en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

顾民,E⁃mail:lancetgu@aliyun.com

中图分类号:R692.4

文献标识码:A

文章编号:1007-4368(2021)11-1569-05

DOI:10.7655/NYDXBNS20211101

参考文献 1
TURK C,PETRIK A,SARICA K,et al.EAU guidelines on diagnosis and conservative management of urolithiasis [J].Eur Urol,2016,69(3):468-474
参考文献 2
XU C,ZHANG W,LU P,et al.Mutation of Klotho rs3752472 protect the kidney from the renal epithelial cell injury caused by CaOx crystals through the Wnt/beta⁃ catenin signaling pathway[J/OL].Urolithiasis,2021 [2021⁃10⁃09].https://pubmed.ncbi.nlm.nih.gov/3405077 2/.DOI:10.1007/s00240⁃021⁃01269⁃z
参考文献 3
MORIYAMA M T,MIYAZAWA K,NODA K,et al.Reduction in oxalate⁃induced renal tubular epithelial cell injury by an extract from Quercus salicina Blume/Quercus steno⁃ phylla Makino[J].Urol Res,2007,35(6):295-300
参考文献 4
MORIYAMA M T,SUGA K,MIYAZAWA K,et al.Inhibi⁃ tions of urinary oxidative stress and renal calcium level by an extract of Quercus salicina Blume/Quercus stenophyl⁃ la Makino in a rat calcium oxalate urolithiasis model[J].Int J Urol,2009,16(4):397-401
参考文献 5
MIZUSHIMA N,KOMATSU M.Autophagy:renovation of cells and tissues[J].Cell,2011,147(4):728-741
参考文献 6
RACANELLI A C,KIKKERS S A,CHOI A M K,et al.Autophagy and inflammation in chronic respiratory disease [J].Autophagy,2018,14(2):221-232
参考文献 7
CHEN B,WANG Y,PEI X,et al.Cellular caspase⁃3 contributes to EV⁃A71 2A(pro)⁃mediated down⁃regulation of IFNAR1 at the translation level[J].Virol Sin,2020,35(1):64-72
参考文献 8
LI L,TAN J,MIAO Y,et al.ROS and autophagy:interactions and molecular regulatory mechanisms[J].Cell Mol Neurobiol,2015,35(5):615-621
参考文献 9
SCHERZ ⁃ SHOUVAL R,ELAZAR Z.Regulation of autophagy by ROS:physiology and pathology[J].Trends Biochem Sci,2011,36(1):30-38
参考文献 10
LUO Z,XU X,SHO T,et al.ROS⁃induced autophagy regulates porcine trophectoderm cell apoptosis,proliferation,and differentiation[J].Am J Physiol Cell Physiol,2019,316(2):C198-C209
参考文献 11
HUANG Q,ZHAN L,CAO H,et al.Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS⁃modulated coordinated regulation of the NFKB and TP53 pathways[J].Autophagy,2016,12(6):999-1014
参考文献 12
KMA L,BARUAH T J.The interplay of ROS and the PI3K/Akt pathway in autophagy regulation[J/OL].Biotechnol Appl Biochem,2021[2021 ⁃ 10 ⁃ 09].https://pubmed.ncbi.nlm.nih.gov/33442914/.DOI:10.1002/bab.2104
参考文献 13
ZHAO X J,WANG D,WAN S S,et al.The suppression of Pin1 ⁃ alleviated oxidative stress through the p38 MAPK pathway in ischemia⁃ and reperfusion⁃induced acute kidney injury[J].Oxidative Med Cell Longev,2021,2021:1313847
参考文献 14
TANG M,YUAN D,LIAO P.Berberine improves intestinal barrier function and reduces inflammation,immuno⁃ suppression,and oxidative stress by regulating the NF⁃κB/MAPK signaling pathway in deoxynivalenol ⁃ challenged piglets[J].Environ Pollut,2021,289:117865
目录contents

