en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

唐金海,E⁃mail:jhtang@njmu.edu.cn

中图分类号:R737.9

文献标识码:A

文章编号:1007-4368(2021)12-1747-07

DOI:10.7655/NYDXBNS20211206

参考文献 1
SIEGEL R L,MILLER K D,JEMAL A.Cancer statistics,2020[J].CA,2020,70(1):7-30
参考文献 2
YAFFE M J.Mammographic density.Measurement of mammographic density[J].BCR,2008,10(3):209
参考文献 3
PETTERSSON A,GRAFF R E,URSIN G,et al.Mammographic density phenotypes and risk of breast cancer:a meta ⁃ analysis[J].J Nat Cancer Inst,2014,106(5):dju078
参考文献 4
BOYD N F,DITE G S,STONE J,et al.Heritability of mammographic density,a risk factor for breast cancer[J].N Engl J Med,2002,347(12):886-894
参考文献 5
MCCORMACK V A,DOS SANTOS SILVA I.Breast density and parenchymal patterns as markers of breast cancer risk:a meta ⁃ analysis[J].Cancer Epidemiol Biomarkers Prev,2006,15(6):1159-1169
参考文献 6
DEFILIPPIS R A,FORDYCE C,PATTEN K,et al.Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density[J].Cancer Res,2014,74(18):5032-5044
参考文献 7
史维俊,李欣灿,陆飞,等.长链非编码 RNA MIR4713HG 调节结直肠癌进展及预后的生物信息学分析[J].南京医科大学学报(自然科学版),2020,40(8):1149-1155
参考文献 8
张舒婷,刁鹏飞,金致纯,等.基于TCGA数据库分析IT⁃ GA5 mRNA在头颈部鳞状细胞癌中的表达及其预后价值[J].南京医科大学学报(自然科学版),2020,40(6):832-838
参考文献 9
BARRETT T,WILHITE S E,LEDOUX P,et al.NCBI GEO:archive for functional genomics data sets ⁃ ⁃ update [J].Nucleic Acids Res,2013,41(Database issue):D991-D995
参考文献 10
HUANG D W,SHERMAN B T,TAN Q,et al.DAVID Bio⁃ informatics resources:expanded annotation database and novel algorithms to better extract biology from large gene lists[J].Nucleic Acids Res,2007,35(Web Server issue):W169-W175
参考文献 11
SZKLARCZYK D,FRANCESCHINI A,WYDER S,et al.STRING v10:protein ⁃ protein interaction networks,integrated over the tree of life[J].Nucleic Acids Res,2015,43(Database issue):D447-D452
参考文献 12
SMOOT M E,ONO K,RUSCHEINSKI J,et al.Cytoscape 2.8:new features for data integration and network visual⁃ ization[J].Bioinformatics,2011,27(3):431-432
参考文献 13
BANDETTINI W P,KELLMAN P,MANCINI C,et al.MultiContrast Delayed Enhancement(MCODE)improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic reso⁃ nance:a clinical validation study[J].J Cardiovasc Magne Reson,2012,14(1):83
参考文献 14
JÉZÉQUEL P,CAMPONE M,GOURAUD W,et al.bc ⁃ GenExMiner:an easy ⁃ to ⁃ use online platform for gene prognostic analyses in breast cancer[J].Breast Cancer Res Treat,2012,131(3):765-775
参考文献 15
JÉZÉQUEL P,FRÉNEL J S,CAMPION L,et al.bc ⁃ GenExMiner 3.0:new mining module computes breast cancer gene expression correlation analyses[J].Data⁃ base,2013,2013:bas060
参考文献 16
TICE J A,CUMMINGS S R,SMITH⁃BINDMAN R,et al.Using clinical factors and mammographic breast density to estimate breast cancer risk:development and validation of a new predictive model[J].Ann Intern Med,2008,148(5):337-347
参考文献 17
CHIU S Y,DUFFY S,YEN A M,et al.Effect of baseline breast density on breast cancer incidence,stage,mortality,and screening parameters:25⁃year follow⁃up of a Swedish mammographic screening[J].Cancer Epidemiol Biomarkers Prev,2010,19(5):1219-1228
参考文献 18
BAGLIETTO L,KRISHNAN K,STONE J,et al.Associations of mammographic dense and nondense areas and body mass index with risk of breast cancer[J].Am J Epidemiol,2014,179(4):475-483
参考文献 19
HEUSINGER K,LOEHBERG C R,HAEBERLE L,et al.Mammographic density as a risk factor for breast cancer in a German case ⁃ control study[J].Eur J Cancer Prev,2011,20(1):1-8
参考文献 20
YAGHJYAN L,COLDITZ G A,COLLINS L C,et al.Mam⁃ mographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor char⁃ acteristics[J].J Natl Cancer Inst,2011,103(15):1179-1189
参考文献 21
BERTRAND K A,SCOTT C G,TAMIMI R M,et al.Dense and nondense mammographic area and risk of breast cancer by age and tumor characteristics[J].Cancer Epidemiol Biomarkers Prev,2015,24(5):798-809
参考文献 22
PATTERSON S K,ROUBIDOUX M A.Update on new technologies in digital mammography[J].Int J Womens Health,2014,6:781-788
参考文献 23
VACEK P M,GELLER B M.A prospective study of breast cancer risk using routine mammographic breast density measurements[J].Cancer Epidemiol Biomarkers Prev,2004,13(5):715-722
参考文献 24
SCHLESSINGER J.Receptor tyrosine kinases:legacy of the first two decades[J].Cold Spring Harb Perspect Biol,2014;6(3):a008912
参考文献 25
YARDEN Y,PINES G.The ERBB network:at last,cancer therapy meets systems biology[J].Nat Rev Cancer,2012,12(8):553-563
参考文献 26
SIGISMUND S,AVANZATO D,LANZETTI L.Emerging functions of the EGFR in cancer[J].Mol Oncol,2018,12(1):3-20
参考文献 27
MENG Q,XIA Y.c⁃Jun,at the crossroad of the signaling network[J].Protein cell,2011,2(11):889-898
参考文献 28
SCHUMMER P,KUPHAL S,VARDIMON L,et al.Specific c ⁃Jun target genes in malignant melanoma[J].Cancer Biol Ther,2016,17(5):486-497
参考文献 29
ZHANG Y J,ZHANG M F,ZHOU H F,et al.Activation of c ⁃ Jun/JNK signaling predicts poor prognosis in naso⁃ pharyngeal carcinoma[J].Int J Clin Exp Pathol,2018,11(5):2699-2706
参考文献 30
ROSKOSKI R JR.Src protein ⁃tyrosine kinase structure,mechanism,and small molecule inhibitors[J].Pharmacol Res,2015,94:9-25
参考文献 31
NOBES C D,HALL A.Rho,rac,and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers,lamellipodia,and filopodia[J].Cell,1995,81(1):53-62
参考文献 32
MATOS P,SKAUG J,MARQUES B,et al.Small GTPase Rac1:structure,localization,and expression of the human gene[J].Biochem Biophys Res Commun,2000,277(3):741-751
参考文献 33
MARINKOVIC G,HEEMSKERK N,VAN BUUL J D,et al.The ins and outs of small GTPase rac1 in the vasculature[J].J Pharmacol Exp Ther,2015,354(2):91-102
参考文献 34
MALDONADO M D M,DHARMAWARDHANE S.Targeting rac and Cdc42 GTPases in cancer[J].Cancer Res,2018,78(12):3101-3111
目录contents

