en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

李忠俊,E⁃mail:zhongjunli@tmmu.edu.cn;

张克斌,zhangkebin12@163.com

中图分类号:R818

文献标识码:A

文章编号:1007-4368(2021)07-976-09

DOI:10.7655/NYDXBNS20210707

参考文献 1
SUGRUE T,BROWN J A,LOWNDES N F,et al.Multi⁃ ple facets of the DNA damage response contribute to the radioresistance of mouse mesenchymal stromal cell lines [J].Stem Cells,2013,31(1):137-145
参考文献 2
MENDEZ⁃FERRER S,MICHURINA T V,FERRARO F,et al.Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J].Nature,2010,466(738):829-834
参考文献 3
FRENETTE P S,PINHO S,LUCAS D,et al.Mesenchy⁃ mal stem cell:keystone of the hematopoietic stem cell niche and a stepping⁃stone for regenerative medicine[J].Annu Rev Immunol,2013,31:285-316
参考文献 4
NICOLAY N H,LOPEZ PEREZ R,SAFFRICH R,et al.Radio ⁃ resistant mesenchymal stem cells:mechanisms of resistance and potential implications for the clinic[J].On⁃ cotarget,2015,6(23):19366-19380
参考文献 5
CONTE M,MARTUCCI M,MOSCONI G,et al.GDF15 plasma level is inversely associated with level of physical activity and correlates with markers of inflammation and muscle weakness[J].Front Immunol,2020,11:915
参考文献 6
ZHANG Y,MOSZCZYNSKI L A,LIU Q,et al.Over ⁃ex⁃ pression of growth differentiation factor 15(GDF15)pre⁃ venting cold ischemia reperfusion(I/R)injury in heart transplantation through Foxo3a signaling[J].Oncotarget,2017,8(22):36531-36544
参考文献 7
LI S,MA Y M,ZHENG P S,et al.GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2[J].J Exp Clin Cancer Res,2018,37(1):80
参考文献 8
BARONI M,MARIE S,FEDATTO P F,et al.Distinct re⁃ sponse to GDF15 knockdown in pediatric and adult glio⁃ blastoma cell lines[J].J Neurooncol,2018,139(1):51-60
参考文献 9
LUAN H H,WANG A,HILLIARD B K,et al.GDF15 is an inflammation ⁃induced central mediator of tissue toler⁃ ance[J].Cell,2019,178(5):1231-1244
参考文献 10
ELING T E,BAEK S J,SHIM M,et al.NSAID activated gene(NAG ⁃ 1),a modulator of tumorigenesis[J].J Bio⁃ chem Mol Biol,2006,39(6):649-655
参考文献 11
ZIMMERS T A,GUTIERREZ J C,KONIARIS L G.Loss of GDF⁃15 abolishes sulindac chemoprevention in the Ap⁃ cMin/+ mouse model of intestinal cancer[J].J Cancer Res Clin Oncol,2010,136(4):571-576
参考文献 12
HUSAINI Y,QIU M R,LOCKWOOD G P,et al.Macro⁃ phage inhibitory cytokine⁃1(MIC⁃1/GDF15)slows cancer development but increases metastases in TRAMP prostate cancer prone mice[J].PLoS One,2012,7(8):e43833
参考文献 13
XIANG Y,WU C,WU J,et al.In vitro expansion affects the response of human bone marrow stromal cells to irradi⁃ ation[J].Stem Cell Res Ther,2019,10(1):82
参考文献 14
JIANG Z,JIA J,YUE C,et al.Haploidentical hematopoi⁃ etic SCT using helical tomotherapy for total⁃body irradia⁃ tion and targeted dose boost in patients with high⁃risk/re⁃ fractory acute lymphoblastic leukemia[J].Bone Marrow Transplant,2018,53(4):438-448
参考文献 15
SINGH R,LETAI A,SAROSIEK K.Regulation of apopto⁃ sis in health and disease:the balancing act of BCL⁃2 fami⁃ ly proteins[J].Nat Rev Mol Cell Biol,2019,20(3):175-193
参考文献 16
LI C,LU L,ZHANG J,et al.Granulocyte colony⁃stimulat⁃ ing factor exacerbates hematopoietic stem cell injury after irradiation[J].Cell Biosci,2015,5:65
参考文献 17
CHEW E,PRAKASH R,KHAN W.Mesenchymal stem cells in human meniscal regeneration:a systematic review [J].Ann Med Surg(Lond),2017,24:3-7
参考文献 18
CHEN L,RAN Q,XIANG Y,et al.Co⁃activation of PKC⁃ δ by CRIF1 modulates oxidative stress in bone marrow multipotent mesenchymal stromal cells after irradiation by phosphorylating NRF2 Ser40[J].Theranostics,2017,7(10):2634-2648
参考文献 19
PAWLIK T M,KEYOMARSI K.Role of cell cycle in me⁃ diating sensitivity to radiotherapy[J].Int J Radiat Oncol Biol Phys,2004,59(4):928-942
参考文献 20
YANG Y,XUE K,LI Z,et al.c⁃Myc regulates the CDK1/cyclin B1 dependent G2/M cell cycle progression by his⁃ tone H4 acetylation in Raji cells[J].Int J Mol Med,2018,41(6):3366-3378
参考文献 21
AZIMZADEH O,SCHERTHAN H,SARIOGLU H,et al.Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation[J].Proteomics,2011,11(16):3299-3311
参考文献 22
FUJITA Y,ITO M,KOJIMA T,et al.GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mi⁃tochondrial diseases[J].Mitochondrion,2015,20:34-42
参考文献 23
HUSSAIN S.Measurement of nanoparticle⁃induced mito⁃ chondrial membrane potential alterations[J].Methods Mol Biol,2019,1894:123-131
参考文献 24
WILSON B E,MOCHON E,BOXER L M.Induction of bcl⁃ 2 expression by phosphorylated CREB proteins during B⁃ cell activation and rescue from apoptosis[J].Mol Cell Bi⁃ ol,1996,16(10):5546-5556
参考文献 25
KIM K K,LEE J J,YANG Y,et al.Macrophage inhibitory cytokine⁃1 activates AKT and ERK⁃1/2 via the transacti⁃ vation of ErbB2 in human breast and gastric cancer cells [J].Carcinogenesis,2008,29(4):704-712
参考文献 26
PARK Y J,LEE H,LEE J H.Macrophage inhibitory cyto⁃ kine⁃1 transactivates ErbB family receptors via the activa⁃ tion of Src in SK ⁃ BR ⁃ 3 human breast cancer cells[J].BMB Rep,2010,43(2):91-96
参考文献 27
HE X,SUN J,HUANG X.Expression of caspase ⁃3,Bax and Bcl ⁃2 in hippocampus of rats with diabetes and sub⁃ arachnoid hemorrhage[J].Exp Ther Med,2018,15(1):873-877
目录contents