    摘要

    目的:探讨优克龙对肾脏草酸钙结石形成的影响及机制。方法:采用乙二醇、氯化铵以及葡萄糖酸钙联合诱导大鼠,构建大鼠肾脏草酸钙结石模型。优克龙干预上述模型4周,收集尿液、肾脏组织行HE染色,尿液中生化成分检测,肾脏组织中自噬与凋亡关键蛋白的水平检测。采用草酸钙结晶与肾小管上皮细胞联合培养,构建草酸钙结石细胞模型。α⁃硫辛酸干预上述细胞模型,探讨草酸钙结晶诱导肾小管上皮细胞发生氧化应激的机制;采用优克龙干预上述细胞模型,探究优克龙保护肾小管上皮细胞的作用及分子机制。结果:动物实验中,与对照组相比,模型组草酸钙结石数量显著升高,而优克龙可显著抑制草酸钙结石的形成,这一效应可能与降低氧化应激水平、自噬与细胞凋亡水平有关。在细胞模型中,α⁃硫辛酸可显著抑制由草酸钙结晶诱导的肾小管上皮细胞氧化应激过程,细胞自噬与凋亡水平均显著下降,提示细胞发生氧化应激后激活了细胞自噬与凋亡水平;优克龙也可抑制氧化应激过程,细胞中MAPK通路激活水平显著下降,细胞自噬与凋亡水平均明显抑制。结论:优克龙可显著抑制肾脏草酸钙结石的形成,并可抑制由草酸钙结晶诱导的细胞氧化应激过程,通过MAPK通路明显降低细胞的自噬与凋亡水平。

    Abstract

    Objective:This study aims to investigate the effects and mechanism of urocalum on the formation of kidney calcium oxalate stones. Methods:A rat model with renal calcium oxalate stone was constructed. Urocalum was intervened in this model for four weeks and renal samples were collected for HE staining,while urine samples were collected for the examination of biochemical components. In addition,autophagy and apoptotic key proteins were detected in renal tissues. A model of calcium oxalate stone cells was constructed by calcium oxalate crystallization in tubular epithelial cells. The cell model was treated with urocalum to explore the protective effect and molecular mechanism of urocalum on renal tubular epithelial cells. Results:The number of calcium oxalate stones was significantly increased compared to the control group. Whereas,urocalum could significantly inhibit the formation of stones,which may be associated with reducing oxidative stress levels,autophagy and apoptosis levels. In the cell model,α ⁃ sulphpoic acid can significantly inhibit the renal cell oxidative stress process induced by calcium oxalate crystallization,and both cell autophagy and apoptosis levels were activated after oxidative stress. Urocalum can also inhibit the oxidative stress process,while the phosphorylation of MPAK signaling pathway was significantly reduced and levels of autophagy and apoptosis were remarkably lowered. Conclusion: Urocalum can significantly inhibit the formation of renal calcium oxalate stones,and attenuate the oxidative stress process induced by calcium oxalate crystallization,and significantly reduce autophagy and apoptosis through the MAPK signaling pathway.

    关键词

    优克龙草酸钙结石氧化应激自噬凋亡

  • 草酸钙结石是泌尿系结石中最常见的类型,约占80%以上[1]。草酸钙结石的形成过程中,高草酸尿及草酸钙结晶会使肾小管上皮细胞发生氧化应激损伤,从而促使草酸钙结晶附着于肾小管上皮细胞表面,导致结晶滞留,诱发草酸钙结石的形成。我们既往研究也同样表明,在草酸钙结晶导致的肾小管上皮细胞损伤中发生了显著的氧化应激过程,且可能参与了肾小管上皮细胞的损伤以及后续的结石形成[2]。然而,目前临床上尚缺乏对草酸钙结晶导致的肾小管上皮细胞损伤的有效治疗措施,因此,进一步探究草酸钙结石形成的机制及其临床干预措施具有十分重要的实用价值。

