en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

冯旰珠,E⁃mail:zhu1635253@163.com

中图分类号:R392.12

文献标识码:A

文章编号:1007-4368(2021)09-1304-06

DOI:10.7655/NYDXBNS20210905

参考文献 1
CURRAN C S,BOLIG T,TORABI ⁃ PARIZI P.Mecha⁃ nisms and targeted therapies for Pseudomonas aeruginosa lung infection[J].Am J Respir Crit Care Med,2018,197(6):708-727
参考文献 2
丁树红,金菲,倪芳,等.下呼吸道感染患者支气管肺泡灌洗液定量培养及临床分析[J].南京医科大学学报(自然科学版),2020,40(9):1354-1358
参考文献 3
HORCAJADA J P,MONTERO M,OLIVER A,et al.Epi⁃ demiology and treatment of multidrug⁃resistant and exten⁃ sively drug ⁃ resistant Pseudomonas aeruginosa infections [J].Clin Microbiol Rev,2019,32(4):e00019-e00031
参考文献 4
ZHU F,XIONG F,HE J,et al.Brd4 inhibition amelio⁃ rates pyocyanin ⁃ mediated macrophage dysfunction via transcriptional repression of reactive oxygen and nitrogen free radical pathways[J].Cell Death Dis,2020,11(6):459
参考文献 5
JAIN N,MOELLER J,VOGEL V.Mechanobiology of mac⁃ rophages:how physical factors coregulate macrophage plasticity and phagocytosis[J].Annu Rev Biomed Eng,2019,2:267-297
参考文献 6
BARNES P J.Cellular and molecular mechanisms of asth⁃ ma and COPD[J].Clin Sci(Lond),2017,131(13):1541-1558
参考文献 7
FELGNER S,PREUSSE M,BEUTLING U,et al.Host⁃in⁃ duced spermidine production in motile Pseudomonas aeru⁃ ginosa triggers phagocytic uptake[J].Elife,2020,9:e55744
参考文献 8
BIANCHI S M,PRINCE L R,MCPHILLIPS K,et al.Im⁃ pairment of apoptotic cell engulfment by pyocyanin,a tox⁃ ic metabolite of Pseudomonas aeruginosa[J].Am J Respir Crit Care Med,2008,177(1):35-43
参考文献 9
KUANG Z,BENNETT R C,LIN J,et al.Surfactant phos⁃ pholipids act as molecular switches for premature induc⁃ tion of quorum sensing⁃dependent virulence in Pseudomo⁃ nas aeruginosa[J].Virulence,2020,11(1):1090-1107
参考文献 10
ZHANG Y,ZHOU C M,PU Q,et al.Pseudomonas aerugi⁃ nosa tegulatory protein AnvM controls pathogenicity in an⁃ aerobic environments and impacts host defense[J].MBio,2019,10(4):e01319-e01362
参考文献 11
HOLM A,KARLSSON T,VIKSTRÖM E.Pseudomonas ae⁃ ruginosa lasI/rhlI quorum sensing genes promote phagocy⁃ tosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages[J].Front Microbiol,2015,6:915
参考文献 12
ZRIEQ R,SANA T G,VERGIN S,et al.Genome ⁃ wide screen of pseudomonas aeruginosa in saccharomyces cere⁃ visiae identifies new virulence factors[J].Front Cell In⁃ fect Microbiol,2015,5:81
参考文献 13
PIACENZA L,TRUJILLO M,RADI R.Reactive species and pathogen antioxidant networks during phagocytosis [J].J Exp Med,2019,216(3):501-516
参考文献 14
CASTANHEIRA F,KUBES P.Neutrophils and NETs in modulating acute and chronic inflammation[J].Blood,2019,133(20):2178-2185
参考文献 15
THANABALASURIAR A,SUREWAARD B G,WILL⁃ SON M E,et al.Bispecific antibody targets multiple Pseu⁃ domonas aeruginosa evasion mechanisms in the lung vas⁃ culature[J].J Clin Invest,2017,127(6):2249-2261
参考文献 16
GARAI P,BERRY L,MOUSSOUNI M,et al.Killing from the inside:intracellular role of T3SS in the fate of Pseudo⁃ monas aeruginosa within macrophages revealed by mgtC and oprF mutants[J].PLoS Pathog,2019,15(6):e1007812
参考文献 17
YU H,XIONG J,QIU J,et al.Type Ⅲ secretion protein,PcrV,impairs pseudomonas aeruginosa biofilm formation by increasing M1 macrophage⁃mediated anti⁃bacterial ac⁃ tivities[J].Front Microbiol,2020,11:1971
参考文献 18
GATICA D,LAHIRI V,KLIONSKY D J.Cargo recogni⁃ tion and degradation by selective autophagy[J].Nat Cell Biol,2018,20(3):233-242
参考文献 19
HERB M,GLUSCHKO A,SCHRAMM M.LC3⁃associat⁃ ed phagocytosis ⁃ the highway to hell for phagocytosed mi⁃ crobes[J].Semin Cell Dev Biol,2020,101:68-76
参考文献 20
PEHOTE G,BODAS M,BRUCIA K,et al.Cigarette smoke exposure inhibits bacterial killing via TFEB⁃medi⁃ ated autophagy impairment and resulting phagocytosis de⁃ fect[J].Mediators Inflamm,2017,2017:3028082
参考文献 21
LI X,HE S,ZHOU X,et al.Lyn delivers bacteria to lyso⁃ somes for eradication through TLR2 ⁃ initiated autophagy related phagocytosis[J].PLoS Pathog,2016,12(1):e1005363
参考文献 22
WU Y,LI D,WANG Y,et al.Beta⁃defensin 2 and 3 pro⁃ mote bacterial clearance of Pseudomonas aeruginosa by inhibiting macrophage autophagy through downregulation of early growth response gene⁃1 and c⁃FOS[J].Front Im⁃ munol,2018,9:211
目录contents

