en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

田兆方,E⁃mail:lyh0729@163.com

中图分类号:R562.2

文献标识码:A

文章编号:1007-4368(2021)07-984-08

DOI:10.7655/NYDXBNS20210708

参考文献 1
ASHER I,PEARCE N.Global burden of asthma among children[J].Int J Tuberc Lung Dis,2014,18(11):1269-1278
参考文献 2
刘传合,洪建国,尚云晓,等.中国16城市儿童哮喘患病率20年对比研究[J].中国实用儿科杂志,2015,30(8):596-600
参考文献 3
MARTINEZ F D.Development of wheezing disorders and asthma in preschool children[J].Pediatrics,2002,109(2 Suppl):362-367
参考文献 4
BEEN J V,LUGTENBERG M J,SMETS E,et al.Preterm birth and childhood wheezing disorders:a systematic re⁃ view and meta ⁃ analysis[J].PLoS Med,2014,11(1):e1001596
参考文献 5
VOLLSÆTER M,RØKSUND O D,EIDE G E,et al.Lung function after preterm birth:development from mid⁃child⁃ hood to adulthood[J].Thorax,2013,68(8):767-776
参考文献 6
PALTA M,SADEK⁃BADAWI M,SHEEHY M,et al.Re⁃ spiratory symptoms at age 8 years in a cohort of very low birth weight children[J].Am J Epidemiol,2001,154(6):521-529
参考文献 7
HURST J R,BECKMANN J,NI Y,et al.Respiratory and cardiovascular outcomes in survivors of extremely preterm birth at 19 years[J].Am J Respir Crit Care Med,2020,202(3):422-432
参考文献 8
FIERRO J L,PASSARELLA M,LORCH S.Prematurity as an independent risk factor for the development of pul⁃ monary disease[J].J Pediatr,2019,213:110-114
参考文献 9
KUMAR V H,LAKSHMINRUSIMHA S,KISHKURNO S,et al.Neonatal hyperoxia increases airway reactivity and inflammation in adult mice[J].Pediatr Pulmonol,2016,51(11):1131-1141
参考文献 10
MABALIRAJAN U,DINDA A K,KUMAR S,et al.Mito⁃ chondrial structural changes and dysfunction are associat⁃ ed with experimental allergic asthma[J].J Immunol,2008,181(5):3540-3548
参考文献 11
DETORAKI A,GRANATA F,STAIBANO S,et al.Angio⁃ genesis and lymphangiogenesis in bronchial asthma[J].Allergy,2010,65(8):946-958
参考文献 12
王会芳,程怀平,吴蝉桐,等.CXCL4与高氧诱导新生小鼠性别差异性肺损伤的相关研究[J].南京医科大学学报(自然科学版),2019,39(8):1142-1146
参考文献 13
CARDOEN F,VERMEULEN F,PROESMANS M,et al.Lung function evolution in children with old and new type bronchopulmonary dysplasia:a retrospective cohort analy⁃ sis[J].Eur J Pediatr,2019,178(12):1859-1866
参考文献 14
HALVORSEN T,SKADBERG B T,EIDE G E,et al.Char⁃ acteristics of asthma and airway hyper ⁃ responsiveness after premature birth[J].Pediatr Allergy Immunol,2005,16(6):487-494
参考文献 15
HENNESSY E M,BRACEWELL M A,WOOD N,et al.Respiratory health in pre ⁃ school and school age children following extremely preterm birth[J].Arch Dis Child,2008,93(12):1037-1043
参考文献 16
HOLGATE S T.The airway epithelium is central to the pathogenesis of asthma[J].Allergol Int,2008,57(1):1-10
参考文献 17
WANG H,JAFRI A,MARTIN R J,et al.Severity of neo⁃ natal hyperoxia determines structural and functional changes in developing mouse airway[J].Am J Physiol Lung Cell Mol Physiol,2014,307(4):L295-L301
参考文献 18
ALI M K,KIM R Y,BROWN A C,et al.Crucial role for lung Iron level and regulation in the pathogenesis and se⁃ verity of asthma[J].Eur Respir J,2020,55(4):1901340
参考文献 19
MALMSTRÖM K,LOHI J,SAJANTILA A,et al.Immuno⁃ histology and remodeling in fatal pediatric and adolescent asthma[J].Respir Res,2017,18(1):94
参考文献 20
MOSTAÇO ⁃GUIDOLIN L B,OSEI E T,ULLAH J,et al.Defective fibrillar collagen organization by fibroblasts con⁃ tributes to airway remodeling in asthma[J].Am J Respir Crit Care Med,2019,200(4):431-443
参考文献 21
PENG Q,LAI D,NGUYEN T T,et al.Multiple beta 1 in⁃ tegrins mediate enhancement of human airway smooth muscle cytokine secretion by fibronectin and type I colla⁃ gen[J].J Immunol,2005,174(4):2258-2264
参考文献 22
INGRAM J L,SLADE D,CHURCH T D,et al.Role of ma⁃ trix metalloproteinases ⁃ 1 and ⁃ 2 in interleukin ⁃ 13 ⁃ sup⁃ pressed elastin in airway fibroblasts in asthma[J].Am J Respir Cell Mol Biol,2016,54(1):41-50
参考文献 23
BARALDI E,FILIPPONE M,TREVISANUTO D,et al.Pulmonary function until two years of life in infants with bronchopulmonary dysplasia[J].Am J Respir Crit Care Med,1997,155(1):149-155
参考文献 24
FAKHOURY K F,SELLERS C,SMITH E O,et al.Serial measurements of lung function in a cohort of young chil⁃ dren with bronchopulmonary dysplasia[J].Pediatrics,2010,125(6):e1441-e1447
参考文献 25
BROSTRÖM E B,THUNQVIST P,ADENFELT G,et al.Obstructive lung disease in children with mild to severe BPD[J].Respir Med,2010,104(3):362-370
参考文献 26
FAWKE J,LUM S,KIRKBY J,et al.Lung function and respiratory symptoms at 11 years in children born ex⁃ tremely preterm the EPICure study[J].Am J Respir Crit Care Med,2010,182(2):237-245
参考文献 27
GOUGH A,LINDEN M,SPENCE D,et al.Impaired lung function and health status in adult survivors of broncho⁃ pulmonary dysplasia[J].Eur Respir J,2014,43(3):808-816
参考文献 28
BONIKOS D S,BENSCH K G,LUDWIN S K,et al.Oxy⁃ gen toxicity in the newborn.The effect of prolonged 100 percent O2 exposure on the lungs of newborn mice[J].Lab Invest,1975,32(5):619⁃635
参考文献 29
VENKAYYA R,LAM M,WILLKOM M,et al.The Th2 lymphocyte products IL ⁃4 and IL ⁃13 rapidly induce air⁃ way hyperresponsiveness through direct effects on resi⁃ dent airway cells[J].Am J Respir Cell Mol Biol,2002,26(2):202-208
参考文献 30
ROBINSON D S,HAMID Q,YING S,et al.Predominant TH2 ⁃ like bronchoalveolar T ⁃ lymphocyte population in atopic asthma[J].N Engl J Med,1992,326(5):298-304
参考文献 31
O’SULLIVAN S,CORMICAN L,FAUL J L,et al.Activat⁃ ed,cytotoxic CD8(+)T lymphocytes contribute to the pa⁃ thology of asthma death[J].Am J Respir Crit Care Med,2001,164(4):560-564
参考文献 32
DAKHAMA A,COLLINS M L,OHNISHI H,et al.IL⁃13⁃ producing BLT1⁃positive CD8 cells are increased in asth⁃ ma and are associated with airway obstruction[J].Aller⁃ gy,2013,68(5):666-673
参考文献 33
HAMELMANN E,OSHIBA A,PALUH J,et al.Require⁃ ment for CD8+ T cells in the development of airway hyper⁃responsiveness in a marine model of airway sensitization [J].J Exp Med,1996,183(4):1719-1729
参考文献 34
MURPHY M P.How mitochondria produce reactive oxy⁃ gen species[J].Biochem J,2009,417(1):1-13
参考文献 35
OBERKAMPF M,GUILLEREY C,MOURIÈS J,et al.Mi⁃ tochondrial reactive oxygen species regulate the induction of CD8(+)T cells by plasmacytoid dendritic cells[J].Nat Commun,2018,9(1):2241
参考文献 36
MIYAHARA N,SWANSON B J,TAKEDA K,et al.Effec⁃ tor CD8 + T cells mediate inflammation and airway hyper⁃ responsiveness[J].Nat Med,2004,10(8):865-869
参考文献 37
PUNNONEN J,AVERSA G,COCKS B G,et al.Interleu⁃ kin 13 induces interleukin 4 ⁃independent IgG4 and IgE synthesis and CD23 expression by human B cells[J].Proc Natl Acad Sci U S A,1993,90(8):3730-3734
参考文献 38
HORIE S,OKUBO Y,HOSSAIN M,et al.Interleukin⁃13 but not interleukin ⁃ 4 prolongs eosinophil survival and induces eosinophil chemotaxis[J].Intern Med,1997,36(3):179-185
参考文献 39
RAMIREZ⁃ICAZA G,MOHAMMED K A,NASREEN N,et al.Th2 cytokines IL⁃4 and IL⁃13 downregulate paxillin expression in bronchial airway epithelial cells[J].J Clin Immunol,2004,24(4):426-434
参考文献 40
KONDO M,TAMAOKI J,TAKEYAMA K,et al.Elimina⁃ tion of IL ⁃ 13 reverses established goblet cell metaplasia into ciliated epithelia in airway epithelial cell culture[J].Allergol Int,2006,55(3):329-336
参考文献 41
REGAL J,LAWRENCE B,JOHNSON A,et al.Neonatal oxygen exposure alters airway hyper ⁃ responsiveness but not the response to allergen challenge in adult mice[J].Pediatr Allergy Immunol,2014,25(2):180-186
目录contents

