-
肺动脉高压(pulmonary hypertension,PH)是一类由多种病因引起的,以肺动脉压力异常升高,同时合并不同程度右心功能衰竭为特征的肺血管疾病[1]。PH在大于65岁人群中的患病率高达10%,其中低氧性肺动脉高压(hypoxic pulmonary hyper⁃ tension,HPH)是最为常见的PH类型之一,常见于慢性缺氧(chronic hypoxia,CH)性肺病患者[2]。目前HPH的治疗以原发病的治疗为主,尚无推荐的靶向药物[3],无法逆转慢性缺氧导致的肺血管重构和肺血管阻力进行性升高,HPH患者预后仍然较差,因此探索治疗HPH的潜在靶点势在必行。
-
研究表明,针对多靶点联合用药已成为治疗PH的重要方向。ROCK信号通路是目前研究PH发病机制的热点之一。ROCK选择性抑制剂法舒地尔是一种细胞内钙离子拮抗剂,可阻断肌球蛋白轻链磷酸化,抑制血管收缩、痉挛,被用于治疗蛛网膜下腔出血后脑血管痉挛、冠状动脉疾病等[4],在不同PH实验动物模型中均有降低肺动脉压力、抑制肺动脉重塑的功能[5-6],近期一项临床研究表明,法舒地尔在重度PH患者中也具有良好的治疗效果[7]。此外,丙酮酸脱氢酶激酶(pyruvate dehydrogenase kinase, PDK)信号通路也是PH研究的关注重点。PDK抑制剂二氯乙酸盐(dichloroacetate,DCA)可活化细胞表面Kv1.5通道,减少钙离子内流,抑制细胞收缩、增殖,同时可抑制PDK恢复丙酮酸脱氢酶活性,改善线粒体能量代谢,维持细胞正常生理功能[8],临床上主要用于治疗乳酸性酸中毒和代谢性疾病,也可用于抑制野百合碱诱导的大鼠肺血管重构[9],目前已进入临床研究阶段[10]。基于法舒地尔和DCA在PH动物模型及患者中的治疗作用,我们发现法舒地尔盐酸盐解离出的游离胺基可以和二氯乙酸结合形成一种新型水溶性口服盐类化合物——法舒地尔二氯乙酸盐(fasudil dichloroacetate,FDCA)[11]。本研究主要目的在于探讨FDCA对慢性缺氧诱导的PH大鼠的治疗作用并揭示其潜在机制,为HPH治疗提供新的策略。
-
1 材料和方法
-
1.1 材料
-
清洁级成年健康雄性SD大鼠24只,体重(230 ± 20)g,由南京医科大学动物中心提供。本研究所有实验操作经由南京医科大学实验动物福利伦理审查委员会许可(IACUC⁃2005021)。
-
FDCA(中国药科大学天然药物国家重点实验室制备),实验动物缺氧箱(杭州艾普仪器设备有限公司),RIPA裂解液、BCA检测试剂盒(上海碧云天生物技术有限公司),大鼠白介素(interleukin,IL)⁃ 1β、IL⁃6、肿瘤坏死因子⁃α(tumor necrosis factor⁃α, TNF⁃α)ELISA试剂盒(武汉华美生物工程有限公司),肌球蛋白轻链激酶(myosin light chain kinase, MLCK)ELISA试剂盒、肌球蛋白轻链磷酸化酶(myo⁃ sin light chain phosphorylase,MLCP)ELISA试剂盒 (南京翼飞雪生物科技有限公司),β⁃actin、ROCK1、 ROCK2抗体(Proteintech公司,美国)。
-
1.2 方法
-
1.2.1 HPH动物模型的建立及给药方案
-
SD大鼠随机分为4组:对照组(CON组)、CON+ FDCA组、CH组、CH+FDCA组,每组6只。将CH组及CH+FDCA组大鼠置于常压低氧箱中,舱内氧气浓度维持在(10.0 ± 0.1)%,同时放置钠石灰吸收CO2,变色硅胶吸收水蒸气。每天开箱1h更换饮用水、饲料、垫料、钠石灰与变色硅胶,其余时间均保持低氧环境。CON组与CON+FDCA组置于正常环境中。缺氧第15天开始,CON+FDCA组及CH+FDCA组予FDCA(43.3mg/kg)灌胃治疗,CON及CH组予等体积生理盐水,每天1次,于开箱1h内完成,持续14d。总缺氧时间为28d。
-
1.2.2 右心导管检查及右心室肥厚程度测定
-
所有大鼠称重后予以2%戊巴比妥钠溶液(60mg/kg) 腹腔注射麻醉。将麻醉后大鼠仰卧固定于动物操作台上,分离右颈总静脉并做一“V”型切口,插入充盈肝素钠溶液的聚乙烯导管。导管弯头端经上腔静脉、右心房至右心室,另一端连接压力换能器,应用Powerlab生物信号采集系统测定右心室收缩压 (right ventricular systolic pressure,RVSP)。RVSP测定结束后处死大鼠,收集大鼠心脏。沿室间隔边缘游离出右心室(right ventricle,RV)及左心室+室间隔 (left ventricle+septum,LV+S)。滤纸吸干水分后分别称量RV和LV+S的重量,计算RV/(LV+S)比值,即为右心室肥厚指数(right ventricular hypertrophy index,RVHI)。