    摘要

    目的:探讨铜绿假单胞菌分泌蛋白Pec1对小鼠肺泡巨噬细胞株MH⁃S吞噬功能的影响。方法:通过PCR扩增、质粒构建、原核表达及蛋白纯化等过程制备重组蛋白Pec1;CCK⁃8法检测Pec1蛋白对MH⁃S细胞增殖的影响;中性红染色检测MH⁃S细胞的吞噬功能;荧光显微镜观察 MH⁃S 细胞对铜绿假单胞菌标准菌株 PAO1 灭活菌的吞噬能力。结果:成功构建重组质粒 pET⁃30a⁃pec1,原核表达并纯化后得到重组蛋白Pec1,其分子量为30.5 kDa。Pec1对MH⁃S细胞的增殖有抑制作用,Pec1浓度越高,对细胞增殖的抑制作用越明显;Pec1能减少MH⁃S细胞对中性红的内吞,抑制MH⁃S细胞对铜绿假单胞菌灭活菌的吞噬作用。结论:铜绿假单胞菌分泌蛋白Pec1对MH⁃S细胞的吞噬功能有抑制作用。

    Abstract

    Objective:This study aims to investigate the effect of the Pseudomonas aeruginosa secreted protein Pec1 on phagocytosis of MH⁃S cells. Methods:The recombinant protein Pec1 was prepared by PCR amplification,plasmid construction,induced expression and protein purification. The effect of the recombinant protein Pec1 on the proliferation of MH ⁃S cells was measured by CCK ⁃8 kit. Neutral red was used to detect the phagocytic function of MH ⁃ S cells,and the phagocytosis of heat ⁃ inactivated Pseudomonas aeruginosa was observed by fluorescence microscope. Results:The recombinant protein Pec1 with the molecular weight of 30.5 kDa was successfully expressed and purified. Pec1 had a concentration⁃dependent inhibitory effect on the proliferation of MH⁃S cells. Pec1 decreased the endocytosis of neutral red and inhibited the phagocytosis of heat ⁃inactivated Pseudomonas aeruginosa by MH ⁃S cells. Conclusion:The Pseudomonas aeruginosa secreted protein Pec1 can inhibit the phagocytosis of MH⁃S cells.