    摘要

    目的:应用生物信息学技术筛选高乳腺密度和低乳腺密度的正常女性的差异基因并分析其富集通路,为致密型乳腺女性乳腺癌早期诊断、靶向治疗和预后评估提供理论依据。方法:从GEO数据库获取GSE38506数据集,使用GEO2R筛选差异表达基因。使用DAVID数据库进行GO、KEGG富集分析,并应用STRING及Cytoscape软件的 CytoHubba插件进行蛋白相互作用网络分析,筛选出Hub基因。最后使用bcGenExMiner在线工具对这5个Hub基因进行预后分析。结果:从GSE38506基因芯片共筛选出830个显著差异表达基因,其中上调基因442个,下调基因388个。富集分析显示,差异表达基因主要涉及信号转导、GTP酶活性的正调控、固有免疫反应、细胞黏附、细胞质膜、细胞表面、细胞连接、ATP结合、肌动蛋白结合、转录因子结合等。共筛选出2个核心模块和5个Hub基因,包括EGFR、JUN、CDC42、SRC、RAC1,并且它们都与乳腺癌预后相关。结论:通过生物信息学筛选出了正常女性乳腺密度相关的 5个核心基因,可能对乳腺癌的发生发展和预后存在一定影响,是潜在的致密型乳腺女性易患乳腺癌的分子学标志物和靶向治疗新位点。

