematopoietic stem cells[J].PLoS One,2012,7(5):e36209

    • [8] LEUNG C,LINGBEEK M,SHAKHOVA O,et al.Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas [J].Nature,2004,428(6980):337-341

    • [9] ZENCAK D,LINGBEEK M,KOSTIC C,et al.Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation[J].J Neuro⁃ sci,2005,25(24):5774-5783

    • [10] BASSIOUNI M,DOS SANTOS A,AVCI H X,et al.Bmi1 loss in the organ of corti results in p16ink4a upregulation and reduced cell proliferation of otic progenitors in vitro [J].PLoS One,2016,11(10):e0164579

    • [11] SCAFOGLIO C,SMOLKA M,ZHOU H,et al.The co⁃re⁃ pressor SMRT delays DNA damage⁃induced caspase acti⁃ vation by repressing pro ⁃ apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation[J].PLoS One,2013,8(5):e59986

    • [12] MATSUOKA S,HUANG M,ELLEDGE S J.Linkage of ATM to cell cycle regulation by the Chk2 protein kinase [J].Science,1998,282(5395):1893-1897

    • [13] ZHANG Y,CHEN G,GU Z,et al.DNA damage check⁃ point pathway modulates the regulation of skeletal growth and osteoblastic bone formation by parathyroid hormone ⁃ related peptide[J].Int J Biol Sci,2018,14(5):508-517

    • [14] LIU J,CAO L,CHEN J C,et al.Bmi1 regulates mitochon⁃ drial function and the DNA damage response pathway[J].Nature,2009,459(7245):387-U100

    • [15] HE S,SHARPLESS N E.Senescence in health and dis⁃ ease[J].Cell,2017,169(6):1000-1011

    • [16] CILLIERS A M,DU PLESSIS J P,CLUR S A,et al.Junc⁃ tional ectopic tachycardia in six paediatric patients[J].Heart,1997,78(4):413-415

    • [17] MATHYS H,DAVILA ⁃VELDERRAIN J,PENG Z,et al.Single⁃cell transcriptomic analysis of Alzheimer’s disease [J].Nature,2019,570(7761):332-337

    • [18] KIM J U,WEISENBACH S L,ZALD D H.Ventral pre⁃ frontal cortex and emotion regulation in aging:a case for utilizing transcranial magnetic stimulation[J].Int J Geri⁃ atr Psychiatry,2019,34(2):215-222

    • [19] CLARKE L E,LIDDELOW S A,CHAKRABORTY C,et al.Normal aging induces A1⁃like astrocyte reactivity[J].Proc Natl Acad Sci U S A,2018,115(8):E1896-E1905

    • [20] BOLDRINI M,FULMORE C A,TARTT A N,et al.Hu⁃ man hippocampal neurogenesis persists throughout aging [J].Cell Stem Cell,2018,22(4):589

    • [21] HARRISON T M,MAASS A,ADAMS J N,et al.Tau de⁃ position is associated with functional isolation of the hip⁃ pocampus in aging[J].Nat Commun,2019,10(1):4900

    • [22] ZHANG Y L,KIM M S,JIA B S,et al.Hypothalamic stem cells control ageing speed partly through exosomal miR⁃ NAs[J].Nature,2017,548(7665):52

    • [23] CAI D,MICROINFLAMMATION K.Paradigm in aging and metabolic diseases[J].Cell Metab,2019,30(1):19-35

    • [24] MUNGER E L,EDLER M K,HOPKINS W D,et al.Astro⁃ cytic changes with aging and Alzheimer’s disease ⁃ type pathology in chimpanzees[J].J Comp Neurol,2019,527(7):1179-1195

    • [25] JY L,SOUROULLAS G P,DIEKMAN B O,et al.Cells ex⁃ hibiting strong p16(INK4a)promoter activation in vivo display features of senescence[J].Proc Natl Acad Sci U S A,2019,116(7):2603-2611

    • [26] BOLDUC J A,COLLINS J A,LOESER R F.Reactive oxy⁃ gen species,aging and articular cartilage homeostasis[J].Free Radic Biol Med,2019,132:73-82

    • [27] BANKS C J,ANDERSEN J L.Mechanisms of SOD1 regu⁃ lation by post⁃translational modifications[J].Redox Biol,2019,26:101270