    摘要

    目的:探讨生后早期高氧暴露卵清蛋白(ovalbumin,OVA)诱导支气管哮喘模型小鼠的影响。方法:32 只雌性 BALB/c新生小鼠随机分为4组:空气+PBS组、高氧+PBS组、空气+OVA组、高氧+OVA组,每组8只。高氧+PBS组及高氧+OVA 组小鼠置于高氧箱[氧浓度分数(FiO2)≥95%]、空气+PBS组及空气+OVA组置于室内空气(FiO2=21%)中饲养,7 d后4组小鼠同在空气环境下饲养。6周龄后给予空气+OVA组和高氧+OVA组小鼠腹腔注射混悬致敏液[OVA 1 mg/mL + Al(OH)3 1 mg/mL] 100 μL致敏及雾化吸入1% OVA激发,同时空气+PBS组和高氧+PBS组给予等量PBS注射;65 d时处死全部动物,进行支气管肺泡灌洗,留取支气管肺泡灌洗液(broncho alveolar lavage fluid,BALF)行白细胞分类计数,ELISA法检测BALF中白细胞介素 (interleukin,IL)⁃5、IL⁃12、IL⁃13水平和血清中IgE水平;HE染色观察各组小鼠肺组织病理变化。结果:高氧+OVA组较空气+ OVA组血清IgE水平明显升高(P<0.05);BALF中嗜酸性粒细胞、淋巴细胞和单核细胞计数均增加(P<0.05),IL⁃5、IL⁃13水平升高而IL⁃12水平降低(P<0.05);肺组织病理中大量炎细胞浸润,支气管管腔狭窄,气道壁增厚,气道壁厚度面积占比增加,结构重塑明显;辐射状肺泡计数明显增加(P<0.05)。结论:生后早期高氧暴露可加重卵清蛋白诱导的支气管哮喘模型小鼠的气道炎症反应,气道结构重塑明显,但肺损伤表现减轻。

    Abstract

    Objective:This study aims to investigate the effects of early postnatal hyperoxia exposure on ovalbumin(OVA)⁃ induced bronchial asthma mice. Methods:Thirty ⁃ two female BALB/c pups were randomly assigned to four groups:Room Air ⁃ PBS group, Hyperoxia⁃PBS group,Room Air⁃OVA group,and Hyperoxia⁃OVA group,with 8 mice in each group. Mice in Hyperoxia⁃PBS group and Hyperoxia⁃OVA group were exposed to hyperoxia(FiO2 ≥ 95%)for 7 days,meanwhile mice in Room Air⁃PBS group and Room Air⁃ OVA group were raised in room air(FiO2 = 21%). After 7 days,the Hyperoxia⁃PBS group and Hyperoxia⁃OVA group were removed from hyperoxia and raised in the same environment with the Room Air⁃PBS group and the Room Air⁃OVA group. Mice in Room Air⁃ OVA group and Hyperoxia ⁃OVA group were given intraperitoneal injection of sensitization suspension[OVA 1 mg /mL + Al(OH)3] from d65. All the animals were sacrificed for bronchoalveolar lavage,and the lavage fluid was collected for leukocyte count. The levels of IL⁃5,IL⁃12,IL⁃13 in bronchoalveolar lavage fluid(BALF)and IgE in serum were measured by ELISA. The lung tissue of mice in each group was analysis by histological staining for pathological changes. Results:The level of serum IgE in Hyperoxia ⁃OVA group was significantly higher than that in Air ⁃OVA group(P < 0.05);The counts of eosinophils,lymphocytes and monocytes in BALF were increased(P < 0.05),the levels of IL⁃5 and IL⁃13 were increased,but the level of IL⁃12 was decreased(P < 0.05);Inflammatory cells infiltration,bronchial stenosis,and airway wall thickening were observed,airway wall thickness area ratio was increased(P < 0.05), structural remodeling was obvious;radial alveolar count(RAC)was increased significantly(P < 0.05)in the Hyperoxia ⁃OVA group. Conclusion:Early postnatal hyperoxia exposure can aggravate the airway inflammation of ovalbumin induced asthma mice,airway structure remodeling is obvious,but the lung injury is reduced.

