en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

徐艳,E⁃mail:yanxu@njmu.edu.cn;

李璐,lululi521@163.com

中图分类号:R781.41

文献标识码:A

文章编号:1007-4368(2021)12-1856-06

DOI:10.7655/NYDXBNS20211225

参考文献 1
POLI P,CICCIU M,BERETTA M,et al.Peri⁃implant mucositis and peri ⁃ implantitis:a current understanding of their diagnosis,clinical implications,and a report of treatment using a combined therapy approach[J].J Oral Implantol,2017,43(1):45-50
参考文献 2
SALVI G,COSGAREA R,SCULEAN A.Prevalence and mechanisms of Peri ⁃ implant diseases[J].J Dent Res,2017,96(1):31-37
参考文献 3
XU Z,STEFANIE K,TOBIAS W,et al.Application of totarol as natural antibacterial coating on dental implants for prevention of peri⁃implantitis[J].Mater Sci Eng C Mater Biol Appl,2020,110:110701
参考文献 4
MATSUBARA V,LEONG B,LEONG M,et al.Cleaning potential of different air abrasive powders and their impact on implant surface roughness[J].Clin Implant Dent Relat Res,2020,22(1):96-104
参考文献 5
IATROU P,CHAMILOS C,NICKLES K,et al.In vitro efficacy of three different nonsurgical implant surface decontamination methods in three different defect configurations[J].Int J Oral Maxillofac Implants,2021,36(2):271-280
参考文献 6
CHA J,PAENG K,JUNG U,et al.The effect of five mechanical instrumentation protocols on implant surface topography and roughness:a scanning electron microscope and confocal laser scanning microscope analysis[J].Clin Oral Implants Res,2019,30(6):578-587
参考文献 7
LARSEN O,ENERSEN M,KRISTOFFERSEN A,et al.Antimicrobial effects of three different treatment modalities on dental implant surfaces[J].J Oral Implantol,2017,43(6):429-436
参考文献 8
WANG C,ASHNAGAR S,GIANFILIPPO R,et al.Laser⁃ assisted regenerative surgical therapy for peri⁃implantitis:a randomized controlled clinical trial[J].Periodontol,2021,92(3):378-388
参考文献 9
FENELON T,BAKR M,WALSH L,et al.Effects of lasers and their delivery characteristics on machined and micro⁃ roughened titanium dental implant surfaces[J].Bioengi⁃ neering,2020,7(3):93
参考文献 10
MONZAVI A,FEKRAZAD R,CHINIPARDAZ Z,et al.Effect of various laser wavelengths on temperature changes during periimplantitis treatment:an in vitro study[J].Implant Dent,2018,27(3):311-316
参考文献 11
MISISCHIA W P,XENOUDI P,YUKNA R,et al.Bacterial reduction effect of four different dental lasers on titanium surfaces in vitro[J].Lasers Med Sci,2021,36(8):1759-1767
参考文献 12
ERIKSSON A,ALBREKTSSON T.Temperature threshold levels for heat ⁃induced bone tissue injury:a vital ⁃micro⁃ scopic study in the rabbit[J].J Prosthet Dent,1983,50(1):101-107
参考文献 13
MATYS J,BOTZENHART U,GEDRANGE T,et al.Ther⁃ modynamic effects after Diode and Er:YAG laser irradia⁃ tion of grade Ⅳ and Ⅴ titanium implants placed in bone ⁃ an ex vivo study.Preliminary report[J].Biomed Tech(Berl),2016,61(5):499-507
参考文献 14