  • 铜绿假单胞菌(Pseudomonas aeruginosa,PA)是一种非发酵性、专性需氧的革兰阴性杆菌,在自然界广泛存在,可导致呼吸系统、血液系统、泌尿系统及中枢神经系统等机体多个系统感染。PA可通过鞭毛、菌毛、脂多糖及Ⅲ型分泌系统等破坏呼吸道上皮细胞,在呼吸道定植和感染[1]。研究发现,下呼吸道感染患者支气管肺泡灌洗液分离培养的病原菌中,PA居于第2位[2]。现如今,随着多重耐药 (multi ⁃ drug resistant,MDR)及泛耐药(extensively drug resistant,XDR)菌株的出现,防治PA引起的感染成为备受关注的公共卫生问题[3]。当PA及其分泌的毒性分子作用于机体时,主要由巨噬细胞、中性粒细胞及NK细胞等固有免疫细胞进行防御,研究表明,巨噬细胞在抵抗PA肺部感染过程中具有重要作用[4]

  • 吞噬是巨噬细胞清除细菌的首要环节,肺泡巨噬细胞吞噬受阻是下呼吸道感染加重的重要原因之一[5-6]。PA可通过鞭毛、分泌蛋白及其群体感应系统(quorum sensing,QS)等多种方式影响巨噬细胞的吞噬功能,从而在较大程度上影响感染的进程[7-9]。研究发现,PA的重要毒性因子绿脓菌素在体内外均能抑制巨噬细胞对机体凋亡细胞的吞噬[8]; Zhang等[10] 研究表明,敲除PA的毒性因子调节蛋白AnvM后,则能促进小鼠肺泡巨噬细胞MH⁃S对PA的吞噬效应;与上述不同的是,有学者研究发现,PA群体感性系统的rhlI表达则有利于巨噬细胞对PA的吞噬[11]。这些结果表明,PA的结构物或分泌物可以不同方式影响巨噬细胞的吞噬功能。因此,研究PA对肺泡巨噬细胞吞噬功能的影响对探究PA感染机制有重要意义。

  • 我们前期在对PA部分分泌蛋白的抗原性筛选时发现,Pec1有一定的抗原性。Pec1是PA感染状态下分泌的一种蛋白,由275个氨基酸构成,并且研究发现,Pec1是一种潜在的毒性因子[12],但其在PA致病过程中的具体功能及作用机制尚未见报道。为此,本研究拟观察重组PA分泌蛋白Pec1对MH⁃S细胞吞噬功能的影响。

  • 1 材料和方法

  • 1.1 材料

  • PA野生株(PAO1)为南京医科大学第二附属医院实验中心保存菌;大肠埃希菌(E.coli)DH5α、大肠埃希菌感受态细胞 E.coli BL21(DE3)、pMD19⁃T以及pET⁃30a(+)(Novagen公司,美国);小鼠肺泡巨噬细胞株MH⁃S细胞(上海中乔新舟公司);DNA连接酶、DNA聚合酶和限制性内切酶 NdeⅠ与Hind Ⅲ (Invitrogen公司,美国);PCR扩增试剂盒、PCR产物纯化试剂盒、DNA胶回收试剂盒、质粒抽提试剂盒及镍柱(南京金斯瑞公司);CCK⁃8细胞增殖检测试剂盒、中性红染液、吖啶橙AO染色试剂盒以及碘化丙啶PI染色试剂盒(南京凯基生物公司)。

  • 1.2 方法

  • 1.2.1 引物的合成和重组质粒的构建

  • 根据NCBI的PAO1菌株信息设计Pec1序列特异引物,上游引物:5′ ⁃ ATGAGTGTCCGCTTTC⁃ GCCCCCTGGAT⁃3′;下游引物:5′⁃TCAGCGAATTC⁃ CACCGTCGC⁃3′,引物及反应模板均由南京金斯瑞公司设计并合成。PCR反应条件:95℃预变性2min; 95℃变性1min、60℃退火45s、72℃延伸1min,进行30个循环;最后在72℃延伸10min。扩增的PCR产物经1%琼脂糖凝胶电泳分离,紫外灯下观察条带。试剂盒纯化扩增产物,NdeⅠ与Hind Ⅲ双酶切纯化的PCR产物,并插入pMD19⁃T质粒,16℃过夜。用氯化钙法将pMD19⁃T⁃pec1质粒转化大肠杆菌DH5a感受态细胞,在含有IPTG和X⁃gal的抗氨苄青霉素LB平板上37℃孵育过夜,挑选阳性菌落进行酶切鉴定。将酶切正确的重组质粒pMD19⁃T ⁃ pec1经 NdeⅠ和Hind Ⅲ酶切后,插入至表达载体pET⁃30a(+),转化E.coli BL21(DE3)感受态细胞,在含抗氨苄青霉素LB平板上37℃孵育过夜,选择阳性克隆进行测序和酶切鉴定。