    Abstract

    Objective:Bioinformatics analysis was applied to explore the differentially expressed genes(DEG)in normal women with high breast density and low breast density and analyze their enrichment pathways,so as to provide theoretical basis for early diagnosis, targeted therapy and prognosis assessment of breast cancer patients with dense breast. Methods:GSE38506 data set was obtained from the GEO database and DEGs were screened using GEO2R. Enrichment analysis of GO and KEGG was performed using DAVID database. CytoHubba plug ⁃ in of STRING and Cytoscape software was used for protein interaction network analysis and Hub gene screening. Finally,the online tool bcGenExMiner was used to analyze the prognosis of these 5 Hub genes. Results:A total of 830 significantly DEGs were screened from GSE38506 gene chip,among which 442 genes were up ⁃ regulated and 388 genes were down ⁃ regulated. Enrichment analysis showed that DEGs were mainly involved in signal transduction,positive regulation of GTPase activity, innate immune response,cell adhesion,cytoplasmic membrane,cell surface,cell connection,ATP binding,actin binding,transcription factor binding,and so on. A total of 2 core modules and 5 Hub genes were screened,including EGFR,JUN proto⁃Oncogene,CDC42, SRC proto⁃oncogene,RAC1,and they were all associated with breast cancer prognosis. Conclusion:In this study,5 Hub genes related to mammographic density in healthy women were screened through bioinformatics,which may have certain influence on the occurrence, development and prognosis of breast cancer,and are potential molecular markers and new targeted therapy sites for breast cancer patients with dense breast.

  • 乳腺癌是女性中最常见的一种恶性肿瘤,同时致死率也居于女性癌症第1位[1]。乳房钼靶密度 (mammographic density,MD)指的是在乳腺钼靶中整个乳房中致密组织的百分比,乳房中致密区域主要是由成纤维细胞、上皮细胞和结缔组织组成的纤维腺乳腺组织[2]。乳腺纤维腺组织在乳腺钼靶上看起来很致密,而脂肪则显得稀疏,所以比脂肪组织更能阻挡X射线,因此在乳房钼靶上显示为白色[3]。致密的乳腺组织的存在极大增加了患乳腺癌的风险[4]。在1项评估乳房密度为乳腺癌独立危险因素研究的荟萃分析中,与密集乳房相关的相对风险为:密度为50%~74%的乳房为2.92,密度为75%或更高的乳房为4.64[5]。与低密度乳腺组织相比,致密的乳腺组织还具有更大的DNA损伤反应(DDR) 基因表达和较短的端粒长度[6]。这些数据表明,MD的增加与乳腺癌风险的增加之间存在很强的正相关性。

  • 近年来,随着高通量技术的发展,基因芯片和基因测序的运用已成为研究肿瘤疾病必要且高效的方法。如今是数据共享时代,各大数据库中拥有丰富的基因检测和分析结果,但缺少精确、有效的数据挖掘。越来越多的研究者将目光投到基于生物信息学来分析各种癌症的分子机制[7-8]。迄今为止很多研究表明致密型乳腺与乳腺癌患病风险增加有关,但尚未发现一些潜在的差异表达基因,核心基因和相关的信号通路,这可能有助于了解高MD增加乳腺癌发生的分子机制,并为高MD乳腺癌患者的治疗提供候选靶点。本研究从美国国立生物技术信息中心(National Center for Biotechnology Information,NCBI)基因表达综合数据库(NCBI ⁃ GEO)(http://www.ncbi.nlm.nih.gov/geo)下载原始的微阵列数据集GSE38506并进行分析,以获取高MD和低MD的正常女性之间的差异表达基因。随后,为了确定相关的基因和信号通路,进行了基因本体论(gene ontology,GO),京都市基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)富集途径分析和蛋白质相互作用(protein⁃ protein interaction,PPI)网络分析。通过生物信息学研究了正常女性不同MD的差异表达基因,为临床治疗和药物靶标发现提供了潜在的生物标志物。

  • 1 资料和方法

  • 1.1 资料

  • NCBI的GEO数据库是一个公共的存储高通量基因表达数据、芯片和微阵列的数据库,从中下载数据集GSEGSE38506进行分析,该芯片数据集基于GPL570平台,共13例组织样本,其中包括6位低MD女性以及7位高MD女性的正常乳腺组织样本。

  • 1.2 方法

  • 1.2.1 鉴定差异表达基因

  • GEO2R(http://www.ncbi.nlm.nih.gov/geo/geo2r/) 用于鉴定高MD组和低MD组的差异表达基因(differentially expressed gene,DEG)。在分析结果中,基因表达的差异用 P 值和差异倍数(fold change,FC) 的对数(logFC)表示。此次研究将 P< 0.05且 |logFC|>1的基因纳入DEG。