HAKKI S,TATAR G,DUNDAR N,et al.The effect of different cleaning methods on the surface and temperature of failed titanium implants:an in vitro study[J].Lasers Med Sci,2017,32(3):563-571
参考文献 15
PASSARELLI P,LEONARDIS M,PICCIRILLO G,et al.The effectiveness of chlorhexidine and air polishing system in the treatment of infected dental implants:an exper⁃ imental in vitro study[J].Antibiotics(Basel),2020,9(4):179
参考文献 16
PISTILLI R,GENOVA T,CANULLO L,et al.Effect of bioactivation on traditional surfaces and zirconium nitride:adhesion and proliferation of preosteoblastic cells and bacteria[J].Int J Oral Maxillofac Implants,2018,33(6):1247-1254
参考文献 17
VIITANIEMI L,ABDULMAjEED A,SULAIMAN T,et al.Adhesion and early colonization of s.mutans on lithium disilicate reinforced glass ⁃ ceramics,monolithic zirconia and dual cure resin cement.[J].Eur J Prosthodont Restor Dent,2017,25(4):228-234
参考文献 18
QIANG W,HE X,ZHANG K,et al.Mussel adhesive mimetic silk sericin prepared by enzymatic oxidation for the construction of antibacterial coatings[J].ACS Biomater Sci Eng,2021,7(7):3379-3388
参考文献 19
RAJAN A,SIVARAJAN S,VALLABHAN C,et al.An in vitro study to evaluate and compare the hemocompatibility of titanium and zirconia implant materials after sand⁃ blasted and acid⁃etched surface treatment[J].J Contemp Dent Pract,2018,19(12):1448-1454
参考文献 20
KHOSRAVI N,DACOSTA R,DAVIES J.New insights into spatio ⁃ temporal dynamics of mesenchymal progenitor cell ingress during peri ⁃implant wound healing:Provided by intravital imaging [J].Biomaterials,2021,273:120837
参考文献 21
NASIRZADE J,KARGARPOUR Z,HASANNIA S,et al.Platelet ⁃ rich fibrin elicits an anti ⁃inflammatory response in macrophages in vitro[J].J Periodontol,2020,91(2):244-252
参考文献 22
NAKAMURA M,AIZAWA H,KAWABATA H,et al.Platelet adhesion on commercially pure titanium plates in vitro Ⅲ:effects of calcium phosphate⁃blasting on titanium plate biocompatibility[J].Int J Implant Dent,2020,6(1):74
参考文献 23
ALBREKTSSON T,WENNERBERG A.Oral implant surfaces:Part 1⁃review focusing on topographic and chemical properties of different surfaces and in vivo responses to them[J].Int J Prosthodont,2004,17(5):536-543
参考文献 24
SHIN S,MIN H,PARK B,et al.The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces:an in vitro study[J].Lasers Med Sci,2011,26(6):767-776
参考文献 25
SHIN S,LEE E,KIM J,et al.The effect of Er:YAG laser irradiation on hydroxyapatite⁃coated implants and fluoride ⁃modified TiO2⁃blasted implant surfaces:a microstructural analysis[J].Lasers Med Sci,2013,28(3):823-831
参考文献 26
TAKAGI T,AOKI A,ICHINOSE S,et al.Effective remov⁃ al of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers[J].J Peri⁃ odontol,2018,89(6):680-690
参考文献 27
TANIGUCHI Y,AOKI A,MIZUTANI K,et al.Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants[J].Lasers Med Sci,2013,28(4):1057-68