  • 1.2.2 重组蛋白Pec1的诱导表达和纯化

  • 将携带pET⁃30a⁃pec1重组表达载体的单克隆 E.coli BL21(DE3)接种于含卡那霉素(100 μg/mL)的LB培养基中,37℃ 200r/min培养过夜。再转接至含卡那霉素(100 μg/mL)的TB培养基中,37℃培养4h,再加入IPTG,15℃下诱导16h。收集细胞,裂解细胞后的上清过镍亲和层析柱,经洗脱液洗脱后,收集纯化洗脱液。SDS⁃PAGE电泳分析条带, BSA测定蛋白浓度,经0.22 μm滤膜过滤后,将蛋白分装冻存于-80℃。

  • 1.2.3 CCK⁃8法检测细胞增殖水平

  • 将MH⁃S细胞以1×104 个/孔接种于96孔板中,培养过夜后,分别加入浓度为0、10、20、40、80、160 μg/mL的重组蛋白Pec1进行刺激,每个浓度设5个平行复孔。培养箱内分别孵育24、48、72h后,每孔加入CCK⁃8试剂10 μL,继续孵育1.5h,使用酶标仪在450nm波长读取吸光度值。

  • 1.2.4 吞噬中性红实验

  • 于12孔板中接种MH⁃S巨噬细胞2×105 个/孔,培养过夜后,分别加入浓度为0、40、80、120 μg/mL的重组蛋白Pec1刺激24h。PBS洗涤3遍后,加入0.01%中性红溶液200 μL/孔,吞噬30min后,用PBS洗3遍,加入裂解液作用30min,使用Bio⁃Rad酶标仪于562nm波长处读取吸光度值。吞噬指数=各浓度实验孔吸光度值/对照孔吸光度值。

  • 1.2.5 荧光显微镜观察吞入胞内的灭活PAO1

  • 以2×105 个/孔接种MH⁃S细胞于12孔板,培养过夜后,分别加入浓度为0、40、80、120 μg/mL的重组蛋白Pec1刺激24h。铜绿假单胞菌PAO1在LB培养基37℃振荡培养过夜后,90℃水浴灭活1h, PBS洗涤3次,用PI标记灭活的PAO1,离心洗涤3次后,PBS悬浮灭活菌沉淀,以MOI 100∶1比例加入灭活的细菌悬液500 μL/孔,细胞吞噬15min后,PBS漂洗3次,AO染色细胞15min,用荧光显微镜随机选取5个视野拍照,采用Image J软件定量分析。

  • 1.3 统计学方法

  • 采用SPSS 25.0软件进行统计分析,实验数据以均数±标准差(x- ± s)表示,每个实验单独重复3次,两组间比较用 t 检验,多组间比较使用单因素方差分析(one⁃way ANOVA),并进行线性趋势检验,P < 0.05为差异具有统计学意义。

  • 2 结果

  • 2.1 Pec1基因的扩增与质粒构建

  • 经PCR扩增,扩增产物经琼脂糖凝胶电泳分离后,显示的条带与预期一致,大小约828bp(图1A)。纯化后的PCR片段经NdeⅠ、Hind Ⅲ酶切后与pMD19⁃T质粒连接,转化E.coli DH5a感受态细胞,提取阳性克隆进行双酶切鉴定,可看到大小约3 520bp的重组pMD19⁃T⁃pec1质粒条带、2 692bp的pMD19⁃T质粒条带和828bp的基因Pec1条带,与理论值相符 (图1B)。重组pET ⁃ 30a ⁃ pec1表达载体是重组pMD19⁃T⁃pec1质粒经NdeⅠ、Hind Ⅲ酶切后插入至pET⁃30a质粒、转化E.coli BL21(DE3)感受态细胞所得,图中可见5 422bp的pET⁃30a质粒条带和828bp的基因Pec1条带(图1C),与预期相符,且测序结果与NCBI的数据库比对一致,提示重组表达载体构建成功。

  • 2.2 重组蛋白Pec1的诱导表达与纯化

  • 将经IPTG诱导后的菌液裂解、镍亲和层析柱分离纯化后的上清进行SDS⁃PAGE分析,结果显示明显目的条带,大小约30.5kDa,与预期结果相符(图2)。

  • 2.3 Pec1对MH⁃S细胞增殖的影响

  • 采用CCK⁃8法检测重组蛋白Pec1对MH⁃S细胞增殖的影响。结果显示,分别用不同浓度的Pec1刺激细胞后,在24、48、72h 3个时间点观察,随着刺激浓度的增加,重组蛋白Pec1对MH⁃S细胞增殖的抑制作用越明显,差异有统计学意义(P< 0.05,图3)。