  • 优克龙是一种新型植物提取剂,主要成分为柳栎浸膏提取物,提取物中含有大量的鞣酸物质,近年来被国内外临床研究证实可促进泌尿系结石的排出[3]。在大鼠肾结石模型中,研究人员观察到优克龙干预后,大鼠尿液中的尿钙水平以及氧化应激水平显著降低,且肾结石的形成受到抑制,提示优克龙具有抗氧化应激的作用[4]。然而优克龙对泌尿系结石形成的影响及机制仍不明确,且缺乏相应的研究。鉴于此,本研究通过大鼠草酸钙结石模型和草酸钙细胞模型,探究优克龙对草酸钙结石形成的调控作用及可能机制。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 实验动物及模型构建

  • 本研究用大鼠均为SPF级雄性SD大鼠,月龄3个月,体重150~200g,购自北京维通利华公司。所有大鼠饲养于南京医科大学实验动物中心,并于适应性饲养1周后,随机将上述大鼠分为对照组、模型组和优克龙干预组,每组10只。其中,对照组自由饮用灭菌水。模型组和干预组采用2%氯化铵2mL/d灌胃14d、10%葡萄糖酸钙1.5mL腹腔注射14d,并给予持续1%乙二醇自由饮水满28d。此外,干预组采用灌胃方式连续给予优克龙100mg/kg,维持28d。优克龙均采用1mL橄榄油溶解,现配现用,对照组和模型组均给予1mL橄榄油灌胃处理。

  • 1.1.2 细胞、分组及干预

  • 人肾小管上皮细胞系(HK⁃2)(武汉益普生物技术有限公司)培养于RPMI 1640培养基中,并随机分为对照组、模型组和柳栎浸膏提取物干预组。其中,对照组培养于RPMI 1640培养基中,无任何干预;模型组给予一水草酸钙结晶(146 μg/cm2),并联合培养24h;α⁃硫辛酸(α⁃lipoic acid,α⁃LA)干预组同时给予一水草酸钙结晶(146 μg/cm2)和α⁃LA(1× 10-4 mol/L),并联合培养24h;优克龙干预组同时给予一水草酸钙结晶(146 μg/cm2)和柳栎浸膏提取物 (30 μg/mL),并联合培养24h。

  • 1.1.3 主要试剂

  • 动物用优克龙及细胞用柳栎浸膏提取物(本院提供);乙二醇溶液、氯化铵溶液(天津市广成化学试剂有限公司),葡萄糖酸钙溶液(四川省维克奇生物科技有限公司);实验用丙二醛(malonaldehyde, MDA)及超氧化物歧化酶(superoxidative dismutase, SOD)ELISA试剂盒(上海碧云天生物技术有限公司);Beclin 1、活化Caspase3、p38MAPK及磷酸化p38MAPK抗体(Abcam公司,英国);α⁃LA(Sigma公司,美国)。

  • 1.2 方法

  • 1.2.1 尿液样本收集及检测

  • 分别将建模第28天的3组大鼠置于代谢笼中收集24h尿液,加入甲苯防腐。尿钙、尿镁均采用全自动生化分析仪(Beckman公司,美国)检测,通过离子色谱仪(Metrohm公司,瑞士)检测各组大鼠尿液中草酸及枸橼酸盐的水平。

  • 1.2.2 标本收集及HE染色

  • 分别收集3组大鼠在建模第28天的肾脏,并分别置于石蜡固定及液氮保存。肾组织经石蜡固定、 HE染色后,在倒置显微镜下随机选取5个视野拍照,比较3组大鼠肾组织中草酸钙结晶的数量。

  • 1.2.3 免疫蛋白印迹(Western blot)法检测蛋白水平

  • 分别提取3组大鼠肾组织的总蛋白和3组细胞的总蛋白,检测上述蛋白中自噬、凋亡以及相关通路的磷酸化水平。采用BCA法检测组织或细胞的蛋白浓度,并行电泳、转膜、封闭,分别给予相应一抗孵育过夜,二抗孵育2h,加入ECL发光液进行曝光。曝光条带采用Image J软件进行半定量分析。