-
1.2.3 肺小动脉形态学分析
-
分离左肺上叶,在4%多聚甲醛中固定24h,石蜡包埋后制成5 μm厚度切片并进行苏木素⁃伊红 (hematoxylin⁃eosin,HE)染色、α⁃SMA免疫组织化学染色及Masson染色,于光学显微镜下观察肺小动脉病理变化。每张切片随机拍摄至少20张直径30~100 μm肺小动脉,计算肺小动脉中膜层肥厚程度 (pulmonary artery medial thickness,PAMT)=(血管外径-血管内径)/血管外径×100%。根据肺小动脉α⁃ SMA阳性表达部分占血管周径的比例,将肺小动脉分为非肌化(<25%)、部分肌化(25%~75%)和完全肌化(>75%)3种类型,分别统计各类型血管所占百分比。使用Image Pro Plus 6.0软件统计Masson染色图片中蓝色区域胶原蛋白沉积面积与总面积的比值,评估肺小动脉外膜纤维化程度。
-
1.2.4 右心室形态学分析
-
分离右心室组织,在4%多聚甲醛中固定24h,石蜡包埋后制成5 μm厚度切片并进行HE染色。在光学显微镜下观察右心室心肌细胞病理变化。使用Image J软件统计右心室心肌细胞横截面积 (cross⁃sectional area,CSA)。
-
1.2.5 ELISA法检测肺组织中IL⁃1β、IL⁃6、TNF⁃α以及MLCK、MLCP水平
-
称取100mg肺组织,剪碎加入1mL PBS,匀浆后3次冻融使细胞破坏释放出细胞内成分,4℃离心机,3 000r/min离心20min,收集上清。按照ELISA试剂盒说明书进行分析。肺组织中IL ⁃1β、IL ⁃6、 TNF⁃α含量最终以pg/mL计算,MLCK、MLCP水平最终以U/L计算。
-
1.2.6 Western blot检测肺组织中ROCK1、ROCK2 表达水平
-
称取30mg大鼠肺组织,加入含蛋白酶抑制剂的RIPA裂解液,剪碎、匀浆,提取肺组织总蛋白。 BCA法测定蛋白含量。蛋白经电泳分离后转移至PVDF膜上,5%脱脂奶粉溶液室温封闭1h,加入抗ROCK1、ROCK2抗体(稀释比例1∶1 000),4℃孵育过夜。TBST洗涤3次后加入二抗(稀释比例1∶5 000),室温孵育1h。TBST洗涤3次后加入ECL化学发光液,置于化学发光仪中合适条件下曝光并保存图像,结果用Image Lab软件进行分析。
-
1.3 统计学方法
-
采用SPSS 22.0软件对数据进行统计学处理,所有数据以均数±标准差( ± s)表示。多组样本间数据分析采用单因素方差分析,组间比较使用LSD⁃t 检验法。P< 0.05为差异有统计学意义。
-
2 结果
-
2.1 FDCA对HPH大鼠RVSP和RVHI的影响
-
血流动力学结果显示:与CON组相比,CH组RVSP显著升高,FDCA治疗后RVSP显著降低,差异有统计学意义(P< 0.01);CON+FDCA组与CON组相比,差异没有统计学意义(P> 0.05,图1A)。 RVHI结果显示:与CON组相比,CH组RVHI显著增加,差异有统计学意义(P< 0.01),CH+FDCA组较CH组RVHI显著降低(P< 0.01),与CON组相比差异无统计学意义(P> 0.05)。CON+FDCA组与CON组相比,差异无统计学意义(P> 0.05,图1B)。
-
2.2 FDCA对HPH大鼠右心室心肌细胞肥大的影响
-
HE染色结果显示:CON组与CON+FDCA组右心室心肌细胞结构正常,CSA较小;CH组右心室心肌细胞肥大;CH+FDCA组心肌细胞较CH组变小 (图2A)。右心室CSA统计结果显示:与CON组及CON+FDCA组相比,CH组右心室心肌细胞CSA显著增加;CH+FDCA组右心室心肌细胞CSA较CH组显著降低,差异有统计学意义(P< 0.01,图2B)。
-
2.3 FDCA对HPH大鼠肺小动脉中膜肥厚及炎症浸润的影响
-
HE染色结果显示:CON组与CON+FDCA组肺小动脉结构正常,血管壁薄,血管周围无明显炎症细胞浸润;CH组肺小动脉中膜层增厚,血管周围有大量炎症细胞浸润;CH+FDCA组肺小动脉中膜层较CH组变薄,炎症细胞浸润程度较CH组减轻(图3A)。PAMT统计结果显示:与CON组及CON+FDCA组相比,CH组PAMT显著增加;CH+FDCA组PAMT较CH组显著降低,差异有统计学意义(P< 0.01,图3B)。
-
图1 FDCA对HPH大鼠RVSP和RVHI的影响
-
Fig.1 Effects of FDCA on RVSP and RVHI in rats with HPH
-
图2 FDCA对HPH鼠右心室心肌细胞肥大的影响
-