    关键词

    支气管哮喘高氧细胞因子小鼠

  • 支气管哮喘(哮喘)是儿童最常见的慢性呼吸道疾病之一[1]。我国目前儿童哮喘患者约有3 000万,且患病率正呈现快速上升趋势[2]。哮喘的致病可追溯到婴幼儿期,70%~80%的儿童哮喘发病于5岁以前[3]。文献报道早产[4]、生后氧疗及支气管肺发育不良(bronchopulmonary dysplasia,BPD)与儿童哮喘的发生有关。儿童哮喘以咳嗽、喘息、肺部炎症和气道高反应性(airway hyperresponsiveness,AHR)为主要特征,而早产儿,尤其是患有BPD的早产儿也经常出现类似哮喘的反复喘息、气道阻塞和AHR等症状[5-6],其肺功能检查主要表现为1秒用力呼气容积(forced expiratory volume in one second,FEV1)和第1秒用力呼气量占用力肺活量的百分比(FEV1/FVC)降低[7],由此被诊断为哮喘的风险增加[8],但具体原因并不清楚。早产儿及BPD患儿生后经常需要氧气支持治疗,已有动物研究证实新生小鼠早期高氧暴露可损害小鼠的气道发育,造成气道炎症和AHR的增加[9],而这与哮喘的发病密切相关。本实验即利用BALB/c小鼠在生后早期高氧暴露基础上建立卵清蛋白(ovalbu⁃ min,OVA)诱导的支气管哮喘小鼠模型,并将之与单纯哮喘模型进行比较,以研究生后早期高氧暴露对OVA诱导的支气管哮喘模型小鼠的影响。

  • 1 材料和方法

  • 1.1 材料

  • 自南京医科大学医药动物实验中心购入出生时间相差30min以内的新生BALB/c小鼠(SPF级) 32只,饲养于南京医科大学附属淮安第一医院动物实验中心,环境温度恒定(24±2)℃,相对湿度60%~70%,昼夜光照各12h,自由饮水及采食,饮水及饲料由动物中心提供。为减少性别对本组研究的干扰,参照文献全部选用雌性小鼠。实验所需FO⁃2型氧浓度测定仪购自无锡法斯达医学设备有限公司,氧气由淮安圣泰气体有限公司提供。本实验经南京医科大学附属淮安第一医院医学伦理委员会批准。

  • 1.2 方法

  • 1.2.1 动物分组

  • 32只雌性BALB/c新生小鼠,记录出生体重后随机分为4组:空气+PBS组、高氧+PBS组、空气+ OVA组和高氧+OVA组,每组8只。

  • 1.2.2 生后早期高氧暴露

  • 高氧+PBS组及高氧+OVA组新生小鼠出生后4h内置于65cm×45cm×70cm自制密闭塑料氧箱[氧浓度分数(FiO2)≥95%,由氧气瓶持续供氧,氧流量3~4L/min]中,由FO⁃2型氧浓度测定仪持续监测,连续暴露7d;空气+PBS组及空气+OVA组新生小鼠则饲养于同环境室内空气(FiO2=21%)中。每日开箱1h,记录小鼠体重,补充饮水和饲料,更换垫料,并将空气组母鼠与高氧组母鼠轮换,以防止母鼠氧中毒。7d后将高氧+PBS组及高氧+OVA组小鼠移出氧箱,与空气+PBS组及空气+OVA组小鼠一同饲养于室内空气中,待其6周龄后以OVA诱导支气管哮喘模型。

  • 1.2.3 OVA诱导支气管哮喘模型的建立

  • 参照文献的方法[10],于第43日龄、50日龄、57日龄分别给予空气+OVA组与高氧+OVA组新生小鼠腹腔注射混悬致敏液[OVA 1mg/mL+Al(OH)3 1mg/mL] 100 μL进行致敏;空气+PBS组及高氧+PBS组新生小鼠腹腔注射等量PBS。于新生小鼠第58日龄起,将空气+OVA组与高氧+OVA组新生小鼠分别置于雾化箱中,雾化吸入激发液(1%OVA)予以激发,连续7d,每次30min;空气+PBS组及高氧+PBS组用等量PBS雾化吸入替代。

  • 1.2.4 标本采集

  • 小鼠于第65日龄用10%水合氯醛0.04mL/10g腹腔注射麻醉,固定四肢,剪开皮肤暴露胸腔,1mL注射器肝素冲管抗凝后心尖部取血,1 600 g 离心10min后留取血清。继续解剖,分离暴露气管,由气管上1/3处置入1mL注射器针头并固定,抽取1mL无菌生理盐水对气管、支气管及肺泡进行灌洗,反复抽吸3次,保证回收率在75%以上,回收的支气管肺泡灌洗液(broncho alveolar lavage fluid,BALF) 4 000r/min离心后分离上清与沉淀,沉淀立即进行白细胞分类计数,上清置于-80℃等待进行细胞因子检测。灌洗结束后留取右肺中叶进行肺组织病理检查。

  • 1.2.5 ELISA检测小鼠血清IgE及BALF中细胞因子水平

  • 采用ELISA检测各组小鼠血清中IgE水平和BALF中白细胞介素(interleukin,IL)⁃5、IL⁃12、IL⁃13水平。ELISA试剂盒购自NeoBioscien公司,实验步骤严格按照试剂盒说明书操作。

  • 1.2.6 BALF细胞分类计数

  • 将留取的BALF沉淀涂片,自然晾干,于4%中性多聚甲醛溶液中固定10min,苏木精⁃伊红(HE) 染色,光镜200倍视野下随机选取4个视野进行细胞分类计数(至少计数300个细胞)。

  • 1.2.7 肺组织标本病理检查

  • 将留取的小鼠右肺中叶固定于4%中性多聚甲醛中,经梯度乙醇脱水、二甲苯透明、浸蜡包埋制成蜡块。切片后经HE染色、脱水、透明、封片,在显微镜下观察,计算气道壁厚度占气道总面积比值以及辐射状肺泡计数值(radical alveolar counts,RAC),并拍照进行图像采集。