参考文献 28
MATYS J,ROMEO U,MROCZKA K,et al.Temperature changes and sem effects of three different implants ⁃abutment connection during debridement with ER:YAG laser:an ex vivo study[J].Materials(Basel),2019,12(22):3748
参考文献 29
SAFFARPOUR A,NOZARI A,FEKRAZAD R,et al.Microstructural evaluation of contaminated implant surface treated by laser,photodynamic therapy,and chlorhexidine 2 percent[J].Int J Oral Maxillofac Implants,2018,33(5):1019-1026
参考文献 30
LI H,SHEN C,RUAN D,et al.Microstructure,mechanical properties,and in vitro behavior of biodegradable Zn⁃ 1Mg ⁃ 0.1Ca and Zn ⁃ 1Mg ⁃ 0.5Ca[J].J Mater Sci Mater Med,2020,31(10):88
参考文献 31
汤泽华,朱文卿,邱憬.Ag_2S@BSA存储液对纯钛表面成骨细胞行为的影响[J].南京医科大学学报(自然科学版),2021,41(5):670-676
参考文献 32
BAI L,ZHAO Y,CHEN P,et al.Targeting early healing phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration[J].Small,2021,17(4):e2006287
参考文献 33
AYOBIAN⁃MARKAZI N,KARIMI M,SAFAR⁃HAjHOS⁃ SEINI A.Effects of Er:YAG laser irradiation on wettability,surface roughness,and biocompatibility of SLA titanium surfaces:an in vitro study[J].Lasers Med Sci,2015,30(2):561-566
参考文献 34
PARK S,KIM O,CHUNG H,et al.Effect of a Er,Cr:YS⁃ GG laser and a Er:YAG laser treatment on oral biofilm ⁃ contaminated titanium[J].J Appl Oral Sci,2020,28:e20200528
参考文献 35
ALMOHARIB H,STEFFENSEN B,ZOUKHRI D,et al.Efficacy of an Er:YAG laser in the decontamination of dental implant surfaces:an in vitro study[J].J Periodontol,2021,undefined:undefined
参考文献 36
WEHNER C,LAKY M,SHOKOOHI ⁃ TABRIZI H,et al.Effects of Er:YAG laser irradiation of different titanium surfaces on osteoblast response[J].J Mater Sci Mater Med,2021,32(3):22
参考文献 37
GIANNELLI M,BANI D,TANI A,et al.Effects of an Er⁃ bium:yttrium⁃aluminum⁃garnet laser and ultrasonic scaler on titanium dioxide ⁃coated titanium surfaces contaminated with subgingival plaque:an in vitro study to assess post ⁃treatment biocompatibility with osteogenic cells[J].J Periodontol,2017,88(11):1211-1220
参考文献 38
JOHN G,BECKER J,SCHMUCKER A,et al.Non⁃surgical treatment of peri⁃implant mucositis and peri⁃implantitis at two ⁃piece zirconium implants:A clinical follow ⁃up observation after up to 3 years[J].J Clin Periodontol,2017,44(7):756-761
参考文献 39
CLEM D,GUNSOLLEY J.Peri ⁃implantitis treatment using Er:YAG laser and bone grafting.a prospective consecutive case series evaluation:1 year posttherapy[J].Int J Periodontics Restorative Dent,2019,39(4):479-489
参考文献 40
SCHWARZ F,JOHN G,SCHMUCKER A,et al.Combined surgical therapy of advanced peri⁃implantitis evaluating two methods of surface decontamination:a 7 ⁃ year follow ⁃ up observation[J].J Clin Periodontol,2017,44(3):337-342
参考文献 41
LISTL S,FRüHAUF N,DANNEWITZ B,et al.Cost⁃effec⁃ tiveness of non⁃surgical peri⁃implantitis treatments[J].J Clin Periodontol,2015,42(5):470-477
目录contents