Fig.2 Effects of FDCA on right ventricular cardiomyo⁃ cyte hypertrophy in rats with HPH
-
图3 FDCA对HPH大鼠肺小动脉中膜肥厚的影响
-
Fig.3 Effects of FDCA on pulmonary arterial medial thickness in rats with HPH
-
2.4 FDCA对HPH大鼠肺小动脉肌化程度的影响
-
α⁃SMA免疫组织化学染色结果显示:CON组及CON+FDCA组肺小动脉壁α⁃SMA阳性区域较少; CH组肺小动脉壁α⁃SMA阳性区域增加;FDCA治疗可以减少血管周围α⁃SMA阳性沉积(图4A)。肌化血管类型统计结果显示:CON组及CON+FDCA组肺小动脉以非肌化血管为主,CH组完全肌化血管比例显著增加,差异有统计学意义(P< 0.01)。与CH组相比,CH+FDCA可以显著减少完全肌化血管比例,肌化程度以非肌化和部分肌化为主(P< 0.01,图4B)。
-
2.5 FDCA对HPH大鼠肺小动脉外膜纤维化的影响
-
Masson染色结果显示:CON组与CON+FDCA组肺小动脉外膜层仅有少量蓝色胶原沉积,CH组肺小动脉外膜层蓝色胶原沉积区域增加,CH+FDCA组蓝染区域较CH组减轻(图5A)。肺小动脉外膜纤维化程度统计结果显示:与CON组及CON+FDCA组相比,CH组肺小动脉外膜纤维化程度显著增加; CH+FDCA组肺小动脉外膜纤维化程度较CH组显著降低,差异有统计学意义(P< 0.01,图5B)。
-
图4 FDCA对HPH大鼠肺小动脉肌化程度的影响
-
Fig.4 Effects of FDCA on muscularization of pulmo⁃ nary artery in rats with HPH
-
2.6 FDCA对HPH大鼠肺组织中炎症因子水平的影响
-
ELISA法检测肺组织匀浆中IL⁃1β、IL⁃6、TNF⁃α 的含量。统计结果显示:CON组及CON+FDCA组IL⁃1β、IL⁃6、TNF⁃α的表达均无明显差异(P> 0.05,图6)。与CON组相比,CH组肺组织IL⁃1β、IL⁃6、 TNF⁃α的表达均明显增加;CH+FDCA组肺组织IL⁃1 β、IL⁃6、TNF⁃α的表达较CH组显著降低,差异有统计学意义(P< 0.01,图6)。CH+FDCA组TNF⁃α的表达水平与CON组相比差异无统计学意义(P> 0.05,图6C)。
-
图5 FDCA对HPH大鼠肺小动脉外膜纤维化的影响
-
Fig.5 Effects of FDCA on fibrosis of pulmonary arteri⁃ olar adventitia in rats with HPH
-
2.7 FDCA对HPH大鼠肺组织中MLCK和MLCP表达水平的影响
-
ELISA法检测肺组织匀浆中MLCK和MLCP的水平。统计结果显示:CON组及CON + FDCA组MLCK、MLCP的表达水平均无明显差异(P> 0.05)。与CON组相比,CH组肺组织匀浆中MLCK表达水平明显增加,MLCP表达水平明显降低; CH+FDCA组与CH组相比,肺组织中MLCK表达水平降低,MLCP表达水平升高,差异有统计学意义 (P< 0.01,图7)。CH+FDCA组肺组织MLCK、ML⁃ CP的表达水平与CON组相比差异无统计学意义 (P> 0.05)。
-
图6 FDCA对HPH大鼠肺组织中IL⁃1β、IL⁃6、TNF⁃α表达的影响
-
Fig.6 Effects of FDCA on expression of IL⁃1β,IL⁃6and TNF⁃α in pulmonary tissues of rats with HPH
-
2.8 FDCA对HPH大鼠肺组织中ROCK1、ROCK2 蛋白表达的影响
-
Western blot半定量结果显示:CON组及CON+ FDCA组ROCK1、ROCK2的表达水平均无明显差异 (P> 0.05)。与CON组相比,CH组肺组织匀浆中ROCK1、ROCK2表达水平均明显增加;CH+FDCA组与CH组相比,肺组织中ROCK1、ROCK2表达水平均有所降低,差异有统计学意义(P< 0.01,图8);与CON组相比,CH+FDCA组肺组织ROCK1、 ROCK2的表达水平差异均无统计学意义(P> 0.05)。
-
图7 FDCA对HPH大鼠MLCK、MLCP表达的影响
-
Fig.7 Effects of FDCA on expression of MLCK and MLCP in rats with HPH
-
图8 FDCA对HPH大鼠ROCK1、ROCK2表达的影响
-
Fig.8 Effects of FDCA on expression of ROCK1and ROCK2in rats with HPH