  • 图1 重组质粒pMD19⁃T⁃pec1及pET⁃30a⁃pec1的构建

  • Fig.1 Construction of the plasmid pMD19⁃T⁃pec1and pET⁃30a⁃pec1

  • 2.4 Pec1对MH⁃S细胞吞噬中性红功能的影响

  • 不同浓度的Pec1刺激MH⁃S细胞24h后,检测细胞吞噬中性红的能力。结果表明,0(对照组)、 40、80、120 μg/mL Pec1处理的吞噬指数分别为1.00±0.04、0.82±0.02、0.04±0.01、0.03±0.01,表明随着Pec1浓度的增大,MH⁃S细胞吞噬中性红能力逐渐下降,差异具有统计学意义(P< 0.01,图4)

  • 2.5 荧光显微镜观察结果

  • 荧光显微镜下观察经PI标记的灭活PAO1(图5A),与对照组相比,40、80、120 μg/mL的Pec1蛋白刺激MH⁃S细胞后,加入灭活PAO1吞噬30min,随着刺激浓度的增高,吞入胞内的灭活菌逐渐减少,且胞内相对荧光定量差异具有统计学意义(图5B, P< 0.001)。

  • 3 讨论

  • 单核/巨噬细胞和中性粒细胞是机体发挥吞噬作用的主要固有免疫细胞,当入侵的病原体被吞入细胞内,细胞通过释放胞内活性分子(活性氧)、过氧化氢酶、抗菌肽等杀伤病原微生[13],此外,中性粒细胞还可通过胞外陷阱杀伤病原体[14]。Thanabalas⁃ uriar等[15] 在体内实验研究发现,敲除PA分泌的胞外多糖psl(ΔpslA)能促进中性粒细胞对敲除株的识别与吞噬,且体外实验也能证实这种现象,表明psl有助于PA逃避中性粒细胞识别,机制可能与其抑制补体在PA表面激活与沉积有关;另有学者研究发现,被巨噬细胞吞入的PA能依赖于铜绿假单胞菌Ⅲ型分泌系统(T3SS)分泌的ExoS促进PA从巨噬细胞囊泡中逃脱,从而利于PA的免疫逃逸[16];Yu等 [17] 研究表明,T3SS的蛋白PcrV,可促进巨噬细胞株RAW264.7对PA的吞噬,同时,可促进小鼠骨髓来源巨噬细胞(bone marrow ⁃derived macrophage,BM⁃ DM)向促炎型M1型分化,增加iNOS、ROS、TNF⁃α等细胞因子的分泌,从而有利于巨噬细胞对PA生物膜的清除。由此可见,PA可以分泌多种不同毒性因子,而不同毒力因子对宿主免疫细胞的免疫效应影响不同,本研究主要探讨了PA分泌蛋白Pec1对巨噬细胞吞噬功能的影响。

  • 图2 重组蛋白Pec1的SDS⁃PAGE分析

  • Fig.2 SDS ⁃PAGE analysis of the recombinant protein Pec1

  • 图3 Pec1对MH⁃S细胞增殖的影响

  • Fig.3 Effect of the recombinant protein Pec1on MH⁃S cell proliferation

  • 图4 Pec1对MH⁃S细胞吞噬中性红的影响

  • Fig.4 Effect of the recombinant protein Pec1on phago⁃ cytosis of neutral red by MH⁃S cells

  • 本研究成功构建了PA重组蛋白Pec1,以不同浓度的Pec1蛋白刺激MH⁃S细胞24、48、72h后发现,Pec1浓度越高,MH⁃S细胞的增殖能力越弱,其中,以120 μg/mL作用72h的抑制作用最强。同时观察发现,Pec1浓度越高,巨噬细胞对中性红和PA的吞噬能力越低。这些结果表明,PA蛋白Pec1能对MH⁃S细胞的吞噬作用产生抑制效应。