  • 1.3 统计学方法

  • 采用SPSS 21.0统计软件对数据进行统计学分析,计量资料以均数±标准差(x- ± s)表示,多组间比较采用单因素方差分析,组间两两比较采用LSD⁃t 检验。P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 小鼠一般生长状况

  • 出生时,空气+PBS组、高氧+PBS组、空气+OVA组和高氧+OVA组小鼠体重无明显差异;7日龄时,高氧+PBS组、高氧+OVA组体重相较于空气+PBS组、空气+OVA组明显减轻,且毛色杂乱,自主活动减少;6周龄时空气+PBS组、空气+OVA组之间及高氧+PBS组、高氧+OVA组之间体重无明显差异,高氧+PBS组、高氧+OVA组体重仍较空气+PBS组、空气+OVA组明显减轻,自主活动仍减少,但毛色杂乱程度减轻,外观几乎无差别。空气+OVA组及高氧+ OVA组小鼠OVA致敏激发后出现明显呼吸急促,口唇发绀,烦躁、抓耳挠腮等表现。65日龄处死时各组体重无明显差异(表1)。

  • 2.2 小鼠肺组织病理检查

  • 空气+PBS组支气管及肺泡结构正常;高氧+PBS组肺泡直径明显增大,数量减少,可见肺泡间隔断裂及少量炎性细胞浸润;空气+OVA组肺泡大小分布较均匀,数量正常,但支气管壁明显增厚,柱状上皮增生肥大,支气管内见明显炎性细胞浸润;高氧+OVA组支气管壁则更为明显增厚,柱状上皮增生肥厚,支气管管腔狭窄,可见明显炎性细胞浸润,肺泡数量较多,大小不一(图1)。空气+OVA组、高氧+OVA组可见支气管壁面积占气道总面积比值增加(P <0.05),高氧+PBS组、高氧+OVA组可见RAC明显减少(P <0.05,图2)。

  • 表1 各组小鼠体重比较

  • Table1 Body weight of mice in each group

  • 与空气+PBS组比较,* P <0.05;与空气+OVA组比较,# P <0.05。

  • 2.3 小鼠血清IgE水平

  • 各组小鼠血清IgE水平差异具有统计学意义 (F=40.709,P <0.05)。空气+OVA组血清IgE含量 [(11.84±2.89)ng/mL)]相对于空气+PBS组[(3.55± 0.91)ng/mL]明显增高(P <0.05);高氧+OVA组血清IgE含量[(15.63±3.57)ng/mL]相对于空气+OVA组 [(11.84±2.89)ng/mL]明显升高(P <0.05),但空气+ PBS组[(3.55±0.91)ng/mL]与高氧+PBS组[(4.38± 2.26)ng/mL]IgE水平无差别(P >0.05,图3)。

  • 2.4 小鼠BALF细胞计数

  • 各组小鼠BALF白细胞分类计数结果显示:与空气+PBS组相比,高氧+PBS组白细胞总数明显上升(P <0.05),分类计数后嗜酸性粒细胞、淋巴细胞、单核细胞计数虽有上升,但差异不具有统计学意义。与空气+PBS组相比,空气+OVA组白细胞总数及嗜酸性粒细胞计数均明显升高(P <0.05);此外淋巴细胞计数增加,单核细胞计数降低,但差异都不具有统计学意义。与空气+OVA组相比,高氧+OVA组白细胞总数、嗜酸性粒细胞计数、淋巴细胞计数、单核细胞计数均显著增加(P <0.05,表2)。

  • 图1 各组小鼠支气管及肺泡病理变化(HE)

  • Fig.1 Pathological changes of lung tissue in each group(HE)

  • 图2 各组小鼠支气管壁面积占气道总面积比值及肺组织RAC值

  • Fig.2 Ratio of wall thickness to airway area and RAC in each group

  • 图3 各组小鼠血清IGE含量比较

  • Fig.3 Serum IgE of mice in each group

  • 2.5 小鼠BALF中细胞因子IL⁃5、IL⁃12、IL⁃13水平检测

  • 与空气+PBS组相比,空气+OVA组小鼠BALF中IL⁃5、IL⁃12和IL⁃13水平均明显升高(P <0.05); 高氧+OVA组相对于空气+OVA组,IL⁃5、IL⁃13水平升高,而IL⁃12水平降低(P <0.05,表3)。

  • 3 讨论

  • 支气管哮喘是由多种细胞(如嗜酸性粒细胞、肥大细胞、T淋巴细胞、中性粒细胞、气道上皮细胞) 和细胞成分参与的气道慢性炎症性疾病,其典型的临床特征有气道炎症、气道重塑和气道高反应性等[11]。经典的OVA诱导的支气管哮喘模型小鼠表现为血清IgE水平升高,肺组织中嗜酸性粒细胞大量浸润和明显的气道结构重塑。本研究中空气+OVA组相对于空气+PBS组BALF中嗜酸性粒细胞明显增加,血清IgE水平升高,肺组织病理切片中可观察到明显的气道狭窄和管壁厚度增加以及炎症细胞的大量浸润,提示本实验在空气+OVA组中成功复制了经典的支气管哮喘模型。同时,参照本课题组生后早期高氧损伤致C57BL/6小鼠BPD模型的经验[12],采用出生后4h内置于95%以上高氧环境中暴露7d的方法,通过比较高氧+PBS组和空气+PBS组肺组织病理可以发现,前者小鼠肺泡数量明显减少,大小不匀,肺泡壁断裂增加,RAC值降低,由此验证了本课题组C57BL/6小鼠BPD模型在BALB/c小鼠上的一致性。同时,本实验在此基础上另外设置高氧+ OVA组,在生后早期高氧暴露基础上再进行OVA诱导支气管哮喘模型的建立,以探究生后早期高氧暴露对支气管哮喘模型小鼠的影响。

  • 表2 各组小鼠支气管肺泡灌洗液白细胞总数及分类计数比较

  • Table2 Total WBC count and differential count in BALF in each group

  • 与空气+PBS组比较,* P <0.05;与空气+OVA组比较,# P <0.05。

  • 表3 各组小鼠支气管肺泡灌洗液中IL⁃5、IL⁃12、IL⁃13水平比较

  • Table3 IL⁃5,IL⁃12,IL⁃13measurements in BALF in each group

  • 与空气+PBS组比较,* P <0.01;与空气+PBS组比较,# P <0.05;与空气+OVA组比较,Δ P <0.01。

  • 本研究发现,高氧+OVA组相对于空气+OVA组小鼠支气管壁明显增厚,气道壁厚度占气道总直径比例明显升高,气道狭窄明显,提示生后早期高氧暴露可以促进支气管哮喘对小气道的结构重塑。同时,高氧+OVA组相对于空气+OVA组,其肺组织切片中支气管壁周围存在更多的炎细胞浸润,血清IgE水平明显升高,BALF中白细胞总数增加明显,分类计数后发现嗜酸性粒细胞、淋巴细胞及单核细胞均增加,嗜酸性粒细胞及淋巴细胞增加尤为显著,提示生后早期高氧暴露的哮喘模型小鼠气道炎症反应更为明显。