-
3 讨论
-
HPH是临床上常见的一类PH,常继发于慢性阻塞性肺疾病、阻塞性睡眠呼吸暂停综合征、间质性肺病、慢性高原病等慢性缺氧性疾病[12]。HPH的发生发展过程与肺血管结构、功能异常密切相关。慢性缺氧可以引起炎症反应、肺血管收缩、肺动脉重构(包括肺血管床内膜损伤、中膜肥厚与外膜纤维化),导致远端肺小血管闭塞,肺动脉管腔逐渐狭窄,肺血管阻力进行性升高,进而出现右心功能衰竭甚至死亡[13-15]。本研究采用慢性缺氧诱导的大鼠PH模型,探讨FDCA对HPH的治疗作用。结果显示缺氧4周大鼠RVSP异常升高,右心室代偿性肥厚,伴随明显的肺血管壁肥厚、肌化以及纤维化,提示成功构建HPH大鼠模型。FDCA可缓解慢性缺氧诱导的大鼠肺血管重构,调节血流动力学参数,减轻右心室肥厚,提示FDCA对HPH具有良好的治疗作用。
-
缺氧诱导的肺血管重构是HPH重要的发病机制。肺血管重构是遗传因素、表观遗传因素以及环境因素共同作用的结果。近年来,炎症反应在肺血管重构中的作用备受关注[16]。研究发现PH动物模型及PH患者肺组织中均可见大量炎症细胞在重构的肺血管周围积累并向血管内浸润。这些肺血管细胞和炎症细胞可在局部产生大量细胞因子和趋化因子,主要包括IL⁃1β、IL⁃6、TNF⁃α、单核细胞趋化蛋白⁃1和趋化因子⁃5等。这些促炎细胞因子和趋化因子表达增加,可进一步促进血管细胞过度收缩与增殖,导致肺血管重塑[17]。研究表明,促炎性细胞因子水平升高的PH患者临床预后较差,其中IL⁃6、 IL⁃8、IL⁃10等细胞因子的表达水平与PH患者生存恶化相关[18-19]。本研究结果显示,FDCA可显著抑制HPH模型大鼠肺组织中重构血管周围的炎症细胞浸润及肺组织炎症因子IL⁃1β、IL⁃6、TNF⁃α的表达,提示FDCA可减轻缺氧诱导的肺组织慢性炎症反应,这可能是其减轻肺小血管重构的重要原因之一。
-
肺血管重构机制复杂,涉及多个信号通路,其中ROCK通路是研究的热门通路之一。ROCK蛋白属于丝氨酸/苏氨酸激酶家族,是小GTP酶Rho A下游的效应分子,有ROCK1和ROCK2两个同工型,在人体内参与调控细胞形态、增殖、黏附和运动等重要的生物过程,在心血管、神经系统、代谢疾病及癌症的发生发展中起到重要作用[20-21]。ROCK1和ROCK2结构相似,具有高度的序列同源性,可以共享相同的蛋白质靶标。这两种亚型的ROCK分布广泛,ROCK1主要在肺组织、肝、肾、脾和炎症细胞中大量表达,ROCK2主要分布在心脏、血管、肌肉(包括平滑肌)[22]。ROCK蛋白在HPH患者及动物模型肺组织中表达上调,参与炎症反应、肺血管收缩、肺血管重构等多个病理生理过程,但ROCK1和ROCK2的作用尚不完全明确。研究表明,在缺氧条件下,ROCK2通过诱导氧化应激、促进炎性细胞因子分泌调节血管平滑肌细胞的增殖和迁移,促进肺血管重构[23-24]。在新生血管内膜形成过程中,ROCK1参与炎症细胞的募集、炎症因子的释放、血管细胞的增殖、内皮黏附分子的表达以及血管平滑肌细胞迁移[20]。在心脏组织中,研究证明使用ROCK抑制剂可抑制小鼠病理性心肌肥大与心脏重塑[25]。本研究HPH模型大鼠肺组织中ROCK1和ROCK2的表达上调,FDCA可抑制慢性缺氧诱导的ROCK1和ROCK2的表达,提示FDCA可能部分通过抑制ROCK通路抑制炎症反应、减轻肺血管重构和右心室肥厚。
-
缺氧诱导的肺血管舒缩功能失调是HPH肺血管阻力持续性升高的重要病理生理机制。MLCK和MLCP通过调节肌球蛋白轻链磷酸化水平来调节细胞收缩的一组关键酶。MLCK是一种钙/钙调蛋白依赖的蛋白激酶,可使肌球蛋白轻链磷酸化,触发肺血管收缩;而MLCP负责使磷酸化的肌球蛋白轻链脱磷酸,维持血管舒张,两者处于动态平衡状态。研究表明,缺氧可抑制离子通道Kv1.5,升高肺动脉平滑肌细胞胞浆内钙离子浓度,上调MLCK表达,诱导细胞收缩,即钙依赖的细胞收缩。DCA可抑制PDK活性使Kv1.5表达增加,减少肺动脉平滑肌细胞钙离子内流,从而抑制MLCK活性,改善肺血管收缩[26]。另一方面,缺氧激活ROCK通路,通过磷酸化MLCP的肌球蛋白结合亚基使MLCP失活,促进细胞收缩,即非钙依赖的细胞收缩。法舒地尔可抑制ROCK恢复MLCP活性,使细胞恢复舒张状态。在缺氧诱导的双重收缩机制下,肺动脉持续收缩,肺血管阻力进行性升高[27-28]。本研究中,FDCA治疗逆转了HPH模型大鼠肺组织中MLCK表达的增加和MLCP表达的降低,提示FDCA可同时作用于钙离子依赖的收缩机制和非钙依赖的收缩机制,抑制肺血管收缩,这可能是FDCA治疗HPH的另一重要机制。
-