  • 1.2.2 DEGs的GO及KEGG信号通路富集分析

  • 用DAVID数据库(The Database for Annotation, Visualization and Integrated Discovery,v6.8)[10] 对DEG进行GO和KEGG功能注释和富集分析,发掘其涉及的相关通路。GO的功能注释主要分为3部分,包括生物过程(biological process,BP)、分子功能 (molecular function,MF)和细胞成分(cellular component,CC)。KEGG是一个包含关于基因组、生物途径、疾病和化学物质信息的数据库集合。富集分析的结果以P< 0.05作为入选标准。

  • 1.2.3 PPI网络的构建

  • 使用STRING数据库[11] (https://string⁃db.org)对DEG蛋白质间的相互作用进行分析,构建DEG的PPI网络。综合得分>0.4作为相互作用存在的标准。Cytoscape软件(3.8.0版)是用于可视化分子相互作用网络的开源生物信息学软件平台[12],可对STRING数据库得到的PPI信息进一步构建。 MCODE是Cytoscape中一种用于基于拓扑对给定网络进行聚类以发现密集连接区域的插件[13],可筛选出PPI网络中最显著的模块。

  • 1.2.4 Hub基因的筛选

  • 使用Cytoscape的CytoHubba插件,用5种分类方法来评估核心基因。先筛选出每种方法分值排名前15位的基因,然后根据5种方法重叠的基因筛选为Hub基因。

  • 1.2.5 Hub基因的预后分析

  • Breast Cancer Gene⁃Expression Miner(bc⁃GenEx⁃ Miner)数据库是一个收录乳腺癌数据的在线数据挖掘工具(http://bcgenex.centregauducheau.fr/,v4.5),提供了评估乳腺癌基因预后信息,并可将结果绘制为生存分析曲线图,分析肿瘤中某特定基因与死亡时间的关系,结果以95%置信区间(CI)和危险比来表示[14-15]

  • 2 结果

  • 2.1 差异表达基因筛选结果

  • 通过对基因芯片GSE65652的分析,以P< 0.05且|Log2FC|≥1为标准,共筛选到830个DEG,其中442个为上调基因,388个为下调基因,将结果绘制为热图(图1)和火山图(图2)。

  • 2.2 DEG的GO功能富集及KEGG通路分析

  • 然后,使用在线软件DAVID对这830个DEG进行功能分类。如图3所示,显示了GO分析的每个部分的前7个富集分析。对于BP富集分析,结果表明DEG显著参与了信号转导(GO:0007165)、GTP酶活性的正调控(GO:0043547)、固有免疫反应(GO: 0045087)、细胞内信号转导(GO:0035556)、细胞黏附(GO:0007155)、MAPK级联(GO:0000165)和血管形成(GO:0001525)。对于CC富集分析,本研究表明DEG主要涉及质膜(GO:0005886)、质膜组成部分(GO:0005887)、细胞表面(GO:0009986)、黏着斑(GO:0005925)、细胞连接(GO:0030054)、细胞骨架(GO:0005856)和核膜(GO:0031965)。此外,在MF的富集分析中,DEG主要富集于ATP结合(GO: 0005524)、肌动蛋白结合(GO:0003779)、转录因子结合(GO:0008134)、钙调蛋白结合(GO:0005516)、 Ras鸟嘌呤核苷酸交换因子活性(GO:0005088)、酪氨酸激酶活性(GO:0004713)、磷脂酰肌醇⁃4,5⁃二磷酸3激酶活性(GO:0046934)和鸟嘌呤核苷酸交换因子活性(GO:0005085)。KEGG通路分析表明, DEG主要富集在癌症通路(hsa05200)、PI3K⁃Akt信号通路(hsa04151)、Rap1信号通路(hsa04015)、神经活动配体⁃受体相互作用(hsa04080)、肌动蛋白细胞骨架调节(hsa04810)、癌症中蛋白多糖(hsa05205)、 Ras信号通路(hsa04014)和MAPK信号通路 (hsa04010),见图4。

  • 2.3 PPI网络建立和模块分析

  • 利用STRING数据库对DEG进行PPI分析,节点代表DEG,边缘代表DEG之间的相互作用。然后,使用cytoHubba软件的MCODE插件对PPI网络进行分组,形成多个模块。最终,本研究筛选出最显著的(评分排名前2位)的模块(图5)。

  • 2.4 Hub基因筛选

  • 根据cytoHubba中的5种分类方法,选择每种排名方法的前15个基因。最终,通过重叠前15个基因来鉴定了5个核心基因,即EGFR、JUN、CDC42、SRC和RAC1(图6)。