    摘要

    传统方法治疗种植体周围炎的弊端逐渐显现,掺钕钇铝石榴石(erbium⁃doped yttrium aluminum garnet,Er:YAG)激光因其杀菌、消毒、止血、光生物调节等作用可弥补传统治疗方式的不足而受到人们的关注。然而,在保证种植体彻底清创的同时不对周围组织造成损害、不对种植体表面造成损害、不对生物相容性造成损害,是激光临床应用的难点,也是研究者关注的问题。此外,临床工作者也日益重视Er:YAG激光治疗种植体周围炎的确切疗效。本文主要围绕以上问题展开论述。

    Abstract

    The disadvantages of traditional therapy for peri⁃implantitis have gradually shown. Er:YAG laser can be used to make up for the deficiency of traditional therapy for the functions of sterilization,disinfection,hemostasis and photobiological regulation. However,how to decontaminate the implant without damaging the surrounding tissue? How to decontaminate the implant without damaging the surface characteristics and biocompatibility of itself?These have always been a concern of researchers. In addition,more and more attention has been paid to the concrete effect of Er:YAG laser on the therapy of peri⁃implantitis. We will discuss the above issues in this review.

  • 种植体周围炎是累及软、硬组织的炎性损害,可引起种植体周围进行性骨丧失,是引起种植修复失败的主要原因[1-2]。种植体上的菌斑生物膜与宿主之间的免疫炎症反应是种植体周围炎的主要病因和致病机制。因此,彻底清除种植体表面结石菌斑是治疗种植体周围炎的首要目标[3]

  • 传统采用机械清创和化学药物治疗种植体周围炎。机械清创主要包括手工刮治、超声洁治、喷砂。手工刮治常采用塑料刮治器或钛刮治器,超声洁治采用非金属工作尖。但这两种方法清除菌斑结石时效率低下并且会损坏钛种植体表面微结构,并产生额外的化学污染。喷砂在狭窄的垂直骨缺损中应用受限并可能改变种植体表面微结构,此外还有引起皮下气肿的风险[4-7]。化学药物多局部使用四环素类、甲硝唑类和洗必泰,但长期使用易导致细菌耐药。为了获得更佳的疗效,激光逐步走进人们视野。当激光照射到组织表面,可以发生反射、散射、吸收或穿透。其中激光在水中的吸收率对激光在组织中的吸收程度和穿透深度有重要影响。激光在水中的吸收率低,在软组织中有更大的穿透深度;激光在水中的吸收率高,在软组织中穿透深度更小。激光可以发挥杀灭细菌、灭活细菌内毒素、止血及光生物调节等作用[8]。根据激光在组织中的穿透深度,口腔中常用激光可以分为表面吸收型激光(激光被组织表层吸收,不能穿透进入组织深部):CO2激光、Er:YAG激光;组织穿透型激光 (激光可以穿透进入组织深部):掺钕钇铝石榴石 (neodymium ⁃ doped yttrium aluminum garnet,Nd: YAG)激光、二极管激光。Nd:YAG激光、CO2激光、二极管激光可有效杀菌,但是可能对种植体表面造成热力学损害,改变钛种植体的表面微貌[9-11]。Er:YAG激光可有效切除软硬组织,有较强的杀菌以及清除内毒素和外毒素的作用。此外,由于其在水中有较高的吸收率,可减少对周围组织热损伤[8]。因此Er: YAG激光在种植体周围炎的治疗中有广阔应用前景。

  • 本文就目前Er:YAG激光治疗种植体周围炎的体外研究以及临床研究现状进行综述。

  • 1 Er:YAG激光对种植体周围组织的热损伤

  • 种植体与周围骨组织形成骨结合且种植体周围血运很少,激光照射种植体产生的热可通过种植体传导给骨组织而造成骨组织热损伤。Eriksson等[12] 通过一系列研究指出骨组织温度升高10℃且持续10s会导致骨结构永久改变。因此骨组织的升温幅度需控制在10℃以内。

  • 现有研究表明,Er:YAG激光对种植体表面及种植体周围组织不会造成明显热损伤。Monzavi等 [10] 比较了利用CO2激光、二极管激光、Nd:YAG激光、Er:YAG激光进行种植体表面清创时种植体表面的温度变化。研究者将种植体植入羊下颌骨骨块,每个种植体的颊侧做一垂直骨缺损,骨块放入37℃水浴中模拟体内口腔情况。用K型热电偶记录种植体3个位点(根尖部/根中部/根冠方)的温度变化。结果发现,Er:YAG激光照射下,种植体表面温度变化保持在10℃以内。但是在CO2、Nd:YAG和二极管激光照射下,种植体根尖部温度变化超过10℃。研究者指出Er:YAG激光用于种植体周围炎的治疗是较为安全的。但是在应用Nd:YAG、二极管,特别是CO2激光时应注意预防热损伤。