综上所述,FDCA可同时靶向ROCK通路和PDK通路,通过多个机制共同抑制慢性缺氧诱导的肺血管收缩与重构,降低肺动脉压力,缓解右心室肥大,在HPH动物模型上的治疗效果显著。且FDCA的两个基础药物法舒地尔与DCA已在临床广泛使用,其安全性已被证实。然而,FDCA作为一个分子,其相对于法舒地尔和DCA的组合,在整体的组织分布和生物利用度方面有哪些优势,仍需要进一步研究来揭示潜在的机制。此外,DCA抑制PDK活性、恢复细胞能量代谢后对ROCK通路是否有所影响,也需要深入的细胞分子生物学研究来阐明。总之,本研究结果表明,FDCA有望成为未来治疗HPH的候选药物之一。
-
参考文献
-
[1] SIMONNEAU G,MONTANI D,CELERMAJER D S,et al.Haemodynamic definitions and updated clinical classi⁃ fication of pulmonary hypertension[J].Eur Respir J,2019,53(1):1801913
-
[2] HOEPER M M,HUMBERT M,SOUZA R,et al.A global view of pulmonary hypertension[J].Lancet Respir Med,2016,4(4):306⁃322
-
[3] 中华医学会呼吸病学分会肺栓塞与肺血管病学组,中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会,全国肺栓塞与肺血管病防治协作组,等.中国肺动脉高压诊断与治疗指南(2021版)[J].中华医学杂志,2021,101(1):11-51
-
[4] ZHANG Y,WU S.Effects of fasudil on pulmonary hyper⁃ tension in clinical practice[J].Pulm Pharmacol Ther,2017,46:54-63
-
[5] KESHAVARZ A,ALOBAIDA A,MCMURTRY I F,et al.CAR,a homing peptide,prolongs pulmonary preferential vasodilation by increasing pulmonary retention and reduc⁃ ing systemic absorption of liposomal fasudil[J].Mol Pharm,2019,16(8):3414-3429
-
[6] ZHUANG R,WU J,LIN F,et al.Fasudil preserves lung endothelial function and reduces pulmonary vascular re⁃ modeling in a rat model of end⁃stage pulmonary hyperten⁃ sion with left heart disease[J].Int J Mol Med,2018,42(3):1341-1352
-
[7] RUAN H,ZHANG Y,LIU R,et al.The acute effects of 30 mg vs.60 mg of intravenous fasudil on patients with congenital heart defects and severe pulmonary arterial hy⁃ pertension[J].Congenit Heart Dis,2019,14(4):645-650
-
[8] WEI G,SUN J,LUAN W,et al.Natural product albiziabi⁃ oside a conjugated with pyruvate dehydrogenase kinase in⁃ hibitor dichloroacetate to induce apoptosis⁃ferroptosis⁃M2⁃ TAMs polarization for combined cancer therapy[J].J Med Chem,2019,62(19):8760-8772
-
[9] LI T,LI S,FENG Y,et al.Combination of dichloroacetate and atorvastatin regulates excessive proliferation and oxi⁃ dative stress in pulmonary arterial hypertension develop⁃ ment via p38 signaling[J].Oxid Med Cell Longev,2020,2020:6973636
-