  • 图1 显著差异基因的热图

  • Fig.1 The heat map of DEGs

  • 图2 所有差异基因的火山图

  • Fig.2 Volcanic map of all the different genes

  • 2.5 Hub基因的预后信息

  • 本研究在bc⁃GenExMiner数据库中采用生存曲线评价了5个Hub基因在乳腺癌组织中总生存期 (OS)的预后价值。在乳腺癌患者中,乳腺癌患者中高表达SRC基因的OS更差(HR=1.16,95%CI: 1.07~1.27,P=0.000 7),高表达JUN(HR=0.89,95%CI:0.81~0.97,P=0.006 4)和CDC42(HR=0.87,95%CI:0.79~0.95,P=0.002 4)基因的OS更佳(图7)。

  • 3 讨论

  • 目前,高MD和患乳腺癌的风险增加之间的关联是公认的[16-21]。然而,具体发生和发展的分子机制仍未充分阐明。随着高通量测序技术的发展,在基因组水平探讨致密型乳腺的女性易患乳腺癌的分子机制成为可能,进而可以寻找更多的基因靶标。评估乳房钼靶MD的最常用工具是乳房成像报告和数据系统(BI⁃RADS)[22]。在1项美国佛蒙特州人口研究中,使用BI⁃RADS乳房密度分类,乳房极致密的女性被诊断出患有乳腺癌的相对风险为4.6 (95%CI:1.7~12.6)[23]

  • 图3 DEG的GO富集通路图

  • Fig.3 Enrichment analysis of GO in DEG hy GO

  • 图4 DEG的KEGG富集通路图

  • Fig.4 Enrichment analysis of KEGG in DEG

  • 本研究通过生物信息学的方法预测致密型乳腺的女性乳腺癌高发的潜在治疗和预后评估靶点。最终筛选出5个关键基因,分别为EGFR、JUN、 CDC42、SRC、RAC1。EGFR属于受体酪氨酸激酶的ErbB家族,主要生理功能是调节上皮组织的发育和体内平衡[24]。EGFR经常在不同类型的人类癌症中发生突变或过表达,是肿瘤发生的驱动因素,并且是目前临床实践中采用的多种癌症疗法的靶标[25-26]。JUN属于激活蛋白⁃1(AP⁃1)转录因子家族,参与许多细胞活动,例如增殖、凋亡、存活、肿瘤发生和组织形态发生[27]。在多种肿瘤的发生和发展中起着至关重要的作用,包括恶性黑色素瘤、鼻咽癌等[28-29]。SRC原癌基因是1种蛋白质酪氨酸激酶,在细胞生长、分裂、迁移和存活信号通路中起关键作用[30]。RAC1是小鸟苷三磷酸酶(GTPase)Rho家族的成员,属于Ras超家族[31]。RAC1定位于染色体7p22,并包含7个外显子,全长29kb[32],对许多细胞活动至关重要,例如吞噬作用、黏附和运动、细胞增殖、轴突和树突生长以及血管生成[33]。CDC42也是1个与多种人类癌症相关的小鸟苷三磷酸酶,与上皮间质转化、细胞周期进程、迁移/侵袭、肿瘤生长、血管生成和致癌转化有关[34]。此外,在数据库中分析了这5个Hub基因与OS的关系,提示了它们可能在乳腺癌进展中的作用,可能是致密型乳腺癌潜在的诊断和预后生物标志物,但后续仍需要进一步实验证实。

  • 图5 PPI网络的排名前2的模块1(A)和模块2(B)

  • Fig.5 Top 2modules of PPI network

  • 图6 5种分类方法的韦恩图

  • Fig.6 Venn diagrams for 5classifi caticn methods

  • 图7 Hub基因的Kaplan⁃Meier生存曲线

  • Fig.7 Survival curves of Hub gene

  • 参考文献

    • [1] SIEGEL R L,MILLER K D,JEMAL A.Cancer statistics,2020[J].CA,2020,70(1):7-30

    • [2] YAFFE M J.Mammographic density.Measurement of mammographic density[J].BCR,2008,10(3):209

    • [3] PETTERSSON A,GRAFF R E,URSIN G,et al.Mammographic density phenotypes and risk of breast cancer:a meta ⁃ analysis[J].J Nat Cancer Inst,2014,106(5):dju078

    • [4] BOYD N F,DITE G S,STONE J,et al.Heritability of mammographic density,a risk factor for breast cancer[J].N Engl J Med,2002,347(12):886-894