  • Er:YAG激光照射种植体引起的升温与种植体的理化特性、激光能量参数、照射角度、照射时间以及冷却措施等因素有关。Matys等[13] 将3个直径为3.2、4.5、6.0mm的纯钛种植体和3个直径为3.2、4.5、 6.0mm的钛合金(由钛、铝和钒组成的合金)种植体植入猪肋骨,予以不同强度、不同时间的Er:YAG激光照射,测量种植体的温度改变。实验指出随着激光功率增加、种植体直径减小,种植体表面温度升高越快。钛合金种植体表面升温较纯钛种植体快。Er:YAG激光能量参数设置为100mJ/pulse、 10Hz,照射30s时不会引起种植体周围骨组织热损伤且能对种植体表面起到有效杀菌消毒的效果。该体外实验强调了选择激光能量参数时将种植体的理化性质(如种植体材料的导热性和种植体直径)考虑在内的重要性。在另一项研究中[14],研究者探究了用3种不同能量参数的Er:YAG激光(激光能量参数设置为100mJ/pulse,10Hz;150mJ/pulse, 10Hz;200mJ/pulse,10Hz)对种植体表面进行清创时,种植体的温度变化。该体外实验激光照射时间为120s,伴有水冷。研究发现,由于有水的冷却作用,种植体激光处理后的温度低于种植体的初始温度。在伴有水冷的情况下,激光能量从100mJ/pulse提高到200mJ/pulse均具有可靠的安全性。由此可见水冷可显著降低Er:YAG激光治疗种植体周围炎时发生热损伤的风险。

  • 2 Er:YAG激光对种植体表面特性的影响

  • 种植体表面特性主要包括表面形貌、粗糙度、亲水性。这些因素彼此之间密切关联并且共同影响种植体的生物相容性,对种植体的预后和成功有重要作用。表面形貌、粗糙度和亲水性一方面影响细菌的黏附[15-18];另一方面亦影响血小板的黏附和活化,血小板活化后选择性分泌的各种趋化因子、生长因子最终影响骨结合[19]。软硬组织的整合主要受亲水性的影响,但是菌斑污染种植体表面会降低种植体的表面自由能从而减弱亲水性并且对细胞具有毒性作用。因此需要彻底清除种植体表面的菌斑等污染物但是尽量减少对种植体表面形貌和粗糙度的不利影响,同时不对种植体表面造成额外的化学污染。

  • 2.1 Er:YAG激光对种植体表面形貌和粗糙度的影响

  • 种植体的表面形貌与粗糙度的关系密切。粗糙度增加可以增加血小板黏附和活化,释放多种生长因子和细胞因子,深刻影响着种植体周围新生血管模式,促进创伤愈合及骨结合[20-22]。但是粗糙度增加亦会促进菌斑附着,增大清除种植体表面菌斑的难度。Albrektsson和Wennerberg将表面粗糙度分为4种:光滑表面,粗糙度值<0.5 μm;最低限度粗糙表面,粗糙度值0.5~1.0 μm;中等粗糙表面,粗糙度值1.0~2.0 μm;粗糙表面,粗糙度值>2.0 μm。他们建议种植体理想粗糙度范围在1.0~1.5 μm之间[23]

  • 钛种植体表面微貌受Er:YAG激光热效应的影响。以往一系列研究探究了低脉冲频率10Hz的Er:YAG激光对种植体表面微貌和粗糙度的影响。 Er:YAG激光能量参数设置为60mJ/pulse、10Hz,照射时间2min时阳极氧化种植体表面形貌较稳定; 设置为140mJ/pulse、10Hz,照射时间2min时喷砂酸蚀种植体表面形貌较稳定;设置为100mJ/pulse、 10Hz,照射时间1min时羟磷灰石涂层和氟化物改性TiO2喷砂种植体表面形貌较稳定[24-25]。Takagi等[26] 研究了脉冲频率20Hz的Er:YAG激光对种植体表面微貌的影响。Er:YAG激光能量参数设置为40mJ/pulse、20Hz,在伴水冷非接触式照射喷砂酸蚀表面的种植体时,可以在不改变种植体表面微结构的基础上有效清除种植体表面的钙化沉积物。 Tanjguchi等[27] 研究了高脉冲频率30Hz的Er:YAG激光对钛种植体表面微貌的影响。Er:YAG激光能量参数设置为50mJ/pulse、30Hz,照射时间10s时喷砂酸蚀种植体表面出现明显的熔融改变。由于钛的熔点为1 668℃,这个现象意味着高脉冲频率激光被钛表面吸收,在照射点产生非常高的温度。但在同样能量参数设置以及更长的照射时间下,伴有水冷的种植体表面无明显改变。Matys等[28] 将Er: YAG激光能量参数设置为50mJ/pulse、30Hz,照射时间1min,但是伴有水冷时,种植体表面未见明显熔融及裂纹。这两项研究强调应用高脉冲频率30Hz的Er:YAG激光治疗种植体周围炎时,水冷对于减少激光对种植体表面熔融改变有重要作用。