[10] MICHELAKIS E D,GURTU V,WEBSTER L,et al.Inhi⁃ bition of pyruvate dehydrogenase kinase improves pulmo⁃ nary arterial hypertension in genetically susceptible pa⁃ tients[J].Sci Transl Med,2017,9(413):eaao4583
-
[11] QI L,LV T,CHENG Y,et al.Fasudil dichloroacetate(FDCA),an orally available agent with potent therapeutic efficiency on monocrotaline ⁃ induced pulmonary arterial hypertension rats[J].Bioorg Med Chem Lett,2019,29(14):1812-1818
-
[12] NATHAN S D,BARBERA J A,GAINE S P,et al.Pulmo⁃ nary hypertension in chronic lung disease and hypoxia [J].Eur Respir J,2019,53(1):1801914
-
[13] ROWAN S C,KEANE M P,GAINE S,et al.Hypoxic pul⁃ monary hypertension in chronic lung diseases:novel vaso⁃ constrictor pathways[J].Lancet Respir Med,2016,4(3):225-236
-
[14] HUMBERT M,GUIGNABERT C,BONNET S,et al.Pa⁃ thology and pathobiology of pulmonary hypertension:state of the art and research perspectives[J].Eur Respir J,2019,53(1):1801887
-
[15] SYDYKOV A,MAMAZHAKYPOV A,MARIPOV A,et al.Pulmonary hypertension in acute and chronic high alti⁃ tude maladaptation disorders[J].Int J Environ Res Pub⁃ lic Health,2021,18(4):1692
-
[16] JAFRI S,ORMISTON M L.Immune regulation of system⁃ ic hypertension,pulmonary arterial hypertension,and pre⁃ eclampsia:shared disease mechanisms and translational opportunities[J].Am J Physiol Regul Integr Comp Physi⁃ ol,2017,313(6):R693-R705
-
[17] SCOTT T E,KEMP⁃HARPER B K,HOBBS A J.Inflam⁃ masomes:a novel therapeutic target in pulmonary hyper⁃ tension?[J].Br J Pharmacol,2019,176(12):1880-1896
-
[18] CRACOWSKI J L,CHABOT F,LABARÈRE J,et al.Pro⁃ inflammatory cytokine levels are linked to death in pulmo⁃ nary arterial hypertension[J].Eur Respir J,2014,43(3):915-917
-
[19] 杨辉,冯启凡,章敬水,等.IPAH患者血浆IL⁃8水平表达变化与病情严重程度相关性研究[J].南京医科大学学报(自然科学版),2019,39(1):84-87
-
[20] LIU J,WADA Y,KATSURA M,et al.Rho ⁃ associated coiled⁃coil kinase(ROCK)in molecular regulation of an⁃ giogenesis[J].Theranostics,2018,8(21):6053-6069
-
[21] STRASSHEIM D,GERASIMOVSKAYA E,IRWIN D,et al.RhoGTPase in vascular disease[J].Cells,2019,8(6):551