    摘要

    目的:探讨生长分化因子15(growth differentiation factor 15,GDF15)在调控人骨髓间充质干细胞(bone marrow mes⁃ enchymal stem cells,BM⁃MSCs)放射抗性中的作用及机制。方法:利用Lipofectamine 3000转染siRNA,干扰BM⁃MSCs的GDF15 表达。9 Gy Co⁃60 γ射线照射后,采用流式细胞术检测细胞周期及凋亡,CCK⁃8检测增殖,JC⁃1检测线粒体膜电位,免疫荧光、 实时荧光定量PCR(RT⁃qPCR)和蛋白免疫印迹分析(Western blot)检测GDF15及ERK/Bcl⁃2信号通路关键分子的表达。结果: 放射后GDF15的表达水平显著升高。未放射条件下,干扰GDF15对细胞周期、增殖和凋亡无显著影响(P ˃ 0.05)。放射后,干扰GDF15导致细胞G2期阻滞增加(P ˂ 0.05),细胞增殖显著抑制(P ˂ 0.01);同时线粒体膜电位降低,Caspase3活化及细胞凋亡增加(P ˂ 0.05)。干扰GDF15显著抑制ERK1/2的磷酸化和Bcl⁃2的蛋白水平,而增加Bax的表达。结论:放射诱导GDF15上调,可提高BM⁃MSCs的放射抗性,其机制与ERK/Bcl⁃2信号通路有关。

    Abstract

    Objective:To investigate the role of growth differentiation factor 15(GDF15)in irradiation resistance of human bone marrow mesenchymal stem cells(BM⁃MSCs)and determine its underlying mechanism. Methods:The BM⁃MSCs were transfected with GDF15 siRNA using Lipofectamine 3000. After the irradiation of BM⁃MSCs with 9 Gy Co⁃60 γ⁃rays,the cell cycle and apoptosis were detected by flow cytometry,CCK⁃8 was used to detect cell proliferation,and JC⁃1 was used to detect mitochondrial membrane potential, immunofluorescence,quantitative real⁃time PCR(RT⁃qPCR)and Western blot were used to detect the expression of GDF15,and the key molecules in ERK/Bcl ⁃ 2 signaling pathway. Results:After irradiation,the expression of GDF15 was increased significantly. Interference of GDF15 had no significant effect on cell cycle,proliferation and apoptosis in no ⁃ irradiated BM ⁃ MSCs(P ˃ 0.05). Interference of GDF15 in BM ⁃ MSCs suffering form irradiation increased G2 phase arrest(P ˂ 0.05),inhibited cell proliferation significantly(P ˂ 0.01),and decreased mitochondrial membrane potential. Meanwhile,Caspase3 was activated and apoptosis was significantly increased(P ˂ 0.05). The phosphorylation level of ERK1/2 and the expression level of Bcl⁃2 in GDF15 interference cells decreased significantly,while the expression of Bax increased significantly. Conclusion:The up ⁃ regulated expression of GDF15 ⁃ induces upon irradiation,and enhances irradiation resistance of BM⁃MSCs through the activation of ERK/Bcl⁃2 signaling pathway.

  • 随着放射技术在军事、医药和其他行业的大量应用,急性放射综合征(acute radiation syndrome, ARS)的研究也越来越受到人们的重视。放射造成造血系统损伤,导致骨髓造血功能障碍,严重时可危及生命。骨髓间充质干细胞(bone marrow mesen⁃ chymal stem cells,BM⁃MSCs)作为骨髓造血微环境的重要组成部分,其自身及其后代子细胞可为造血干细胞(hematopoietic stem cells,HSCs)提供物理支撑。此外,BM⁃MSCs也可通过分泌多种造血/细胞因子,对HSCs的自我更新、分化及骨髓定植均发挥重要作用[1-3]。目前认为,相较于HSCs,BM⁃MSCs具有较强的放射抗性,其相关的放射抗性机制主要包括: DNA损伤的有效识别,双链断裂修复及细胞凋亡逃逸等,但目前其具体机制尚未被完全阐明[4]。鉴于BM⁃MSCs的存活可为放射损伤后造血重建提供基质干细胞基础,因此,深入研究其放射抗性机制,对探索骨髓型急性放射病救治的新策略具有重大意义。