  • 近年来,有不少学者将吞噬与自噬相联系,自噬可通过异体自噬和LC3相关吞噬作用(LC3⁃associat⁃ ed phagocytosis,LAP)参与病原微生物的清除[18-19]。 Pehote等[20] 发现,RAW264.7小鼠巨噬细胞经香烟烟雾暴露处理后,敲除调控自噬溶酶体基因表达的转录因子EB(transcription factor EB,TFEB)的处理组,与对照组相比,巨噬细胞对PA吞噬减少,同时也抑制了其对PA的清除。研究发现,酪氨酸蛋白Lyn是联系吞噬与自噬的关键分子。PA感染MH⁃S后,经TLR4/TLR2识别入胞,一方面,通过磷酸化Lyn,将包裹PA的吞噬体经Rab家族蛋白(如Rab5、Rab7) 运输至溶酶体;另一方面,磷酸化的Lyn启动异体自噬,形成包裹PA的自噬体运至溶酶体,最终包裹PA的双层膜囊泡与溶酶体融合并在其内降解[21]。而Wu等[22] 发现,β⁃防御素2和β⁃防御素3通过下调早期生长反应基因⁃1(the early growth response gene⁃1, Egr⁃1)和原癌基因c⁃FOS抑制巨噬细胞自噬,促进巨噬细胞对酵母多糖的吞噬作用,促进PA的清除。上述研究结果表明,巨噬细胞可通过促进或抑制自噬,继而影响吞噬功能,最终影响胞内PA的清除。

  • 图5 Pec1对MH⁃S细胞吞噬灭活铜绿假单胞菌PAO1的影响

  • Fig.5 Effect of the recombinant protein Pec1on phagocytosis of heat⁃inactivated Pseudomonas aeruginosa PAO1by MH ⁃S cells

  • 本研究初步观察到PA分泌的Pec1蛋白能够抑制MH⁃S巨噬细胞对灭活PA的吞噬,该分泌蛋白影响吞噬的具体机制,是否对巨噬细胞自噬产生影响尚待进一步深入研究。

  • 参考文献

    • [1] CURRAN C S,BOLIG T,TORABI ⁃ PARIZI P.Mecha⁃ nisms and targeted therapies for Pseudomonas aeruginosa lung infection[J].Am J Respir Crit Care Med,2018,197(6):708-727

    • [2] 丁树红,金菲,倪芳,等.下呼吸道感染患者支气管肺泡灌洗液定量培养及临床分析[J].南京医科大学学报(自然科学版),2020,40(9):1354-1358

    • [3] HORCAJADA J P,MONTERO M,OLIVER A,et al.Epi⁃ demiology and treatment of multidrug⁃resistant and exten⁃ sively drug ⁃ resistant Pseudomonas aeruginosa infections [J].Clin Microbiol Rev,2019,32(4):e00019-e00031

    • [4] ZHU F,XIONG F,HE J,et al.Brd4 inhibition amelio⁃ rates pyocyanin ⁃ mediated macrophage dysfunction via transcriptional repression of reactive oxygen and nitrogen free radical pathways[J].Cell Death Dis,2020,11(6):459

    • [5] JAIN N,MOELLER J,VOGEL V.Mechanobiology of mac⁃ rophages:how physical factors coregulate macrophage plasticity and phagocytosis[J].Annu Rev Biomed Eng,2019,2:267-297

    • [6] BARNES P J.Cellular and molecular mechanisms of asth⁃ ma and COPD[J].Clin Sci(Lond),2017,131(13):1541-1558

    • [7] FELGNER S,PREUSSE M,BEUTLING U,et al.Host⁃in⁃ duced spermidine production in motile Pseudomonas aeru⁃ ginosa triggers phagocytic uptake[J].Elife,2020,9:e55744

    • [8] BIANCHI S M,PRINCE L R,MCPHILLIPS K,et al.Im⁃ pairment of apoptotic cell engulfment by pyocyanin,a tox⁃ ic metabolite of Pseudomonas aeruginosa[J].Am J Respir Crit Care Med,2008,177(1):35-43

    • [9] KUANG Z,BENNETT R C,LIN J,et al.Surfactant phos⁃ pholipids act as molecular switches for premature induc⁃ tion of quorum sensing⁃dependent virulence in Pseudomo⁃ nas aeruginosa[J].Virulence,2020,11(1):1090-1107

    • [10] ZHANG Y,ZHOU C M,PU Q,et al.Pseudomonas aerugi⁃ nosa tegulatory protein AnvM controls pathogenicity in an⁃ aerobic environments and impacts host defense[J].MBio,2019,10(4):e01319-e01362