-
[22] LOIRAND G.Rho kinases in health and disease:from ba⁃ sic science to translational research[J].Pharmacol Rev,2015,67(4):1074-1095
-
[23] YAMAMURA A,NAYEEM M J,SATO M.The Rho ki⁃ nase 2(ROCK2)⁃ specific inhibitor KD025 ameliorates the development of pulmonary arterial hypertension[J].Biochem Biophys Res Commun,2021,534:795-801
-
[24] QIAO F,ZOU Z,LIU C,et al.ROCK2 mediates the prolif⁃ eration of pulmonary arterial endothelial cells induced by hypoxia in the development of pulmonary arterial hyper⁃ tension[J].Exp Ther Med,2016,11(6):2567-2572
-
[25] OLGAR Y,CELEN M C,YAMASAN B E,et al.Rho⁃ki⁃ nase inhibition reverses impaired Ca(2 +)handling and associated left ventricular dysfunction in pressure over⁃ load ⁃ induced cardiac hypertrophy[J].Cell Calcium,2017,67:81-90
-
[26] LE R H,CAPUANO V,GIRERD B,et al.Implication of potassium channels in the pathophysiology of pulmonary arterial hypertension[J].Biomolecules,2020,10(9):1261
-
[27] SADDOUK F Z,GINNAN R,SINGER H A.Ca(2 +)/calmodulin ⁃ dependent protein kinase Ⅱ in vascular smooth muscle[J].Adv Pharmacol,2017,78:171-202
-
[28] GUAN Z,BATY J J,ZHANG S,et al.Rho kinase inhibi⁃ tors reduce voltage⁃dependent Ca(2+)channel signaling in aortic and renal microvascular smooth muscle cells[J].Am J Physiol Renal Physiol,2019,317(5):F1132-F1141
-
摘要
目的:研究法舒地尔二氯乙酸盐(fasudil dichloroacetate,FDCA)对低氧性肺动脉高压(hypoxic pulmonary hyperten⁃ sion,HPH)大鼠的治疗作用及其机制。方法:SD大鼠随机分为4组:对照(CON)组、CON+FDCA组、慢性缺氧(chronic hypoxia, CH)组、CH+FDCA组。将CH、CH+FDCA组置于(10.0 ± 0.1)%氧浓度的常压缺氧箱中持续缺氧,CON+FDCA、CH+FDCA组从缺氧第15天开始,给予FDCA 43.3 mg/(kg·d)灌胃治疗。缺氧28 d后测量大鼠右心室收缩压(right ventricular systolic pressure, RVSP)和右心室肥厚指数(right ventricular hypertrophy index,RVHI);采用HE、α⁃SMA免疫组织化学染色及Masson染色评估肺血管及右心室形态学变化。ELISA法检测大鼠肺组织中炎症因子白细胞介素(interleukin,IL)⁃1β、IL⁃6、肿瘤坏死因子(tumor necrosis factor,TNF)⁃α含量以及肌球蛋白轻链激酶(myosin light chain kinase,MLCK)和肌球蛋白磷酸化酶(myosin light chain phosphorylase,MLCP)水平。Western blot实验测定大鼠肺组织中ROCK1、ROCK2蛋白表达水平。结果:FDCA可以降低HPH 大鼠的RVSP及RVHI,缓解右心室心肌肥大,减轻肺血管中膜肥厚程度,降低完全肌化型血管比例,抑制肺血管周围胶原沉积,并下调肺组织中炎症因子IL⁃1β、IL⁃6、TNF⁃α水平。此外,FDCA可显著降低HPH大鼠肺组织中MLCK水平,并升高MLCP 水平,同时抑制ROCK1、ROCK2蛋白表达。结论:FDCA可抑制肺血管收缩与重构,减轻炎症反应,缓解慢性缺氧诱导的大鼠肺动脉高压,是一种治疗HPH的潜在化合物。