  • 生长分化因子15(growth differentiation factor 15,GDF15)是转化生长因子β(transforming growth factor β,TGF⁃β)超家族中的一员,在各种细胞和组织中广泛分布,伴随着不同的应激反应,如炎症、心脏缺血再灌注、急性组织损伤、放射、癌症等,GDF15的表达会大幅增加[5-9]。既往研究表明,GDF15在部分癌细胞中高表达,并且在癌症的不同进展阶段具有促凋亡和抗凋亡两种效应[10-12]。本课题组前期研究结果显示,BM⁃MSCs放射后,GDF15的表达显著升高[13],其是否在BM⁃MSCs的放射抗性中发挥关键作用,目前尚不清楚。本研究考察了放射后上调的GDF15表达在BM⁃MSCs放射抗性中的作用,并初步探讨了其可能作用机制。

  • 1 材料和方法

  • 1.1 材料

  • 人BM⁃MSCs、人BM⁃MSCs培养基(ScienCell公司,美国),人GDF15干扰片段(广州锐博生物科技有限公司),逆转录试剂盒、SYBR Premix Ex TaqⅡ 试剂盒(大连宝生物工程有限公司),Western blot转膜液、一抗稀释液、二抗稀释液、封闭液、RIPA细胞裂解液、BCA蛋白浓度测定试剂盒、SDS⁃PAGE凝胶电泳配制试剂盒、线粒体膜电位检测试剂盒JC⁃1 (上海碧云天生物技术有限公司),PCR引物(上海生工生物工程股份有限公司),PI staining检测试剂盒、Annexin V⁃PE/7AAD凋亡检测试剂盒(BD公司,美国),CCK⁃8(同仁化工,日本),Lipofectamine3000试剂(Invitrogen公司,美国),GDF15、p ⁃ ERK1/2、 ERK1/2抗体(Abcam公司,美国),Caspase3、Cleaved caspase3抗体(CST公司,美国),Bcl⁃2、Bax、β⁃actin抗体(上海碧云天生物技术有限公司)。

  • 1.2 方法

  • 1.2.1 细胞培养

  • BM⁃MSCs使用专用BM⁃MSCs培养基培养,原代细胞复苏于T⁃75细胞培养瓶中,37℃,5%CO2的培养箱中培养,视为P1代细胞。细胞融合度达到85%~90%,1∶3传代为P2代细胞。本研究使用P6~P10代细胞进行后续细胞实验。

  • 1.2.2 细胞分组及放射处理

  • 实验分为3组:空白对照组、干扰对照组和干扰GDF15组。采用Co⁃60 γ射线对细胞进行放射处理,处理剂量为9Gy,剂量率为0.65Gy/min[14]

  • 1.2.3 GDF15 siRNA干扰片段转染BM⁃MSCs

  • 取对数生长期的细胞,接种于6孔板中,融合度在70%。按Lipofectamine3000试剂说明书的比例配比各试剂,室温孵育15min,加入6孔板中,24h后收集细胞检测mRNA的表达,72h后收集细胞检测蛋白的表达。GDF15干扰片段靶序列如下:干扰片段1:5′⁃CCATGGTGCTCATTCAAAA⁃3′;干扰片段2:5′⁃GACTCCAGATTCCGAGAGT⁃3′;干扰片段3: 5′⁃CCAACTGCTGGCAGAATCT⁃3′。

  • 1.2.4 蛋白免疫印迹分析(Western blot)检测蛋白表达

  • 收集细胞,PBS洗1次,加入RIPA裂解液提取细胞总蛋白;冰上裂解30min,10 000 g 4℃离心15min,收上清;BCA蛋白浓度测定试剂盒进行蛋白浓度测定,加入1/5体积蛋白上样缓冲液,煮沸10min,使蛋白变性。根据目的蛋白分子量配制浓度为12%的SDS⁃PAGE凝胶,按照30 μg总蛋白上样,100V电泳,200mA转膜;5%BSA室温封闭1h,一抗孵育4℃过夜,抗体使用浓度:GDF15抗体(1∶1 500)、 p⁃ERK1/2、ERK1/2、Caspase3、Cleaved caspase3、Bcl⁃ 2、Bax、β⁃actin抗体(1∶1 000),TBST洗膜3次,二抗室温孵育2h,洗膜3次,ECL显影曝光并拍照,实验重复3次。

  • 1.2.5 RT⁃qPCR检测mRNA水平

  • 收集细胞,每管加入1mL TRIzol试剂提取细胞总RNA,移液枪反复吹打直至无明显沉淀,室温裂解30min;加入上述裂解液体积1/5的氯仿,涡旋室温静置15min,10 000 g 4℃离心15min;取上层无色液体转移至新的无酶EP管中,向上述无色液体中加入同等体积异丙醇,混匀室温静置10min,10 000 g 4℃离心10min,弃上清;加入800 μL 75%乙醇清洗沉淀,7 500 g 4℃离心10min,弃上清,室温干燥沉淀;加入20 μL DEPC水,溶解RNA,测RNA浓度。按照TaKaRa的逆转录试剂盒说明书操作步骤反转录得到cDNA,进行RT⁃qPCR。引物序列:GDF15上游:5′ ⁃GACCCTCAGAGTTGCACTCC ⁃ 3′,下游:5′ ⁃ GCCTGGTTAGCAGGTCCTC ⁃ 3′;β ⁃ actin上游:5′ ⁃ AGCCTCGCCTTTGCCGA⁃3′,下游:5′⁃CTGGTGCCT⁃ GGGGCG⁃3′,每组3个复孔,实验重复3次。