    • [11] HOLM A,KARLSSON T,VIKSTRÖM E.Pseudomonas ae⁃ ruginosa lasI/rhlI quorum sensing genes promote phagocy⁃ tosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages[J].Front Microbiol,2015,6:915

    • [12] ZRIEQ R,SANA T G,VERGIN S,et al.Genome ⁃ wide screen of pseudomonas aeruginosa in saccharomyces cere⁃ visiae identifies new virulence factors[J].Front Cell In⁃ fect Microbiol,2015,5:81

    • [13] PIACENZA L,TRUJILLO M,RADI R.Reactive species and pathogen antioxidant networks during phagocytosis [J].J Exp Med,2019,216(3):501-516

    • [14] CASTANHEIRA F,KUBES P.Neutrophils and NETs in modulating acute and chronic inflammation[J].Blood,2019,133(20):2178-2185

    • [15] THANABALASURIAR A,SUREWAARD B G,WILL⁃ SON M E,et al.Bispecific antibody targets multiple Pseu⁃ domonas aeruginosa evasion mechanisms in the lung vas⁃ culature[J].J Clin Invest,2017,127(6):2249-2261

    • [16] GARAI P,BERRY L,MOUSSOUNI M,et al.Killing from the inside:intracellular role of T3SS in the fate of Pseudo⁃ monas aeruginosa within macrophages revealed by mgtC and oprF mutants[J].PLoS Pathog,2019,15(6):e1007812

    • [17] YU H,XIONG J,QIU J,et al.Type Ⅲ secretion protein,PcrV,impairs pseudomonas aeruginosa biofilm formation by increasing M1 macrophage⁃mediated anti⁃bacterial ac⁃ tivities[J].Front Microbiol,2020,11:1971

    • [18] GATICA D,LAHIRI V,KLIONSKY D J.Cargo recogni⁃ tion and degradation by selective autophagy[J].Nat Cell Biol,2018,20(3):233-242

    • [19] HERB M,GLUSCHKO A,SCHRAMM M.LC3⁃associat⁃ ed phagocytosis ⁃ the highway to hell for phagocytosed mi⁃ crobes[J].Semin Cell Dev Biol,2020,101:68-76

    • [20] PEHOTE G,BODAS M,BRUCIA K,et al.Cigarette smoke exposure inhibits bacterial killing via TFEB⁃medi⁃ ated autophagy impairment and resulting phagocytosis de⁃ fect[J].Mediators Inflamm,2017,2017:3028082

    • [21] LI X,HE S,ZHOU X,et al.Lyn delivers bacteria to lyso⁃ somes for eradication through TLR2 ⁃ initiated autophagy related phagocytosis[J].PLoS Pathog,2016,12(1):e1005363

    • [22] WU Y,LI D,WANG Y,et al.Beta⁃defensin 2 and 3 pro⁃ mote bacterial clearance of Pseudomonas aeruginosa by inhibiting macrophage autophagy through downregulation of early growth response gene⁃1 and c⁃FOS[J].Front Im⁃ munol,2018,9:211

  • 参考文献

    • [1] CURRAN C S,BOLIG T,TORABI ⁃ PARIZI P.Mecha⁃ nisms and targeted therapies for Pseudomonas aeruginosa lung infection[J].Am J Respir Crit Care Med,2018,197(6):708-727

    • [2] 丁树红,金菲,倪芳,等.下呼吸道感染患者支气管肺泡灌洗液定量培养及临床分析[J].南京医科大学学报(自然科学版),2020,40(9):1354-1358

    • [3] HORCAJADA J P,MONTERO M,OLIVER A,et al.Epi⁃ demiology and treatment of multidrug⁃resistant and exten⁃ sively drug ⁃ resistant Pseudomonas aeruginosa infections [J].Clin Microbiol Rev,2019,32(4):e00019-e00031

    • [4] ZHU F,XIONG F,HE J,et al.Brd4 inhibition amelio⁃ rates pyocyanin ⁃ mediated macrophage dysfunction via transcriptional repression of reactive oxygen and nitrogen free radical pathways[J].Cell Death Dis,2020,11(6):459

    • [5] JAIN N,MOELLER J,VOGEL V.Mechanobiology of mac⁃ rophages:how physical factors coregulate macrophage plasticity and phagocytosis[J].Annu Rev Biomed Eng,2019,2:267-297