    • [5] MCCORMACK V A,DOS SANTOS SILVA I.Breast density and parenchymal patterns as markers of breast cancer risk:a meta ⁃ analysis[J].Cancer Epidemiol Biomarkers Prev,2006,15(6):1159-1169

    • [6] DEFILIPPIS R A,FORDYCE C,PATTEN K,et al.Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density[J].Cancer Res,2014,74(18):5032-5044

    • [7] 史维俊,李欣灿,陆飞,等.长链非编码 RNA MIR4713HG 调节结直肠癌进展及预后的生物信息学分析[J].南京医科大学学报(自然科学版),2020,40(8):1149-1155

    • [8] 张舒婷,刁鹏飞,金致纯,等.基于TCGA数据库分析IT⁃ GA5 mRNA在头颈部鳞状细胞癌中的表达及其预后价值[J].南京医科大学学报(自然科学版),2020,40(6):832-838

    • [9] BARRETT T,WILHITE S E,LEDOUX P,et al.NCBI GEO:archive for functional genomics data sets ⁃ ⁃ update [J].Nucleic Acids Res,2013,41(Database issue):D991-D995

    • [10] HUANG D W,SHERMAN B T,TAN Q,et al.DAVID Bio⁃ informatics resources:expanded annotation database and novel algorithms to better extract biology from large gene lists[J].Nucleic Acids Res,2007,35(Web Server issue):W169-W175

    • [11] SZKLARCZYK D,FRANCESCHINI A,WYDER S,et al.STRING v10:protein ⁃ protein interaction networks,integrated over the tree of life[J].Nucleic Acids Res,2015,43(Database issue):D447-D452

    • [12] SMOOT M E,ONO K,RUSCHEINSKI J,et al.Cytoscape 2.8:new features for data integration and network visual⁃ ization[J].Bioinformatics,2011,27(3):431-432

    • [13] BANDETTINI W P,KELLMAN P,MANCINI C,et al.MultiContrast Delayed Enhancement(MCODE)improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic reso⁃ nance:a clinical validation study[J].J Cardiovasc Magne Reson,2012,14(1):83

    • [14] JÉZÉQUEL P,CAMPONE M,GOURAUD W,et al.bc ⁃ GenExMiner:an easy ⁃ to ⁃ use online platform for gene prognostic analyses in breast cancer[J].Breast Cancer Res Treat,2012,131(3):765-775

    • [15] JÉZÉQUEL P,FRÉNEL J S,CAMPION L,et al.bc ⁃ GenExMiner 3.0:new mining module computes breast cancer gene expression correlation analyses[J].Data⁃ base,2013,2013:bas060

    • [16] TICE J A,CUMMINGS S R,SMITH⁃BINDMAN R,et al.Using clinical factors and mammographic breast density to estimate breast cancer risk:development and validation of a new predictive model[J].Ann Intern Med,2008,148(5):337-347

    • [17] CHIU S Y,DUFFY S,YEN A M,et al.Effect of baseline breast density on breast cancer incidence,stage,mortality,and screening parameters:25⁃year follow⁃up of a Swedish mammographic screening[J].Cancer Epidemiol Biomarkers Prev,2010,19(5):1219-1228

    • [18] BAGLIETTO L,KRISHNAN K,STONE J,et al.Associations of mammographic dense and nondense areas and body mass index with risk of breast cancer[J].Am J Epidemiol,2014,179(4):475-483

    • [19] HEUSINGER K,LOEHBERG C R,HAEBERLE L,et al.Mammographic density as a risk factor for breast cancer in a German case ⁃ control study[J].Eur J Cancer Prev,2011,20(1):1-8

    • [20] YAGHJYAN L,COLDITZ G A,COLLINS L C,et al.Mam⁃ mographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor char⁃ acteristics[J].J Natl Cancer Inst,2011,103(15):1179-1189

    • [21] BERTRAND K A,SCOTT C G,TAMIMI R M,et al.Dense and nondense mammographic area and risk of breast cancer by age and tumor characteristics[J].Cancer Epidemiol Biomarkers Prev,2015,24(5):798-809

    • [22] PATTERSON S K,ROUBIDOUX M A.Update on new technologies in digital mammography[J].Int J Womens Health,2014,6:781-788

    • [23] VACEK P M,GELLER B M.A prospective study of breast cancer risk using routine mammographic breast density measurements[J].Cancer Epidemiol Biomarkers Prev,2004,13(5):715-722

    • [24] SCHLESSINGER J.Receptor tyrosine kinases:legacy of the first two decades[J].Cold Spring Harb Perspect Biol,2014;6(3):a008912