  • 1.2.6 流式细胞仪检测细胞凋亡

  • 取对数生长期细胞,1.5×105 个/孔接种于6孔板中,接种24h后转染各组细胞;9Gy放射处理,24h后收集细胞,1 000r/min离心5min,冰PBS清洗3次; 根据凋亡检测试剂操作说明书,按照每孔100 μL结合液,5 μL Annexin V⁃PE和5 μL 7⁃AAD配制检测液,分别加入各组细胞中,重悬混匀,室温避光孵育15~30min,流式细胞仪检测,每组3个复孔,实验重复3次。

  • 1.2.7 流式细胞仪检测细胞周期

  • 取对数生长期细胞,接种于25cm2 细胞瓶中,细胞融合度达60%转染各组细胞;9Gy放射处理,24h后收集细胞,1 000r/min离心5min,PBS清洗3次, 75%冰乙醇固定,4℃冰箱过夜;PBS洗3次,PI染色,重悬混匀,室温避光孵育15min,流式细胞仪检测,每组3个复孔,实验重复3次。

  • 1.2.8 CCK⁃8检测细胞增殖

  • 取对数生长期细胞,2 000个/孔接种于96孔板中,24h后转染各组细胞,9Gy放射处理;72h后弃培养基,按照每孔100 μL培养基,10 μL CCK⁃8试剂配制检测液,分别加入96孔板中,37℃避光孵育2h,酶标仪450nm检测吸光度,每组5个复孔,实验重复3次。

  • 1.2.9 免疫荧光染色

  • 取对数生长期细胞2×104 个/孔接种于激光共聚焦皿中,24h后转染各组细胞,9Gy放射处理;分别收取未放射、放射后8h和放射后24h 3个时间点细胞;弃培养基,PBS洗1次,37℃ 4%多聚甲醛室温固定30min,PBS洗3次;0.2%Triton X⁃100破膜30min, PBS洗3次:5%BSA封闭1h;GDF15一抗(1∶200) 4℃孵育过夜,PBS洗3次;二抗37℃避光孵育3h, PBS洗3次;DAPI染色10min,室温避光,PBS洗3次;抗荧光淬灭封片剂封片,荧光显微镜观察拍照,实验重复3次。

  • 1.2.10 线粒体膜电位检测

  • 取对数生长期细胞,2×104 个/孔接种于24孔板中,24h后转染各组细胞,9Gy放射处理;分别收取未放射、放射后8h细胞。阳性对照设置:阳性对照孔中加入碳酰氰基⁃对⁃氯苯腙(CCCP,使用浓度为10 μmol/L)处理细胞20min。吸除培养基,PBS洗1次,加入500 μL JC⁃1染色工作液,细胞培养箱中孵育20min;吸除上清,PBS洗2次,加入1mL细胞培养液,荧光显微镜观察拍照,实验重复3次。

  • 1.3 统计学方法

  • 采用SPSS 19.0软件进行统计分析,实验计量数据以均数±标准差(x- ± s)表示。同一测量值在不同的时间比较采用重复测量的方差分析;两组间比较采用独立样本 t 检验;多组间比较采用单因素方差分析和LSD⁃t 检验,方差不齐数据采用Tamhane’s T2检验进行比较。P ˂ 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 放射诱导BM⁃MSCs中GDF15表达上调

  • 为明确放射后BM⁃MSCs中GDF15的表达情况,分别通过RT⁃qPCR、Western blot和免疫荧光检测细胞经放射处理后不同时间点GDF15的mRNA和蛋白表达水平。结果显示,GDF15的mRNA和蛋白水平在放射后显著升高(图1A、B)。同时,免疫荧光的结果也证实,放射可诱导GDF15的表达增加(图1C)。综上,在BM⁃MSCs细胞经放射诱导后GDF15的表达上调。

  • 2.2 GDF15干扰效果验证

  • 为明确放射后高表达的GDF15在BM⁃MSCs放射抗性中的作用,我们采用脂质体转染siRNA片段干扰GDF15的表达,并于细胞转染24h后,进行mRNA检测。结果显示,与干扰对照组相比,3个干扰片段均能有效降低GDF15的mRNA表达水平(P ˂ 0.05,图2A),其中干扰片段1的mRNA抑制效率达到75%;细胞转染72h后,进行蛋白检测,结果显示,与干扰对照组相比,3个干扰片段均能有效降低GDF15蛋白表达(P ˂ 0.05,图3B、C)。综合上述结果,干扰片段1的抑制效果最好,并拟采用此片段进行后续的干扰实验。

  • 2.3 干扰GDF15的表达可降低BM⁃MSCs放射后细胞增殖

  • 为明确GDF15表达水平对放射前后细胞增殖的影响,我们检测了细胞周期和细胞增殖活力。收取未放射和放射后24h的BM⁃MSCs细胞,通过PI染色检测细胞周期,结果显示,未放射条件下,干扰GDF15对BM⁃MSCs周期无明显影响;放射后24h时,干扰GDF15组G2期比例显著增加(P ˂ 0.05,图3A、B)。收取放射3d后的细胞,CCK⁃8法检测细胞增殖活力,结果显示与细胞周期结果相符,干扰GDF15几乎不影响未放射时的细胞增殖活力,却可导致放射后BM⁃MSCs细胞增殖活力显著降低(P ˂ 0.01,图3C)。综上所述,干扰GDF15基因表达可导致放射后BM⁃MSCs细胞G2期阻滞并且降低细胞增殖活力。