  • 支气管哮喘与早产[4]、生后氧疗及BPD病史[8] 密切相关。BPD患儿更容易出现慢性咳嗽、反复喘息等症状,也更容易患有慢性喘息性疾病或被诊断为哮喘。从婴儿期到成年期,BPD对患儿肺功能的损害持续存在,表现为类似哮喘的FEV1和FEV1/FVC降低,呼气峰流速(PEF)降低,呼吸道气流阻滞等症状[713-15]

  • 气道重塑是哮喘的重要特征之一。哮喘患者的气道重塑涉及气道壁的全层结构,包括气道上皮、基底膜、固有层、平滑肌和血管[16],其主要特征包括气道基底膜增厚[17],平滑肌细胞增生[18],杯状细胞化生和黏蛋白分泌增多[19],细胞外基质增加和胶原蛋白沉积[20-21]。动物实验研究发现,生后早期高氧暴露同样造成了相似的小鼠气道结构损伤和重塑现象。Kumar等[9] 经实验证实,高氧可以促进小鼠气道柱状上皮增生和肥大、气道壁厚度和平滑肌厚度增加,细胞外基质中胶原蛋白沉积及肺部血管生成增加。这与本研究在单纯高氧和单纯哮喘小鼠中观察到的现象相符合。另外,本研究比较空气+OVA组与高氧+OVA组后发现生后早期高氧暴露进一步加重了支气管哮喘小鼠的气道结构损伤与重塑,主要表现为气道柱状上皮增生肥大,基底膜增厚,气道管腔狭窄,气道壁厚度及其占气道总直径比例增加等都更为明显,这可能是高氧暴露造成的气道结构重塑和损伤与哮喘造成的气道结构重塑相叠加的结果。研究发现,IL⁃13可抑制气道成纤维细胞中弹性蛋白的表达,引起气道壁硬化和气道塌陷从而引起气道阻塞[22],这与本实验中高氧+OVA组BALF中IL⁃13含量增加相一致。此外,高氧暴露带来的气道结构损伤可能迁延不愈直至小鼠成年期[17],这也与临床上BPD患儿2岁[23]、3岁[24]、6岁[25]、11岁[26]、 19岁[7] 及成年期[27] 肺功能持续受损表现相一致,临床上BPD患儿哮喘发病率的增加可能与此相关。

  • 气道炎症反应增加亦是哮喘的重要特点之一。哮喘患者常表现为由嗜酸性粒细胞、肥大细胞、淋巴细胞、巨噬细胞及多种细胞因子驱动的气道慢性炎症反应。动物实验研究发现小鼠高氧暴露早期也可出现肺组织中白细胞和单核细胞数量增加的急性炎症反应表现[28],并且至15周龄时炎症仍未缓解但转变为淋巴细胞为主的慢性炎症[9],这与本研究观察到的高氧暴露后小鼠65日龄时BALF中淋巴细胞的增加相一致。同时我们发现经高氧暴露后再建立哮喘模型的小鼠BALF中淋巴细胞增加的现象更为明显,而CD4+、CD8+ T淋巴细胞在哮喘气道炎症的发生中起着重要作用。

  • 哮喘患者中可以观察到支气管周围淋巴细胞浸润和支气管肺泡灌洗液中活化CD4+ T细胞增加[29]。 CD4+ T淋巴细胞中的Th1和Th2与哮喘的发生密切相关。经典观点认为哮喘的炎症反应增加是由于体内Th1/Th2失衡所致,哮喘患者中Th2占优势而Th1相对较弱[30]。Th1分泌γ干扰素,Th2分泌IL⁃4、 IL⁃5、IL⁃13等细胞因子,两者处于相互制衡的关系而保持细胞因子的分泌相对稳定。本研究发现高氧暴露后哮喘模型小鼠BALF中IL⁃5及IL⁃13含量升高较为明显,提示高氧暴露可能促进了Th2的活化和细胞因子分泌;而IL⁃12是Th0向Th1分化的重要诱导因子,本研究中IL⁃12明显降低,提示高氧可能抑制了Th0向Th1的分化。由此我们推测,生后早期高氧暴露可能加剧了OVA诱导的哮喘模型小鼠中Th1向Th2的偏移,增加了Th2细胞因子的分泌。Th2分泌的细胞因子如IL⁃4、IL⁃5、IL⁃13可参与气道嗜酸性粒细胞募集,通过刺激B细胞分化,增加IgE产生,诱发肥大细胞脱颗粒释放组胺等导致哮喘气道炎症反应的发生。

  • 另外,除了CD4+ T细胞,CD8+ T细胞在过敏性哮喘中也具有重要作用[31]。哮喘患者气道上皮细胞存在分泌IL⁃13的CD8+ T淋巴细胞[32]。CD8+ T细胞缺失的小鼠诱导OVA哮喘模型后,其BALF中嗜酸性粒细胞、IL⁃13水平及AHR表现均明显降低[33]。 BPD患儿生后氧气补充治疗和缺氧状况导致体内氧化应激失常,可诱导线粒体产生大量线粒体活性氧(mitochondrial reactive oxygen species,mROS)[34], mROS可通过抑制浆细胞样树突状细胞(plasmacy⁃ toid dendritic cells,pDCs)抗原吞噬小体中酸性溶酶体蛋白酶活性保护抗原不被过度水解从而提高pDCs的抗原提呈作用,由此促进CD8+ T细胞免疫应答的增强[35]。CD8+ T细胞致敏后产生的效应记忆性CD8+ T细胞是体内IL⁃13的产生来源之一,可显著增加OVA致敏哮喘模型小鼠BALF中IL⁃13水平[36]。另外,BPD患儿因肺泡发育受阻常存在缺氧现象,低氧条件可激活缺氧诱导因子,促进CD8+ T细胞向分泌IL⁃13的Tc2细胞的分化,从而提高体内的IL⁃13水平。IL⁃13可通过促进浆细胞合成IgE[37],促进嗜酸性粒细胞向肺部迁移[38],增加气道上皮细胞通透性[39],促进杯状细胞化生[40] 等参与气道炎症反应的发生。本研究观察到高氧暴露后哮喘模型小鼠BALF中IL⁃13水平相较于单纯哮喘组明显升高,由此推测生后早期高氧暴露导致的氧化应激失常和后续持续缺氧状态使得肺组织中IL⁃13升高可能是哮喘模型小鼠气道炎症反应增加的原因之一。