  • 1.2.4 细胞上清氧化应激指标的检测

  • 分别提取3组细胞的上清,并采用酶联免疫吸附测定法(enzyme⁃linked immunosorbent assay,ELISA) 和相关试剂盒,依照试剂盒的操作方法检测3组细胞上清中MDA及SOD水平。

  • 1.3 统计学方法

  • 本研究的所有资料均采用SPSS 17.0进行分析处理。定量资料均采用均数±标准差(x- ± s)的方式表示,两组之间的比较均采用t检验,多组之间的比较采用方差分析。P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 优克龙对大鼠肾脏草酸钙晶体形成的影响

  • 对3组大鼠肾组织进行了HE染色(图1A)。与对照组相比,模型组的肾小管呈现大部分肾小管扩张、刷状缘消失等典型的急性损伤表现,且在肾小管中可见弥漫性草酸钙结晶形成;而优克龙干预组的肾脏组织中,肾小管急性损伤减轻,肾小管中草酸钙晶体的数量也显著减少(P=0.007,图1B),提示优克龙可显著降低大鼠肾脏草酸钙结晶的形成,并减少肾小管上皮细胞的损伤。

  • 2.2 优克龙对大鼠尿液生化指标的影响

  • 收集了3组大鼠的24h尿液,并对尿液中的成石危险成分进行检测。结果表明,模型组的尿钙水平显著高于对照组,而优克龙干预后尿钙水平显著下降(P< 0.05,图2A);相反,模型组的尿镁水平显著低于对照组(P< 0.05,图2B),优克龙干预后尿镁水平显著上升(P=0.007,图2B)。24h尿液检测结果显示,模型组尿枸橼酸排泄量显著低于干预组 (P=0.046,图2C)和对照组(P=0.003,图2C);而模型组尿草酸排泄量显著高于干预组和对照组(P< 0.001,图2D)。以上结果提示,优克龙可通过降低大鼠尿草酸的排泄量抑制草酸钙晶体的形成。

  • 2.3 优克龙对大鼠尿液中氧化应激水平及肾组织中自噬凋亡水平的影响

  • 为探讨优克龙抑制大鼠肾脏草酸钙晶体形成的机制,我们检测了大鼠尿液中MDA的水平,发现大鼠模型组24h尿液中MDA水平最高,并显著高于对照组(P< 0.05)和干预组(P=0.006,图2E)。此外还比较了3组大鼠肾组织中自噬凋亡水平的差异。结果提示,模型组中存在显著的自噬及凋亡激活过程,而优克龙可明显抑制自噬及凋亡的激活(图2F)。

  • 2.4 草酸钙结晶对肾小管上皮细胞中氧化应激、自噬和凋亡水平的影响

  • 为探究草酸钙结晶形成中对肾脏氧化应激、自噬和凋亡水平的影响,使用氧化应激抑制剂——α⁃ LA抑制草酸钙结晶诱导的氧化应激过程。3组细胞上清检测结果表明,与对照组相比,模型组MDA水平显著升高,而α⁃LA明显抑制了草酸钙结晶诱导的MDA升高(P< 0.001,图3A);模型组SOD水平显著低于干预组(P=0.036)和对照组(P=0.039,图3B)。此外,草酸钙结晶诱导了细胞中Beclin 1和活化的Caspase3水平的升高,而α⁃LA可抑制上述过程(图3C)。上述结果表明,草酸钙结晶可通过诱导肾小管上皮细胞中氧化应激过程,进而促进自噬的激活和细胞凋亡。