  • 图1 BM⁃MSCs经放射后GDF15的表达情况

  • Fig.1 The expression of GDF15in BM⁃MSCs after irradiation

  • 图2 RT⁃qPCR和Western blot验证GDF15干扰效果

  • Fig.2 The interference effect of GDF15in BM⁃MSCs were detected by RT⁃qPCR and Western blot

  • 图3 干扰GDF15抑制BM⁃MSCs放射后细胞周期及增殖

  • Fig.3 GDF15interference inhibited the cell cycle and proliferation of BM⁃MSCs after irradiation

  • 2.4 干扰GDF15表达可增加BM⁃MSCs放射后细胞凋亡

  • 为进一步明确GDF15表达对BM⁃MSCs放射抗性的影响,我们通过Annexin V⁃PE/7AAD染色及检测Cleaved caspase3和JC ⁃ 1变化水平,明确干扰GDF15表达对BM⁃MSCs放射后细胞凋亡的影响。检测结果如图4A、B所示,未放射条件下,干扰GDF15表达对细胞的凋亡无显著性影响。而放射后,干扰GDF15可导致细胞凋亡率显著增加(P ˂ 0.05)。与之相应,Cleaved caspase3的Western blot结果证实,干扰GDF15可使放射后Caspase3的剪切水平增加(图4C)。同时,检测JC⁃1细胞线粒体膜电位的变化情况发现,在未放射条件下,对照组与干扰GDF15红/绿荧光强度比值无统计差异(P ˃ 0.05)。而放射后,干扰GDF15组与其干扰对照组相比,红/绿荧光强度比值显著降低,提示线粒体膜电位下降(P ˂ 0.001,图5)。上述结果表明,干扰GDF15表达可显著增加BM⁃MSCs细胞放射后凋亡。

  • 2.5 干扰GDF15表达可抑制BM⁃MSCs的ERK/Bcl⁃ 2信号通路活化

  • 为进一步明确干扰GDF15表达增加BM⁃MSCs放射敏感性的分子机制,我们检测了GDF15下游与细胞凋亡密切相关的关键通路ERK/Bcl⁃2的活化情况[15]。Western blot检测结果表明:与空白对照组和干扰对照组相比,干扰GDF15后,ERK1/2磷酸化水平明显降低,表明GDF15可以通过增加ERK1/2的磷酸化调节其下游蛋白的表达。与对照组相比,干扰GDF15导致抗凋亡关键分子Bcl⁃2蛋白水平明显降低,而促凋亡分子Bax蛋白水平明显升高(图6)。综上所述,干扰GDF15表达可通过抑制ERK信号通路活化,调节下游Bcl⁃2和Bax蛋白表达,进而增加BM⁃MSCs放射后凋亡。

  • 3 讨论

  • 在ARS的研究中,骨髓造血损伤是各种放射病最基本和最致命的表现之一,并贯穿各型ARS的始终[16]。因此,对于骨髓造血功能损伤的防治是ARS防治的关键和重要研究领域。BM⁃MSCs是一类具有自我更新和多向分化潜能的干细胞,可以分化为包括成骨细胞、脂肪细胞、软骨细胞、内皮细胞和成纤维细胞在内的骨髓基质细胞,以形成HSCs骨髓内定植的龛位,也可分泌多种造血因子、细胞因子和趋化因子建立细胞因子网络,对于正常造血功能的维持和损伤后造血重建都至关重要[17]。因此研究BM⁃ MSCs的放射抗性,对于造血重建具有重大意义。

  • 凋亡是放射诱导细胞死亡的主要原因之一,而BM⁃MSCs对凋亡的抗性被认为是放射耐受的关键机制。已有研究表明,放射后BM⁃MSCs的抗凋亡作用与较强的DNA损伤修复能力和较快的活性氧清除有关[18]。我们前期研究发现,GDF15升幅高的BM⁃MSCs凋亡率较低[13],提示GDF15可能参与BM⁃ MSCs的放射抗性,但具体机制未明。本研究发现放射可诱导BM⁃MSCs中GDF15表达显著上调,而干扰其表达可导致放射后细胞凋亡率增加,证实GDF15可促进细胞的放射抵抗。细胞对放射的敏感性与所处的周期密切相关,处于G1/S期的细胞放射敏感性低,处于G2期的细胞放射敏感性高[19]。已有文献报道,GDF15参与细胞周期的调控。如在宫颈癌细胞中,GDF15诱导c⁃Myc的表达,c⁃Myc作为调节细胞周期的经典转录因子,可诱导CDK1和cyclinB1的上调,CDK1⁃cyclinB1形成复合物促进细胞通过G2期[720]。本研究也证实干扰GDF15,放射后BM ⁃ MSCs的G2期阻滞增加。但是否GDF15通过该机制参与放射后BM⁃MSCs的G2期调控有待进一步研究。

  • 图4 干扰GDF15对BM⁃MSCs放射前后细胞凋亡的影响

  • Fig.4 The effects of GDF15interference on the apoptosis of BM⁃MSCs before and after irradiation