  • 气道高反应性亦是支气管哮喘的特征之一。 Regal等[41] 发现高氧+OVA处理的新生小鼠对乙酰胆碱激发产生的气道高反应性相对于单纯哮喘的新生小鼠明显增加,其气道阻力基线水平和引起支气管收缩的最低激发剂量均与单纯哮喘模型小鼠有明显差别。但本研究未就高氧+OVA组小鼠进行气道功能评估,此方面还需更多研究以证实。

  • 有趣的是本研究发现经OVA诱导哮喘模型的建立后,小鼠原本的高氧肺损伤症状似乎得到了减轻,肺泡数量增加,RAC升高,肺泡发育停滞状况似乎得到了改善,受限于本研究样本量较小,此现象还需要进一步的研究证实。

  • 综上,本实验通过在生后早期高氧暴露基础上进行OVA诱导支气管哮喘模型的建立,证实生后早期高氧暴露可能通过参与气道重塑作用和增加气道炎症反应从而导致哮喘的发生。

  • 参考文献

    • [1] ASHER I,PEARCE N.Global burden of asthma among children[J].Int J Tuberc Lung Dis,2014,18(11):1269-1278

    • [2] 刘传合,洪建国,尚云晓,等.中国16城市儿童哮喘患病率20年对比研究[J].中国实用儿科杂志,2015,30(8):596-600

    • [3] MARTINEZ F D.Development of wheezing disorders and asthma in preschool children[J].Pediatrics,2002,109(2 Suppl):362-367

    • [4] BEEN J V,LUGTENBERG M J,SMETS E,et al.Preterm birth and childhood wheezing disorders:a systematic re⁃ view and meta ⁃ analysis[J].PLoS Med,2014,11(1):e1001596

    • [5] VOLLSÆTER M,RØKSUND O D,EIDE G E,et al.Lung function after preterm birth:development from mid⁃child⁃ hood to adulthood[J].Thorax,2013,68(8):767-776

    • [6] PALTA M,SADEK⁃BADAWI M,SHEEHY M,et al.Re⁃ spiratory symptoms at age 8 years in a cohort of very low birth weight children[J].Am J Epidemiol,2001,154(6):521-529

    • [7] HURST J R,BECKMANN J,NI Y,et al.Respiratory and cardiovascular outcomes in survivors of extremely preterm birth at 19 years[J].Am J Respir Crit Care Med,2020,202(3):422-432

    • [8] FIERRO J L,PASSARELLA M,LORCH S.Prematurity as an independent risk factor for the development of pul⁃ monary disease[J].J Pediatr,2019,213:110-114

    • [9] KUMAR V H,LAKSHMINRUSIMHA S,KISHKURNO S,et al.Neonatal hyperoxia increases airway reactivity and inflammation in adult mice[J].Pediatr Pulmonol,2016,51(11):1131-1141

    • [10] MABALIRAJAN U,DINDA A K,KUMAR S,et al.Mito⁃ chondrial structural changes and dysfunction are associat⁃ ed with experimental allergic asthma[J].J Immunol,2008,181(5):3540-3548

    • [11] DETORAKI A,GRANATA F,STAIBANO S,et al.Angio⁃ genesis and lymphangiogenesis in bronchial asthma[J].Allergy,2010,65(8):946-958

    • [12] 王会芳,程怀平,吴蝉桐,等.CXCL4与高氧诱导新生小鼠性别差异性肺损伤的相关研究[J].南京医科大学学报(自然科学版),2019,39(8):1142-1146

    • [13] CARDOEN F,VERMEULEN F,PROESMANS M,et al.Lung function evolution in children with old and new type bronchopulmonary dysplasia:a retrospective cohort analy⁃ sis[J].Eur J Pediatr,2019,178(12):1859-1866

    • [14] HALVORSEN T,SKADBERG B T,EIDE G E,et al.Char⁃ acteristics of asthma and airway hyper ⁃ responsiveness after premature birth[J].Pediatr Allergy Immunol,2005,16(6):487-494

    • [15] HENNESSY E M,BRACEWELL M A,WOOD N,et al.Respiratory health in pre ⁃ school and school age children following extremely preterm birth[J].Arch Dis Child,2008,93(12):1037-1043

    • [16] HOLGATE S T.The airway epithelium is central to the pathogenesis of asthma[J].Allergol Int,2008,57(1):1-10

    • [17] WANG H,JAFRI A,MARTIN R J,et al.Severity of neo⁃ natal hyperoxia determines structural and functional changes in developing mouse airway[J].Am J Physiol Lung Cell Mol Physiol,2014,307(4):L295-L301

    • [18] ALI M K,KIM R Y,BROWN A C,et al.Crucial role for lung Iron level and regulation in the pathogenesis and se⁃ verity of asthma[J].Eur Respir J,2020,55(4):1901340

    • [19] MALMSTRÖM K,LOHI J,SAJANTILA A,et al.Immuno⁃ histology and remodeling in fatal pediatric and adolescent asthma[J].Respir Res,2017,18(1):94

    • [20] MOSTAÇO ⁃GUIDOLIN L B,OSEI E T,ULLAH J,et al.Defective fibrillar collagen organization by fibroblasts con⁃ tributes to airway remodeling in asthma[J].Am J Respir Crit Care Med,2019,200(4):431-443

    • [21] PENG Q,LAI D,NGUYEN T T,et al.Multiple beta 1 in⁃ tegrins mediate enhancement of human airway smooth muscle cytokine secretion by fibronectin and type I colla⁃ gen[J].J Immunol,2005,174(4):2258-2264

    • [22] INGRAM J L,SLADE D,CHURCH T D,et al.Role of ma⁃ trix metalloproteinases ⁃ 1 and ⁃ 2 in interleukin ⁃ 13 ⁃ sup⁃ pressed elastin in airway fibroblasts in asthma[J].Am J Respir Cell Mol Biol,2016,54(1):41-50

    • [23] BARALDI E,FILIPPONE M,TREVISANUTO D,et al.Pulmonary function until two years of life in infants with bronchopulmonary dysplasia[J].Am J Respir Crit Care Med,1997,155(1):149-155

    • [24] FAKHOURY K F,SELLERS C,SMITH E O,et al.Serial measurements of lung function in a cohort of young chil⁃ dren with bronchopulmonary dysplasia[J].Pediatrics,2010,125(6):e1441-e1447

    • [25] BROSTRÖM E B,THUNQVIST P,ADENFELT G,et al.Obstructive lung disease in children with mild to severe BPD[J].Respir Med,2010,104(3):362-370

    • [26] FAWKE J,LUM S,KIRKBY J,et al.Lung function and respiratory symptoms at 11 years in children born ex⁃ tremely preterm the EPICure study[J].Am J Respir Crit Care Med,2010,182(2):237-245