    • [25] YARDEN Y,PINES G.The ERBB network:at last,cancer therapy meets systems biology[J].Nat Rev Cancer,2012,12(8):553-563

    • [26] SIGISMUND S,AVANZATO D,LANZETTI L.Emerging functions of the EGFR in cancer[J].Mol Oncol,2018,12(1):3-20

    • [27] MENG Q,XIA Y.c⁃Jun,at the crossroad of the signaling network[J].Protein cell,2011,2(11):889-898

    • [28] SCHUMMER P,KUPHAL S,VARDIMON L,et al.Specific c ⁃Jun target genes in malignant melanoma[J].Cancer Biol Ther,2016,17(5):486-497

    • [29] ZHANG Y J,ZHANG M F,ZHOU H F,et al.Activation of c ⁃ Jun/JNK signaling predicts poor prognosis in naso⁃ pharyngeal carcinoma[J].Int J Clin Exp Pathol,2018,11(5):2699-2706

    • [30] ROSKOSKI R JR.Src protein ⁃tyrosine kinase structure,mechanism,and small molecule inhibitors[J].Pharmacol Res,2015,94:9-25

    • [31] NOBES C D,HALL A.Rho,rac,and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers,lamellipodia,and filopodia[J].Cell,1995,81(1):53-62

    • [32] MATOS P,SKAUG J,MARQUES B,et al.Small GTPase Rac1:structure,localization,and expression of the human gene[J].Biochem Biophys Res Commun,2000,277(3):741-751

    • [33] MARINKOVIC G,HEEMSKERK N,VAN BUUL J D,et al.The ins and outs of small GTPase rac1 in the vasculature[J].J Pharmacol Exp Ther,2015,354(2):91-102

    • [34] MALDONADO M D M,DHARMAWARDHANE S.Targeting rac and Cdc42 GTPases in cancer[J].Cancer Res,2018,78(12):3101-3111

  • 参考文献

    • [1] SIEGEL R L,MILLER K D,JEMAL A.Cancer statistics,2020[J].CA,2020,70(1):7-30

    • [2] YAFFE M J.Mammographic density.Measurement of mammographic density[J].BCR,2008,10(3):209

    • [3] PETTERSSON A,GRAFF R E,URSIN G,et al.Mammographic density phenotypes and risk of breast cancer:a meta ⁃ analysis[J].J Nat Cancer Inst,2014,106(5):dju078

    • [4] BOYD N F,DITE G S,STONE J,et al.Heritability of mammographic density,a risk factor for breast cancer[J].N Engl J Med,2002,347(12):886-894

    • [5] MCCORMACK V A,DOS SANTOS SILVA I.Breast density and parenchymal patterns as markers of breast cancer risk:a meta ⁃ analysis[J].Cancer Epidemiol Biomarkers Prev,2006,15(6):1159-1169

    • [6] DEFILIPPIS R A,FORDYCE C,PATTEN K,et al.Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density[J].Cancer Res,2014,74(18):5032-5044

    • [7] 史维俊,李欣灿,陆飞,等.长链非编码 RNA MIR4713HG 调节结直肠癌进展及预后的生物信息学分析[J].南京医科大学学报(自然科学版),2020,40(8):1149-1155

    • [8] 张舒婷,刁鹏飞,金致纯,等.基于TCGA数据库分析IT⁃ GA5 mRNA在头颈部鳞状细胞癌中的表达及其预后价值[J].南京医科大学学报(自然科学版),2020,40(6):832-838

    • [9] BARRETT T,WILHITE S E,LEDOUX P,et al.NCBI GEO:archive for functional genomics data sets ⁃ ⁃ update [J].Nucleic Acids Res,2013,41(Database issue):D991-D995

    • [10] HUANG D W,SHERMAN B T,TAN Q,et al.DAVID Bio⁃ informatics resources:expanded annotation database and novel algorithms to better extract biology from large gene lists[J].Nucleic Acids Res,2007,35(Web Server issue):W169-W175

    • [11] SZKLARCZYK D,FRANCESCHINI A,WYDER S,et al.STRING v10:protein ⁃ protein interaction networks,integrated over the tree of life[J].Nucleic Acids Res,2015,43(Database issue):D447-D452

    • [12] SMOOT M E,ONO K,RUSCHEINSKI J,et al.Cytoscape 2.8:new features for data integration and network visual⁃ ization[J].Bioinformatics,2011,27(3):431-432