  • 临床中患有种植体周围炎的种植体表面黏附有菌斑生物膜。为模拟体内的情况,研究者构建了伴放线聚集杆菌黏附于喷砂酸蚀表面种植体的体外模型,用以探究Er:YAG激光(100mJ/pulse,10Hz,照射时间1min)清创对种植体表面的改变。结果显示,该能量参数设置下的Er:YAG激光并不会改变种植体表面微貌[29]

  • 总结现有的体外研究可以发现,低脉冲频率的Er:YAG激光对种植体表面微貌及粗糙度无明显改变。此外,配合水冷,可以明显减少高脉冲频率的Er:YAG激光对种植体表面微貌的改变。

  • 2.2 Er:YAG激光对种植体表面亲水性的影响

  • 种植体表面的亲水性利于血小板的黏附与活化[30],血小板活化后选择性分泌的各种趋化因子、生长因子,会影响早期炎症反应和骨再生并最终影响与骨结合有关的骨愈合过程[31-32]。种植体的亲水性用接触角的大小来度量,接触角越小亲水性越好。Nader等[33] 在体外研究了激光对未被细菌污染的喷砂酸蚀种植体表面亲水性的影响,发现Er: YAG激光在能量参数100mJ/pulse、10Hz,照射时间60s,伴水冷的情况下可以增加种植体表面亲水性。然而该实验针对的是未被细菌污染的种植体,对于已被细菌污染的种植体,Er:YAG激光照射是否可以恢复甚至改善亲水性还无法知晓,有待日后进一步探索。

  • 3 Er:YAG激光对种植体表面生物相容性的影响

  • 种植体表面黏附的菌斑生物膜会降低种植体表面的生物相容性,众多研究者进行了一系列体外实验以评估Er:YAG激光对受菌斑污染的种植体表面的清创效果。研究指出,在无螺纹的光滑钛片表面,Er:YAG激光的菌斑清除效果优于塑料刮治器[34]。在无螺纹的喷砂酸蚀钛片表面,Er:YAG激光的菌斑清除效果弱于各种传统的器械,如钛刷、碳纤维刮治器[35]。然而在一项针对有螺纹的种植体表面的研究中,研究者发现Er:YAG激光的清创效果优于传统的器械,如各种手工刮治器、钛刷以及超声器械[14]。现有结果提示,在无螺纹的种植体表面,其清创效果并没有优于大部分的传统清创方式。但是在具备螺纹的种植体表面,激光可能更容易进入螺纹之间的深部进行清创,因此相对于传统器械有更大优势。因此,针对不同表面类型的种植体,可能需要选择不同的清创方式以获得最佳的菌斑清除效果。

  • 众多Er:YAG激光对种植体表面生物相容性的研究一方面评估Er:YAG激光对种植体表面菌斑的清除效果,另一方面评估Er:YAG激光处理种植体后,细胞对种植体表面再次黏附、生长、分化的影响。此方面的研究较为零散,由于种植体表面特征不一致,使用的激光参数不一致,使用的细胞种类不一致,难以达成一致结论。针对喷砂酸蚀处理的种植体表面,实验表明在伴有水冷的情况下,使用160mJ/pulse、20Hz或者80mJ/pulse、20Hz的Er:YAG激光处理钛片后,会改变种植体的表面结构,对MG⁃63成骨样细胞的附着和增殖造成不利影响[36]。然而另一项针对黏附有龈下菌斑的中等粗糙钛片的研究发现[37],在伴有水冷的情况下,使用150mJ/pulse、12Hz的Er:YAG激光处理钛片后,菌斑面积控制在0.03%以下,钛片表面未显示明显变化,Saos⁃2人成骨肉瘤细胞可再次附着生长于钛片表面,其生长、黏附和成骨分化能力均未受到影响。虽然Er:YAG激光处理后是否可以让种植体表面保持良好的生物相容性还有争议,但现有结果提示,临床使用Er:YAG激光治疗种植体周围炎时应对能量参数的设置保持更加谨慎的态度。后期的研究需要针对激光参数设置、种植体表面类型、使用的研究细胞进行分组,获取更多的证据,为指导临床提供可靠依据。