    • [27] GOUGH A,LINDEN M,SPENCE D,et al.Impaired lung function and health status in adult survivors of broncho⁃ pulmonary dysplasia[J].Eur Respir J,2014,43(3):808-816

    • [28] BONIKOS D S,BENSCH K G,LUDWIN S K,et al.Oxy⁃ gen toxicity in the newborn.The effect of prolonged 100 percent O2 exposure on the lungs of newborn mice[J].Lab Invest,1975,32(5):619⁃635

    • [29] VENKAYYA R,LAM M,WILLKOM M,et al.The Th2 lymphocyte products IL ⁃4 and IL ⁃13 rapidly induce air⁃ way hyperresponsiveness through direct effects on resi⁃ dent airway cells[J].Am J Respir Cell Mol Biol,2002,26(2):202-208

    • [30] ROBINSON D S,HAMID Q,YING S,et al.Predominant TH2 ⁃ like bronchoalveolar T ⁃ lymphocyte population in atopic asthma[J].N Engl J Med,1992,326(5):298-304

    • [31] O’SULLIVAN S,CORMICAN L,FAUL J L,et al.Activat⁃ ed,cytotoxic CD8(+)T lymphocytes contribute to the pa⁃ thology of asthma death[J].Am J Respir Crit Care Med,2001,164(4):560-564

    • [32] DAKHAMA A,COLLINS M L,OHNISHI H,et al.IL⁃13⁃ producing BLT1⁃positive CD8 cells are increased in asth⁃ ma and are associated with airway obstruction[J].Aller⁃ gy,2013,68(5):666-673

    • [33] HAMELMANN E,OSHIBA A,PALUH J,et al.Require⁃ ment for CD8+ T cells in the development of airway hyper⁃responsiveness in a marine model of airway sensitization [J].J Exp Med,1996,183(4):1719-1729

    • [34] MURPHY M P.How mitochondria produce reactive oxy⁃ gen species[J].Biochem J,2009,417(1):1-13

    • [35] OBERKAMPF M,GUILLEREY C,MOURIÈS J,et al.Mi⁃ tochondrial reactive oxygen species regulate the induction of CD8(+)T cells by plasmacytoid dendritic cells[J].Nat Commun,2018,9(1):2241

    • [36] MIYAHARA N,SWANSON B J,TAKEDA K,et al.Effec⁃ tor CD8 + T cells mediate inflammation and airway hyper⁃ responsiveness[J].Nat Med,2004,10(8):865-869

    • [37] PUNNONEN J,AVERSA G,COCKS B G,et al.Interleu⁃ kin 13 induces interleukin 4 ⁃independent IgG4 and IgE synthesis and CD23 expression by human B cells[J].Proc Natl Acad Sci U S A,1993,90(8):3730-3734

    • [38] HORIE S,OKUBO Y,HOSSAIN M,et al.Interleukin⁃13 but not interleukin ⁃ 4 prolongs eosinophil survival and induces eosinophil chemotaxis[J].Intern Med,1997,36(3):179-185

    • [39] RAMIREZ⁃ICAZA G,MOHAMMED K A,NASREEN N,et al.Th2 cytokines IL⁃4 and IL⁃13 downregulate paxillin expression in bronchial airway epithelial cells[J].J Clin Immunol,2004,24(4):426-434

    • [40] KONDO M,TAMAOKI J,TAKEYAMA K,et al.Elimina⁃ tion of IL ⁃ 13 reverses established goblet cell metaplasia into ciliated epithelia in airway epithelial cell culture[J].Allergol Int,2006,55(3):329-336

    • [41] REGAL J,LAWRENCE B,JOHNSON A,et al.Neonatal oxygen exposure alters airway hyper ⁃ responsiveness but not the response to allergen challenge in adult mice[J].Pediatr Allergy Immunol,2014,25(2):180-186

  • 参考文献

    • [1] ASHER I,PEARCE N.Global burden of asthma among children[J].Int J Tuberc Lung Dis,2014,18(11):1269-1278

    • [2] 刘传合,洪建国,尚云晓,等.中国16城市儿童哮喘患病率20年对比研究[J].中国实用儿科杂志,2015,30(8):596-600

    • [3] MARTINEZ F D.Development of wheezing disorders and asthma in preschool children[J].Pediatrics,2002,109(2 Suppl):362-367

    • [4] BEEN J V,LUGTENBERG M J,SMETS E,et al.Preterm birth and childhood wheezing disorders:a systematic re⁃ view and meta ⁃ analysis[J].PLoS Med,2014,11(1):e1001596

    • [5] VOLLSÆTER M,RØKSUND O D,EIDE G E,et al.Lung function after preterm birth:development from mid⁃child⁃ hood to adulthood[J].Thorax,2013,68(8):767-776

    • [6] PALTA M,SADEK⁃BADAWI M,SHEEHY M,et al.Re⁃ spiratory symptoms at age 8 years in a cohort of very low birth weight children[J].Am J Epidemiol,2001,154(6):521-529

    • [7] HURST J R,BECKMANN J,NI Y,et al.Respiratory and cardiovascular outcomes in survivors of extremely preterm birth at 19 years[J].Am J Respir Crit Care Med,2020,202(3):422-432

    • [8] FIERRO J L,PASSARELLA M,LORCH S.Prematurity as an independent risk factor for the development of pul⁃ monary disease[J].J Pediatr,2019,213:110-114

    • [9] KUMAR V H,LAKSHMINRUSIMHA S,KISHKURNO S,et al.Neonatal hyperoxia increases airway reactivity and inflammation in adult mice[J].Pediatr Pulmonol,2016,51(11):1131-1141

    • [10] MABALIRAJAN U,DINDA A K,KUMAR S,et al.Mito⁃ chondrial structural changes and dysfunction are associat⁃ ed with experimental allergic asthma[J].J Immunol,2008,181(5):3540-3548

    • [11] DETORAKI A,GRANATA F,STAIBANO S,et al.Angio⁃ genesis and lymphangiogenesis in bronchial asthma[J].Allergy,2010,65(8):946-958

    • [12] 王会芳,程怀平,吴蝉桐,等.CXCL4与高氧诱导新生小鼠性别差异性肺损伤的相关研究[J].南京医科大学学报(自然科学版),2019,39(8):1142-1146

    • [13] CARDOEN F,VERMEULEN F,PROESMANS M,et al.Lung function evolution in children with old and new type bronchopulmonary dysplasia:a retrospective cohort analy⁃ sis[J].Eur J Pediatr,2019,178(12):1859-1866