    • [13] BANDETTINI W P,KELLMAN P,MANCINI C,et al.MultiContrast Delayed Enhancement(MCODE)improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic reso⁃ nance:a clinical validation study[J].J Cardiovasc Magne Reson,2012,14(1):83

    • [14] JÉZÉQUEL P,CAMPONE M,GOURAUD W,et al.bc ⁃ GenExMiner:an easy ⁃ to ⁃ use online platform for gene prognostic analyses in breast cancer[J].Breast Cancer Res Treat,2012,131(3):765-775

    • [15] JÉZÉQUEL P,FRÉNEL J S,CAMPION L,et al.bc ⁃ GenExMiner 3.0:new mining module computes breast cancer gene expression correlation analyses[J].Data⁃ base,2013,2013:bas060

    • [16] TICE J A,CUMMINGS S R,SMITH⁃BINDMAN R,et al.Using clinical factors and mammographic breast density to estimate breast cancer risk:development and validation of a new predictive model[J].Ann Intern Med,2008,148(5):337-347

    • [17] CHIU S Y,DUFFY S,YEN A M,et al.Effect of baseline breast density on breast cancer incidence,stage,mortality,and screening parameters:25⁃year follow⁃up of a Swedish mammographic screening[J].Cancer Epidemiol Biomarkers Prev,2010,19(5):1219-1228

    • [18] BAGLIETTO L,KRISHNAN K,STONE J,et al.Associations of mammographic dense and nondense areas and body mass index with risk of breast cancer[J].Am J Epidemiol,2014,179(4):475-483

    • [19] HEUSINGER K,LOEHBERG C R,HAEBERLE L,et al.Mammographic density as a risk factor for breast cancer in a German case ⁃ control study[J].Eur J Cancer Prev,2011,20(1):1-8

    • [20] YAGHJYAN L,COLDITZ G A,COLLINS L C,et al.Mam⁃ mographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor char⁃ acteristics[J].J Natl Cancer Inst,2011,103(15):1179-1189

    • [21] BERTRAND K A,SCOTT C G,TAMIMI R M,et al.Dense and nondense mammographic area and risk of breast cancer by age and tumor characteristics[J].Cancer Epidemiol Biomarkers Prev,2015,24(5):798-809

    • [22] PATTERSON S K,ROUBIDOUX M A.Update on new technologies in digital mammography[J].Int J Womens Health,2014,6:781-788

    • [23] VACEK P M,GELLER B M.A prospective study of breast cancer risk using routine mammographic breast density measurements[J].Cancer Epidemiol Biomarkers Prev,2004,13(5):715-722

    • [24] SCHLESSINGER J.Receptor tyrosine kinases:legacy of the first two decades[J].Cold Spring Harb Perspect Biol,2014;6(3):a008912

    • [25] YARDEN Y,PINES G.The ERBB network:at last,cancer therapy meets systems biology[J].Nat Rev Cancer,2012,12(8):553-563

    • [26] SIGISMUND S,AVANZATO D,LANZETTI L.Emerging functions of the EGFR in cancer[J].Mol Oncol,2018,12(1):3-20

    • [27] MENG Q,XIA Y.c⁃Jun,at the crossroad of the signaling network[J].Protein cell,2011,2(11):889-898

    • [28] SCHUMMER P,KUPHAL S,VARDIMON L,et al.Specific c ⁃Jun target genes in malignant melanoma[J].Cancer Biol Ther,2016,17(5):486-497

    • [29] ZHANG Y J,ZHANG M F,ZHOU H F,et al.Activation of c ⁃ Jun/JNK signaling predicts poor prognosis in naso⁃ pharyngeal carcinoma[J].Int J Clin Exp Pathol,2018,11(5):2699-2706

    • [30] ROSKOSKI R JR.Src protein ⁃tyrosine kinase structure,mechanism,and small molecule inhibitors[J].Pharmacol Res,2015,94:9-25

    • [31] NOBES C D,HALL A.Rho,rac,and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers,lamellipodia,and filopodia[J].Cell,1995,81(1):53-62

    • [32] MATOS P,SKAUG J,MARQUES B,et al.Small GTPase Rac1:structure,localization,and expression of the human gene[J].Biochem Biophys Res Commun,2000,277(3):741-751

    • [33] MARINKOVIC G,HEEMSKERK N,VAN BUUL J D,et al.The ins and outs of small GTPase rac1 in the vasculature[J].J Pharmacol Exp Ther,2015,354(2):91-102

    • [34] MALDONADO M D M,DHARMAWARDHANE S.Targeting rac and Cdc42 GTPases in cancer[J].Cancer Res,2018,78(12):3101-3111