  • 线粒体是放射损伤的重要靶点。放射可直接作用于线粒体DNA,也可间接通过辐解产生的活性氧损伤线粒体的蛋白及细胞膜系统,破坏电子传递链(ETC)复合物Ⅰ、Ⅱ等,从而导致线粒体膜通透性改变、融合⁃分裂动态平衡失衡、线粒体膜电位下降等一系列结构和功能损害[21]。此外,GDF15也是线粒体功能损伤的标志物[22]。因此,我们检测了干扰GDF15对放射前后线粒体膜电位以及Caspase3剪切情况的影响。正常的线粒体膜电位是维持线粒体功能的关键,而其膜电位的降低是细胞凋亡早期的一个标志性事件[23]。本研究结果显示干扰GDF15对正常BM⁃MSCs线粒体膜电位无显著影响,但放射后却可以显著降低线粒体膜电位。此外,干扰GDF15的BM⁃MSCs放射后Cleaved caspase3水平最高。综上所述,干扰GDF15诱导BM⁃MSCs放射敏感性增加可能与线粒体凋亡途径增强有关。

  • ERK信号通路在BM⁃MSCs的增殖、分化和凋亡中具有重要作用。抑制ERK1/2磷酸化可通过调控Bax和Bcl⁃2表达水平,激活Caspase3,导致细胞凋亡[24]。在多种肿瘤细胞中,已有研究证实GDF15可结合酪氨酸激酶受体ErbB2,激活ErbB2的激酶活性,进而磷酸化ERK1/2调控细胞增殖[725]。因此,我们检测了在BM⁃MSCs中GDF15对ERK1/2磷酸化的影响,结果显示干扰GDF15抑制了ERK1/2的磷酸化水平。ERK1/2对细胞凋亡的调控主要通过对Bcl⁃2和Bax蛋白调节实现。研究表明,ERK1/2依赖性磷酸化可以激活cAMP反应性元素结合蛋白 (CREB),磷酸化的CREB入核并与Bcl⁃2的启动子结合,从而促进Bcl⁃2转录[24]。当Bcl⁃2表达较Bax多时,两者可以结合形成异源二聚体,抑制细胞的凋亡,而Bcl⁃2表达较Bax少时,Bax自身会形成同源二聚体,促进细胞的凋亡[27]。既往研究表明,与放射敏感性细胞相比,MSCs高表达抗凋亡蛋白Bcl⁃2,低表达促凋亡蛋白Bax[1]。因此,本研究检测了干扰GDF15之后,Bcl⁃2和Bax在BM⁃MSCs中的表达。干扰GDF15后Bcl⁃2蛋白水平降低,Bax蛋白水平升高,表明GDF15对BM⁃MSCs放射抗性的调控可能通过ERK/Bcl⁃2通路实现。

  • 图5 干扰GDF15后BM⁃MSCs放射前后线粒体膜电位变化

  • Fig.5 The effect of GDF15interference on mitochondrial membrane potential of BM⁃MSCs before and after irradiation

  • 图6 干扰GDF15后BM⁃MSCs放射后ERK及其下游蛋白的表达

  • Fig.6 The effect of GDF15interference on ERK and its downstream proteins of BM⁃MSCs after irradiation

  • 综上所述,本研究证明了GDF15作为放射应激分子,通过激活ERK/Bcl⁃2通路活性,参与BM⁃MSCs的放射抗性调控,为放射后造血微环境的重建提供了调控靶分子。然而,BM⁃MSCs细胞中GDF15影响ERK磷酸化的具体机制尚不清楚,有待进一步的研究探索。

  • 参考文献

    • [1] SUGRUE T,BROWN J A,LOWNDES N F,et al.Multi⁃ ple facets of the DNA damage response contribute to the radioresistance of mouse mesenchymal stromal cell lines [J].Stem Cells,2013,31(1):137-145

    • [2] MENDEZ⁃FERRER S,MICHURINA T V,FERRARO F,et al.Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J].Nature,2010,466(738):829-834

    • [3] FRENETTE P S,PINHO S,LUCAS D,et al.Mesenchy⁃ mal stem cell:keystone of the hematopoietic stem cell niche and a stepping⁃stone for regenerative medicine[J].Annu Rev Immunol,2013,31:285-316

    • [4] NICOLAY N H,LOPEZ PEREZ R,SAFFRICH R,et al.Radio ⁃ resistant mesenchymal stem cells:mechanisms of resistance and potential implications for the clinic[J].On⁃ cotarget,2015,6(23):19366-19380

    • [5] CONTE M,MARTUCCI M,MOSCONI G,et al.GDF15 plasma level is inversely associated with level of physical activity and correlates with markers of inflammation and muscle weakness[J].Front Immunol,2020,11:915

    • [6] ZHANG Y,MOSZCZYNSKI L A,LIU Q,et al.Over ⁃ex⁃ pression of growth differentiation factor 15(GDF15)pre⁃ venting cold ischemia reperfusion(I/R)injury in heart transplantation through Foxo3a signaling[J].Oncotarget,2017,8(22):36531-36544

    • [7] LI S,MA Y M,ZHENG P S,et al.GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2[J].J Exp Clin Cancer Res,2018,37(1):80

    • [8] BARONI M,MARIE S,FEDATTO P F,et al.Distinct re⁃ sponse to GDF15 knockdown in pediatric and adult glio⁃ blastoma cell lines[J].J Neurooncol,2018,139(1):51-60

    • [9] LUAN H H,WANG A,HILLIARD B K,et al.GDF15 is an inflammation ⁃induced central mediator of tissue toler⁃ ance[J].Cell,2019,178(5):1231-1244