  • 图1 优克龙对大鼠肾脏草酸钙晶体形成的影响

  • Fig.1 Effect of urocalum on calcium oxalate crystal formation in rat kidney

  • 图2 优克龙对大鼠尿液生化指标、氧化应激及自噬水平的影响

  • Fig.2 Effects of urocalum on urinary biochemical indexes,oxidative stress and autophagy in rats

  • 2.5 优克龙对草酸钙结晶诱导的氧化应激、自噬和凋亡水平的影响

  • 为进一步探究优克龙对草酸钙结晶形成的影响及机制,我们使用优克龙干预草酸钙结晶及肾小管上皮细胞。与α⁃LA类似,优克龙可显著减缓草酸钙结晶诱导的MDA水平升高(P< 0.001,图4A)和SOD的下降(P=0.029,图4B);与模型组相比,优克龙干预后细胞中的Beclin 1和活化的Caspase3水平显著降低(图4C)。此外,草酸钙结晶可诱导细胞中p38MAPK的磷酸化水平升高,而优克龙可显著抑制p38MAPK的磷酸化水平(图4D)。提示优克龙可能抑制草酸钙结晶诱导的肾小管上皮细胞的氧化应激过程,降低MAPK通路激活,减少肾小管上皮细胞中自噬的激活和细胞凋亡的进展。

  • 3 讨论

  • 本研究通过优克龙干预,发现优克龙可显著抑制大鼠肾脏草酸钙结石的形成。在此过程中,肾脏的氧化应激过程、细胞自噬和凋亡过程均被明显抑制,提示优克龙抑制肾脏草酸钙结石的形成与上述机制有关。在此基础上,我们构建了草酸钙结晶的细胞模型,并在该模型中采用优克龙进行干预。实验结果表明,优克龙可显著抑制由草酸钙结晶诱导的肾小管上皮细胞的氧化应激过程,进而通过抑制MAPK通路减缓细胞的自噬水平及凋亡过程,起到保护肾小管上皮细胞的作用。

  • 图3 草酸钙结晶对肾小管上皮细胞中氧化应激、自噬和凋亡的影响

  • Fig.3 Effects of calcium oxalate crystallization on levels of oxidative stress,autophagy and apoptosis in renal tubular epithelial cells

  • 图4 优克龙对草酸钙结晶诱导的氧化应激、自噬和凋亡的影响

  • Fig.4 Effects of urocalum on oxidative stress,autophagy and apoptosis induced by calcium oxalate crystallization

  • 自噬是维持细胞内稳态的重要机制,当细胞发生自噬时,在自噬相关基因的调控下形成自噬体,并与溶酶体结合形成自噬溶酶体,包裹并降解相关内容物,实现细胞的能量代谢[5-6]。Beclin 1是哺乳动物中细胞自噬过程中的重要特异基因,通过调控自噬的水平发挥作用;而Casepase3是细胞凋亡中最重要的终末剪切酶,在细胞凋亡过程中发挥不可替代的作用[7]。本研究发现优克龙干预肾小管上皮细胞后,Beclin 1和活化的Casepase3水平均明显下降,提示草酸钙结石诱导的细胞自噬和凋亡水平受到显著抑制,进而起到保护肾小管上皮细胞的作用。

  • 近些年,氧化应激在肝脏肿瘤、心脑血管疾病等模型中被发现可诱导自噬,也可以诱导细胞凋亡与坏死[8-10]。氧化应激过程中产生大量的活性氧 (reactive oxygen species,ROS),众多研究发现,ROS可通过多种通路抑制自噬过程中的关键分子mTOR激酶的激活,例如MAPK通路、Akt通路等[11-12]。已有研究报道,不同方法抑制氧化应激后,MAPK通路可被显著抑制,进而在后续的病理生理过程中发挥保护作用,提示MAPK通路是氧化应激过程中的重要通路之一[13-14]。本研究发现,优克龙干预后降低了细胞内氧化应激的水平,抑制了细胞中MAPK通路的激活,进而抑制了自噬和凋亡水平,提示肾脏草酸钙结石形成中,优克龙可减缓上述过程。