    • [6] BARNES P J.Cellular and molecular mechanisms of asth⁃ ma and COPD[J].Clin Sci(Lond),2017,131(13):1541-1558

    • [7] FELGNER S,PREUSSE M,BEUTLING U,et al.Host⁃in⁃ duced spermidine production in motile Pseudomonas aeru⁃ ginosa triggers phagocytic uptake[J].Elife,2020,9:e55744

    • [8] BIANCHI S M,PRINCE L R,MCPHILLIPS K,et al.Im⁃ pairment of apoptotic cell engulfment by pyocyanin,a tox⁃ ic metabolite of Pseudomonas aeruginosa[J].Am J Respir Crit Care Med,2008,177(1):35-43

    • [9] KUANG Z,BENNETT R C,LIN J,et al.Surfactant phos⁃ pholipids act as molecular switches for premature induc⁃ tion of quorum sensing⁃dependent virulence in Pseudomo⁃ nas aeruginosa[J].Virulence,2020,11(1):1090-1107

    • [10] ZHANG Y,ZHOU C M,PU Q,et al.Pseudomonas aerugi⁃ nosa tegulatory protein AnvM controls pathogenicity in an⁃ aerobic environments and impacts host defense[J].MBio,2019,10(4):e01319-e01362

    • [11] HOLM A,KARLSSON T,VIKSTRÖM E.Pseudomonas ae⁃ ruginosa lasI/rhlI quorum sensing genes promote phagocy⁃ tosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages[J].Front Microbiol,2015,6:915

    • [12] ZRIEQ R,SANA T G,VERGIN S,et al.Genome ⁃ wide screen of pseudomonas aeruginosa in saccharomyces cere⁃ visiae identifies new virulence factors[J].Front Cell In⁃ fect Microbiol,2015,5:81

    • [13] PIACENZA L,TRUJILLO M,RADI R.Reactive species and pathogen antioxidant networks during phagocytosis [J].J Exp Med,2019,216(3):501-516

    • [14] CASTANHEIRA F,KUBES P.Neutrophils and NETs in modulating acute and chronic inflammation[J].Blood,2019,133(20):2178-2185

    • [15] THANABALASURIAR A,SUREWAARD B G,WILL⁃ SON M E,et al.Bispecific antibody targets multiple Pseu⁃ domonas aeruginosa evasion mechanisms in the lung vas⁃ culature[J].J Clin Invest,2017,127(6):2249-2261

    • [16] GARAI P,BERRY L,MOUSSOUNI M,et al.Killing from the inside:intracellular role of T3SS in the fate of Pseudo⁃ monas aeruginosa within macrophages revealed by mgtC and oprF mutants[J].PLoS Pathog,2019,15(6):e1007812

    • [17] YU H,XIONG J,QIU J,et al.Type Ⅲ secretion protein,PcrV,impairs pseudomonas aeruginosa biofilm formation by increasing M1 macrophage⁃mediated anti⁃bacterial ac⁃ tivities[J].Front Microbiol,2020,11:1971

    • [18] GATICA D,LAHIRI V,KLIONSKY D J.Cargo recogni⁃ tion and degradation by selective autophagy[J].Nat Cell Biol,2018,20(3):233-242

    • [19] HERB M,GLUSCHKO A,SCHRAMM M.LC3⁃associat⁃ ed phagocytosis ⁃ the highway to hell for phagocytosed mi⁃ crobes[J].Semin Cell Dev Biol,2020,101:68-76

    • [20] PEHOTE G,BODAS M,BRUCIA K,et al.Cigarette smoke exposure inhibits bacterial killing via TFEB⁃medi⁃ ated autophagy impairment and resulting phagocytosis de⁃ fect[J].Mediators Inflamm,2017,2017:3028082

    • [21] LI X,HE S,ZHOU X,et al.Lyn delivers bacteria to lyso⁃ somes for eradication through TLR2 ⁃ initiated autophagy related phagocytosis[J].PLoS Pathog,2016,12(1):e1005363

    • [22] WU Y,LI D,WANG Y,et al.Beta⁃defensin 2 and 3 pro⁃ mote bacterial clearance of Pseudomonas aeruginosa by inhibiting macrophage autophagy through downregulation of early growth response gene⁃1 and c⁃FOS[J].Front Im⁃ munol,2018,9:211