Abstract
Objective:This study aims to investigate the effects of fasudil dichloroacetate(FDCA)on hypoxic pulmonary hypertension(HPH)in rats and the potential mechanisms. Methods:SD rats were randomly divided into 4 groups:control(CON) group,CON+FDCA group,chronic hypoxia(CH)group,and CH+FDCA group. The rats in CH and CH+FDCA groups were exposed to chronic hypoxia with(10.0 ± 0.1)% oxygen for 28 days,and the rats in CON+FDCA and CH+FDCA groups were given FDCA[43.3 mg/ (kg·d)]intragastrically from the 15th day of hypoxia. After 28 days of hypoxia,right ventricular systolic pressure(RVSP),and right ventricular hypertrophy index(RVHI)were assessed. The morphological changes of pulmonary vessels and right ventricle were evaluated by hematoxylin⁃eosin staining,α⁃SMA immunohistochemical staining and Masson’s trichome staining. ELISA was used to analyze the contents of interleukin(IL)⁃1β,IL⁃6,tumor necrosis factor⁃α(TNF⁃α),the levels of myosin light chain kinase(MLCK)and myosin light chain phosphorylase(MLCP)in lung. The expression of ROCK1 and ROCK2 in rat lung tissues was measured by Western blot assay. Results:FDCA alleviated hypoxia ⁃ induced increments of RVSP and RVHI,as well as cardiomyocytes hypertrophy. In addition,FDCA suppressed hypoxia ⁃induced pulmonary artery wall hypertrophy,pulmonary vessel muscularization and perivascular fibrosis. ELISA results showed that FDCA inhibited hypoxia ⁃ induced upregulation of IL ⁃ 1β,IL ⁃ 6 and TNF ⁃ α,and restored the expression of MLCK and MLCP in lung. Moreover,FDCA reversed hypoxia⁃induced upregulation of ROCK1 and ROCK2 in the lung tissues of HPH rats. Conclusion:FDCA alleviates HPH by inhibiting chronic hypoxia ⁃induced pulmonary vascular contraction and remodeling,as well as suppressing inflammation in lung. These results indicate that FDCA could be a potential compound for treating HPH.