    • [10] ELING T E,BAEK S J,SHIM M,et al.NSAID activated gene(NAG ⁃ 1),a modulator of tumorigenesis[J].J Bio⁃ chem Mol Biol,2006,39(6):649-655

    • [11] ZIMMERS T A,GUTIERREZ J C,KONIARIS L G.Loss of GDF⁃15 abolishes sulindac chemoprevention in the Ap⁃ cMin/+ mouse model of intestinal cancer[J].J Cancer Res Clin Oncol,2010,136(4):571-576

    • [12] HUSAINI Y,QIU M R,LOCKWOOD G P,et al.Macro⁃ phage inhibitory cytokine⁃1(MIC⁃1/GDF15)slows cancer development but increases metastases in TRAMP prostate cancer prone mice[J].PLoS One,2012,7(8):e43833

    • [13] XIANG Y,WU C,WU J,et al.In vitro expansion affects the response of human bone marrow stromal cells to irradi⁃ ation[J].Stem Cell Res Ther,2019,10(1):82

    • [14] JIANG Z,JIA J,YUE C,et al.Haploidentical hematopoi⁃ etic SCT using helical tomotherapy for total⁃body irradia⁃ tion and targeted dose boost in patients with high⁃risk/re⁃ fractory acute lymphoblastic leukemia[J].Bone Marrow Transplant,2018,53(4):438-448

    • [15] SINGH R,LETAI A,SAROSIEK K.Regulation of apopto⁃ sis in health and disease:the balancing act of BCL⁃2 fami⁃ ly proteins[J].Nat Rev Mol Cell Biol,2019,20(3):175-193

    • [16] LI C,LU L,ZHANG J,et al.Granulocyte colony⁃stimulat⁃ ing factor exacerbates hematopoietic stem cell injury after irradiation[J].Cell Biosci,2015,5:65

    • [17] CHEW E,PRAKASH R,KHAN W.Mesenchymal stem cells in human meniscal regeneration:a systematic review [J].Ann Med Surg(Lond),2017,24:3-7

    • [18] CHEN L,RAN Q,XIANG Y,et al.Co⁃activation of PKC⁃ δ by CRIF1 modulates oxidative stress in bone marrow multipotent mesenchymal stromal cells after irradiation by phosphorylating NRF2 Ser40[J].Theranostics,2017,7(10):2634-2648

    • [19] PAWLIK T M,KEYOMARSI K.Role of cell cycle in me⁃ diating sensitivity to radiotherapy[J].Int J Radiat Oncol Biol Phys,2004,59(4):928-942

    • [20] YANG Y,XUE K,LI Z,et al.c⁃Myc regulates the CDK1/cyclin B1 dependent G2/M cell cycle progression by his⁃ tone H4 acetylation in Raji cells[J].Int J Mol Med,2018,41(6):3366-3378

    • [21] AZIMZADEH O,SCHERTHAN H,SARIOGLU H,et al.Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation[J].Proteomics,2011,11(16):3299-3311

    • [22] FUJITA Y,ITO M,KOJIMA T,et al.GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mi⁃tochondrial diseases[J].Mitochondrion,2015,20:34-42

    • [23] HUSSAIN S.Measurement of nanoparticle⁃induced mito⁃ chondrial membrane potential alterations[J].Methods Mol Biol,2019,1894:123-131

    • [24] WILSON B E,MOCHON E,BOXER L M.Induction of bcl⁃ 2 expression by phosphorylated CREB proteins during B⁃ cell activation and rescue from apoptosis[J].Mol Cell Bi⁃ ol,1996,16(10):5546-5556

    • [25] KIM K K,LEE J J,YANG Y,et al.Macrophage inhibitory cytokine⁃1 activates AKT and ERK⁃1/2 via the transacti⁃ vation of ErbB2 in human breast and gastric cancer cells [J].Carcinogenesis,2008,29(4):704-712

    • [26] PARK Y J,LEE H,LEE J H.Macrophage inhibitory cyto⁃ kine⁃1 transactivates ErbB family receptors via the activa⁃ tion of Src in SK ⁃ BR ⁃ 3 human breast cancer cells[J].BMB Rep,2010,43(2):91-96

    • [27] HE X,SUN J,HUANG X.Expression of caspase ⁃3,Bax and Bcl ⁃2 in hippocampus of rats with diabetes and sub⁃ arachnoid hemorrhage[J].Exp Ther Med,2018,15(1):873-877

  • 参考文献

    • [1] SUGRUE T,BROWN J A,LOWNDES N F,et al.Multi⁃ ple facets of the DNA damage response contribute to the radioresistance of mouse mesenchymal stromal cell lines [J].Stem Cells,2013,31(1):137-145

    • [2] MENDEZ⁃FERRER S,MICHURINA T V,FERRARO F,et al.Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J].Nature,2010,466(738):829-834

    • [3] FRENETTE P S,PINHO S,LUCAS D,et al.Mesenchy⁃ mal stem cell:keystone of the hematopoietic stem cell niche and a stepping⁃stone for regenerative medicine[J].Annu Rev Immunol,2013,31:285-316

    • [4] NICOLAY N H,LOPEZ PEREZ R,SAFFRICH R,et al.Radio ⁃ resistant mesenchymal stem cells:mechanisms of resistance and potential implications for the clinic[J].On⁃ cotarget,2015,6(23):19366-19380