  • 综上所述,本研究发现优克龙可抑制肾脏草酸钙结石的形成,并通过减缓肾小管上皮细胞内的氧化应激过程,抑制下游的自噬过程与细胞凋亡水平,实现抗氧化以及保护细胞功能的作用。本研究成果不仅明确了优克龙降低草酸钙结石形成的作用,并初步揭示了优克龙对肾小管上皮细胞的保护作用,为临床防治草酸钙结石的形成与损伤提供了新的干预措施。

  • 参考文献

    • [1] TURK C,PETRIK A,SARICA K,et al.EAU guidelines on diagnosis and conservative management of urolithiasis [J].Eur Urol,2016,69(3):468-474

    • [2] XU C,ZHANG W,LU P,et al.Mutation of Klotho rs3752472 protect the kidney from the renal epithelial cell injury caused by CaOx crystals through the Wnt/beta⁃ catenin signaling pathway[J/OL].Urolithiasis,2021 [2021⁃10⁃09].https://pubmed.ncbi.nlm.nih.gov/3405077 2/.DOI:10.1007/s00240⁃021⁃01269⁃z

    • [3] MORIYAMA M T,MIYAZAWA K,NODA K,et al.Reduction in oxalate⁃induced renal tubular epithelial cell injury by an extract from Quercus salicina Blume/Quercus steno⁃ phylla Makino[J].Urol Res,2007,35(6):295-300

    • [4] MORIYAMA M T,SUGA K,MIYAZAWA K,et al.Inhibi⁃ tions of urinary oxidative stress and renal calcium level by an extract of Quercus salicina Blume/Quercus stenophyl⁃ la Makino in a rat calcium oxalate urolithiasis model[J].Int J Urol,2009,16(4):397-401

    • [5] MIZUSHIMA N,KOMATSU M.Autophagy:renovation of cells and tissues[J].Cell,2011,147(4):728-741

    • [6] RACANELLI A C,KIKKERS S A,CHOI A M K,et al.Autophagy and inflammation in chronic respiratory disease [J].Autophagy,2018,14(2):221-232

    • [7] CHEN B,WANG Y,PEI X,et al.Cellular caspase⁃3 contributes to EV⁃A71 2A(pro)⁃mediated down⁃regulation of IFNAR1 at the translation level[J].Virol Sin,2020,35(1):64-72

    • [8] LI L,TAN J,MIAO Y,et al.ROS and autophagy:interactions and molecular regulatory mechanisms[J].Cell Mol Neurobiol,2015,35(5):615-621

    • [9] SCHERZ ⁃ SHOUVAL R,ELAZAR Z.Regulation of autophagy by ROS:physiology and pathology[J].Trends Biochem Sci,2011,36(1):30-38

    • [10] LUO Z,XU X,SHO T,et al.ROS⁃induced autophagy regulates porcine trophectoderm cell apoptosis,proliferation,and differentiation[J].Am J Physiol Cell Physiol,2019,316(2):C198-C209

    • [11] HUANG Q,ZHAN L,CAO H,et al.Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS⁃modulated coordinated regulation of the NFKB and TP53 pathways[J].Autophagy,2016,12(6):999-1014

    • [12] KMA L,BARUAH T J.The interplay of ROS and the PI3K/Akt pathway in autophagy regulation[J/OL].Biotechnol Appl Biochem,2021[2021 ⁃ 10 ⁃ 09].https://pubmed.ncbi.nlm.nih.gov/33442914/.DOI:10.1002/bab.2104

    • [13] ZHAO X J,WANG D,WAN S S,et al.The suppression of Pin1 ⁃ alleviated oxidative stress through the p38 MAPK pathway in ischemia⁃ and reperfusion⁃induced acute kidney injury[J].Oxidative Med Cell Longev,2021,2021:1313847