    • [14] HALVORSEN T,SKADBERG B T,EIDE G E,et al.Char⁃ acteristics of asthma and airway hyper ⁃ responsiveness after premature birth[J].Pediatr Allergy Immunol,2005,16(6):487-494

    • [15] HENNESSY E M,BRACEWELL M A,WOOD N,et al.Respiratory health in pre ⁃ school and school age children following extremely preterm birth[J].Arch Dis Child,2008,93(12):1037-1043

    • [16] HOLGATE S T.The airway epithelium is central to the pathogenesis of asthma[J].Allergol Int,2008,57(1):1-10

    • [17] WANG H,JAFRI A,MARTIN R J,et al.Severity of neo⁃ natal hyperoxia determines structural and functional changes in developing mouse airway[J].Am J Physiol Lung Cell Mol Physiol,2014,307(4):L295-L301

    • [18] ALI M K,KIM R Y,BROWN A C,et al.Crucial role for lung Iron level and regulation in the pathogenesis and se⁃ verity of asthma[J].Eur Respir J,2020,55(4):1901340

    • [19] MALMSTRÖM K,LOHI J,SAJANTILA A,et al.Immuno⁃ histology and remodeling in fatal pediatric and adolescent asthma[J].Respir Res,2017,18(1):94

    • [20] MOSTAÇO ⁃GUIDOLIN L B,OSEI E T,ULLAH J,et al.Defective fibrillar collagen organization by fibroblasts con⁃ tributes to airway remodeling in asthma[J].Am J Respir Crit Care Med,2019,200(4):431-443

    • [21] PENG Q,LAI D,NGUYEN T T,et al.Multiple beta 1 in⁃ tegrins mediate enhancement of human airway smooth muscle cytokine secretion by fibronectin and type I colla⁃ gen[J].J Immunol,2005,174(4):2258-2264

    • [22] INGRAM J L,SLADE D,CHURCH T D,et al.Role of ma⁃ trix metalloproteinases ⁃ 1 and ⁃ 2 in interleukin ⁃ 13 ⁃ sup⁃ pressed elastin in airway fibroblasts in asthma[J].Am J Respir Cell Mol Biol,2016,54(1):41-50

    • [23] BARALDI E,FILIPPONE M,TREVISANUTO D,et al.Pulmonary function until two years of life in infants with bronchopulmonary dysplasia[J].Am J Respir Crit Care Med,1997,155(1):149-155

    • [24] FAKHOURY K F,SELLERS C,SMITH E O,et al.Serial measurements of lung function in a cohort of young chil⁃ dren with bronchopulmonary dysplasia[J].Pediatrics,2010,125(6):e1441-e1447

    • [25] BROSTRÖM E B,THUNQVIST P,ADENFELT G,et al.Obstructive lung disease in children with mild to severe BPD[J].Respir Med,2010,104(3):362-370

    • [26] FAWKE J,LUM S,KIRKBY J,et al.Lung function and respiratory symptoms at 11 years in children born ex⁃ tremely preterm the EPICure study[J].Am J Respir Crit Care Med,2010,182(2):237-245

    • [27] GOUGH A,LINDEN M,SPENCE D,et al.Impaired lung function and health status in adult survivors of broncho⁃ pulmonary dysplasia[J].Eur Respir J,2014,43(3):808-816

    • [28] BONIKOS D S,BENSCH K G,LUDWIN S K,et al.Oxy⁃ gen toxicity in the newborn.The effect of prolonged 100 percent O2 exposure on the lungs of newborn mice[J].Lab Invest,1975,32(5):619⁃635

    • [29] VENKAYYA R,LAM M,WILLKOM M,et al.The Th2 lymphocyte products IL ⁃4 and IL ⁃13 rapidly induce air⁃ way hyperresponsiveness through direct effects on resi⁃ dent airway cells[J].Am J Respir Cell Mol Biol,2002,26(2):202-208

    • [30] ROBINSON D S,HAMID Q,YING S,et al.Predominant TH2 ⁃ like bronchoalveolar T ⁃ lymphocyte population in atopic asthma[J].N Engl J Med,1992,326(5):298-304

    • [31] O’SULLIVAN S,CORMICAN L,FAUL J L,et al.Activat⁃ ed,cytotoxic CD8(+)T lymphocytes contribute to the pa⁃ thology of asthma death[J].Am J Respir Crit Care Med,2001,164(4):560-564

    • [32] DAKHAMA A,COLLINS M L,OHNISHI H,et al.IL⁃13⁃ producing BLT1⁃positive CD8 cells are increased in asth⁃ ma and are associated with airway obstruction[J].Aller⁃ gy,2013,68(5):666-673

    • [33] HAMELMANN E,OSHIBA A,PALUH J,et al.Require⁃ ment for CD8+ T cells in the development of airway hyper⁃responsiveness in a marine model of airway sensitization [J].J Exp Med,1996,183(4):1719-1729

    • [34] MURPHY M P.How mitochondria produce reactive oxy⁃ gen species[J].Biochem J,2009,417(1):1-13

    • [35] OBERKAMPF M,GUILLEREY C,MOURIÈS J,et al.Mi⁃ tochondrial reactive oxygen species regulate the induction of CD8(+)T cells by plasmacytoid dendritic cells[J].Nat Commun,2018,9(1):2241

    • [36] MIYAHARA N,SWANSON B J,TAKEDA K,et al.Effec⁃ tor CD8 + T cells mediate inflammation and airway hyper⁃ responsiveness[J].Nat Med,2004,10(8):865-869

    • [37] PUNNONEN J,AVERSA G,COCKS B G,et al.Interleu⁃ kin 13 induces interleukin 4 ⁃independent IgG4 and IgE synthesis and CD23 expression by human B cells[J].Proc Natl Acad Sci U S A,1993,90(8):3730-3734

    • [38] HORIE S,OKUBO Y,HOSSAIN M,et al.Interleukin⁃13 but not interleukin ⁃ 4 prolongs eosinophil survival and induces eosinophil chemotaxis[J].Intern Med,1997,36(3):179-185

    • [39] RAMIREZ⁃ICAZA G,MOHAMMED K A,NASREEN N,et al.Th2 cytokines IL⁃4 and IL⁃13 downregulate paxillin expression in bronchial airway epithelial cells[J].J Clin Immunol,2004,24(4):426-434

    • [40] KONDO M,TAMAOKI J,TAKEYAMA K,et al.Elimina⁃ tion of IL ⁃ 13 reverses established goblet cell metaplasia into ciliated epithelia in airway epithelial cell culture[J].Allergol Int,2006,55(3):329-336

    • [41] REGAL J,LAWRENCE B,JOHNSON A,et al.Neonatal oxygen exposure alters airway hyper ⁃ responsiveness but not the response to allergen challenge in adult mice[J].Pediatr Allergy Immunol,2014,25(2):180-186