    • [5] CONTE M,MARTUCCI M,MOSCONI G,et al.GDF15 plasma level is inversely associated with level of physical activity and correlates with markers of inflammation and muscle weakness[J].Front Immunol,2020,11:915

    • [6] ZHANG Y,MOSZCZYNSKI L A,LIU Q,et al.Over ⁃ex⁃ pression of growth differentiation factor 15(GDF15)pre⁃ venting cold ischemia reperfusion(I/R)injury in heart transplantation through Foxo3a signaling[J].Oncotarget,2017,8(22):36531-36544

    • [7] LI S,MA Y M,ZHENG P S,et al.GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2[J].J Exp Clin Cancer Res,2018,37(1):80

    • [8] BARONI M,MARIE S,FEDATTO P F,et al.Distinct re⁃ sponse to GDF15 knockdown in pediatric and adult glio⁃ blastoma cell lines[J].J Neurooncol,2018,139(1):51-60

    • [9] LUAN H H,WANG A,HILLIARD B K,et al.GDF15 is an inflammation ⁃induced central mediator of tissue toler⁃ ance[J].Cell,2019,178(5):1231-1244

    • [10] ELING T E,BAEK S J,SHIM M,et al.NSAID activated gene(NAG ⁃ 1),a modulator of tumorigenesis[J].J Bio⁃ chem Mol Biol,2006,39(6):649-655

    • [11] ZIMMERS T A,GUTIERREZ J C,KONIARIS L G.Loss of GDF⁃15 abolishes sulindac chemoprevention in the Ap⁃ cMin/+ mouse model of intestinal cancer[J].J Cancer Res Clin Oncol,2010,136(4):571-576

    • [12] HUSAINI Y,QIU M R,LOCKWOOD G P,et al.Macro⁃ phage inhibitory cytokine⁃1(MIC⁃1/GDF15)slows cancer development but increases metastases in TRAMP prostate cancer prone mice[J].PLoS One,2012,7(8):e43833

    • [13] XIANG Y,WU C,WU J,et al.In vitro expansion affects the response of human bone marrow stromal cells to irradi⁃ ation[J].Stem Cell Res Ther,2019,10(1):82

    • [14] JIANG Z,JIA J,YUE C,et al.Haploidentical hematopoi⁃ etic SCT using helical tomotherapy for total⁃body irradia⁃ tion and targeted dose boost in patients with high⁃risk/re⁃ fractory acute lymphoblastic leukemia[J].Bone Marrow Transplant,2018,53(4):438-448

    • [15] SINGH R,LETAI A,SAROSIEK K.Regulation of apopto⁃ sis in health and disease:the balancing act of BCL⁃2 fami⁃ ly proteins[J].Nat Rev Mol Cell Biol,2019,20(3):175-193

    • [16] LI C,LU L,ZHANG J,et al.Granulocyte colony⁃stimulat⁃ ing factor exacerbates hematopoietic stem cell injury after irradiation[J].Cell Biosci,2015,5:65

    • [17] CHEW E,PRAKASH R,KHAN W.Mesenchymal stem cells in human meniscal regeneration:a systematic review [J].Ann Med Surg(Lond),2017,24:3-7

    • [18] CHEN L,RAN Q,XIANG Y,et al.Co⁃activation of PKC⁃ δ by CRIF1 modulates oxidative stress in bone marrow multipotent mesenchymal stromal cells after irradiation by phosphorylating NRF2 Ser40[J].Theranostics,2017,7(10):2634-2648

    • [19] PAWLIK T M,KEYOMARSI K.Role of cell cycle in me⁃ diating sensitivity to radiotherapy[J].Int J Radiat Oncol Biol Phys,2004,59(4):928-942

    • [20] YANG Y,XUE K,LI Z,et al.c⁃Myc regulates the CDK1/cyclin B1 dependent G2/M cell cycle progression by his⁃ tone H4 acetylation in Raji cells[J].Int J Mol Med,2018,41(6):3366-3378

    • [21] AZIMZADEH O,SCHERTHAN H,SARIOGLU H,et al.Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation[J].Proteomics,2011,11(16):3299-3311

    • [22] FUJITA Y,ITO M,KOJIMA T,et al.GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mi⁃tochondrial diseases[J].Mitochondrion,2015,20:34-42

    • [23] HUSSAIN S.Measurement of nanoparticle⁃induced mito⁃ chondrial membrane potential alterations[J].Methods Mol Biol,2019,1894:123-131

    • [24] WILSON B E,MOCHON E,BOXER L M.Induction of bcl⁃ 2 expression by phosphorylated CREB proteins during B⁃ cell activation and rescue from apoptosis[J].Mol Cell Bi⁃ ol,1996,16(10):5546-5556

    • [25] KIM K K,LEE J J,YANG Y,et al.Macrophage inhibitory cytokine⁃1 activates AKT and ERK⁃1/2 via the transacti⁃ vation of ErbB2 in human breast and gastric cancer cells [J].Carcinogenesis,2008,29(4):704-712

    • [26] PARK Y J,LEE H,LEE J H.Macrophage inhibitory cyto⁃ kine⁃1 transactivates ErbB family receptors via the activa⁃ tion of Src in SK ⁃ BR ⁃ 3 human breast cancer cells[J].BMB Rep,2010,43(2):91-96

    • [27] HE X,SUN J,HUANG X.Expression of caspase ⁃3,Bax and Bcl ⁃2 in hippocampus of rats with diabetes and sub⁃ arachnoid hemorrhage[J].Exp Ther Med,2018,15(1):873-877