    • [14] TANG M,YUAN D,LIAO P.Berberine improves intestinal barrier function and reduces inflammation,immuno⁃ suppression,and oxidative stress by regulating the NF⁃κB/MAPK signaling pathway in deoxynivalenol ⁃ challenged piglets[J].Environ Pollut,2021,289:117865

  • 参考文献

    • [1] TURK C,PETRIK A,SARICA K,et al.EAU guidelines on diagnosis and conservative management of urolithiasis [J].Eur Urol,2016,69(3):468-474

    • [2] XU C,ZHANG W,LU P,et al.Mutation of Klotho rs3752472 protect the kidney from the renal epithelial cell injury caused by CaOx crystals through the Wnt/beta⁃ catenin signaling pathway[J/OL].Urolithiasis,2021 [2021⁃10⁃09].https://pubmed.ncbi.nlm.nih.gov/3405077 2/.DOI:10.1007/s00240⁃021⁃01269⁃z

    • [3] MORIYAMA M T,MIYAZAWA K,NODA K,et al.Reduction in oxalate⁃induced renal tubular epithelial cell injury by an extract from Quercus salicina Blume/Quercus steno⁃ phylla Makino[J].Urol Res,2007,35(6):295-300

    • [4] MORIYAMA M T,SUGA K,MIYAZAWA K,et al.Inhibi⁃ tions of urinary oxidative stress and renal calcium level by an extract of Quercus salicina Blume/Quercus stenophyl⁃ la Makino in a rat calcium oxalate urolithiasis model[J].Int J Urol,2009,16(4):397-401

    • [5] MIZUSHIMA N,KOMATSU M.Autophagy:renovation of cells and tissues[J].Cell,2011,147(4):728-741

    • [6] RACANELLI A C,KIKKERS S A,CHOI A M K,et al.Autophagy and inflammation in chronic respiratory disease [J].Autophagy,2018,14(2):221-232

    • [7] CHEN B,WANG Y,PEI X,et al.Cellular caspase⁃3 contributes to EV⁃A71 2A(pro)⁃mediated down⁃regulation of IFNAR1 at the translation level[J].Virol Sin,2020,35(1):64-72

    • [8] LI L,TAN J,MIAO Y,et al.ROS and autophagy:interactions and molecular regulatory mechanisms[J].Cell Mol Neurobiol,2015,35(5):615-621

    • [9] SCHERZ ⁃ SHOUVAL R,ELAZAR Z.Regulation of autophagy by ROS:physiology and pathology[J].Trends Biochem Sci,2011,36(1):30-38

    • [10] LUO Z,XU X,SHO T,et al.ROS⁃induced autophagy regulates porcine trophectoderm cell apoptosis,proliferation,and differentiation[J].Am J Physiol Cell Physiol,2019,316(2):C198-C209

    • [11] HUANG Q,ZHAN L,CAO H,et al.Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS⁃modulated coordinated regulation of the NFKB and TP53 pathways[J].Autophagy,2016,12(6):999-1014

    • [12] KMA L,BARUAH T J.The interplay of ROS and the PI3K/Akt pathway in autophagy regulation[J/OL].Biotechnol Appl Biochem,2021[2021 ⁃ 10 ⁃ 09].https://pubmed.ncbi.nlm.nih.gov/33442914/.DOI:10.1002/bab.2104

    • [13] ZHAO X J,WANG D,WAN S S,et al.The suppression of Pin1 ⁃ alleviated oxidative stress through the p38 MAPK pathway in ischemia⁃ and reperfusion⁃induced acute kidney injury[J].Oxidative Med Cell Longev,2021,2021:1313847

    • [14] TANG M,YUAN D,LIAO P.Berberine improves intestinal barrier function and reduces inflammation,immuno⁃ suppression,and oxidative stress by regulating the NF⁃κB/MAPK signaling pathway in deoxynivalenol ⁃ challenged piglets[J].Environ Pollut,2021,289:117865