  • 4 Er:YAG激光治疗种植体周围炎的临床疗效

  • John等[38] 使用Er:YAG激光(能量参数设置为100mJ/pulse、10Hz)对两段式锆种植体进行了种植体周围炎的非手术治疗,并对长期效果进行了评估,平均随访时间达32.8个月。研究者将疾病消退定义为种植体周围无探诊出血、探诊深度<6mm。随访结果显示Er:YAG激光在种植体水平上疾病消退率达到50.0%。另一个研究团队利用Er:YAG激光(能量参数设置为50mJ/mm2)对种植体周围炎患者进行再生性手术治疗[39]。术中利用Er:YAG激光进行种植体表面清创以及种植体周围肉芽组织的清除。研究发现术前探诊深度超过6mm的位点,在12个月后平均探诊深度减少到3.5mm。目前临床研究显示,使用Er:YAG激光治疗种植体周围炎可以使疾病得到改善。

  • Er:YAG激光价格较为昂贵,为此许多研究者探索相对于传统的种植体清创方法,Er:YAG激光是否具有更佳的疗效。Schwarz等[40] 为此进行了一系列手术治疗种植体周围炎的临床研究。治疗过程包括翻瓣、清除肉芽组织、种植体表面成形,骨内种植体表面清创。种植体表面清创随机选择①Er: YAG激光(能量参数设置为100mJ/pulse,11.4J/cm2, 10Hz);②塑料刮治器结合棉球擦拭及无菌生理盐水冲洗。骨内缺损用骨粉填充,并用天然胶原膜覆盖。他们在基线、术后6个月、术后1年、术后2年、术后7年进行随访检查并记录临床参数。研究发现术后6个月、术后1年、术后2年、术后7年随访,两种清创方式在探诊出血减轻和临床附着水平增加方面都无明显差异。因此,最初的清创方式也许并不会对种植体周围炎的术后疗效产生较大影响。然而,王鸿烈教授团队最新的临床研究发现,Er: YAG激光辅助清创可以对种植体周围炎的再生性手术治疗产生额外的临床获益[8]。研究者将24例伴有垂直型骨缺损的种植体周围炎患者随机分为实验组和对照组。两组患者的手术过程均包括翻瓣、机械清创、种植体成形、骨粉移植,最后用脱细胞真皮基质膜进行覆盖。实验组相对于对照组额外使用Er:YAG激光对种植体表面及周围组织进行清创。术后6个月进行临床再次评估。结果显示实验组相对于对照组,牙周探诊深度显著减少。这项研究揭示种植体周围炎的再生治疗中,Er:YAG激光诊疗提供了额外的临床获益。这两项研究中,患者病损部位的基线水平不一致,并且王鸿烈团队使用Er:YAG激光时,不仅仅局限于种植体表面的清创(能量参数设置为50mJ/pulse、25Hz),还利用激光进行种植体周围肉芽组织的清除。此外,低能量激光(30mJ/pulse)的光生物调节作用也应用种植体周围组织的处理。基于目前有限的信息,没有足够证据表明激光治疗种植体周围炎比传统方式在疗效上更有优势。现有的研究存在研究样本较少、随访时间较短、患者病损部位的基线水平不一致、患者种植体种类不一致、以及具体术式不一致的问题。因此,还需要大量高质量的临床研究揭示这一问题。

  • 5 结语与展望

  • Er:YAG激光凭借其独特的物理特性可以弥补传统治疗方式的不足,有其独特的优势和价值。在适当参数设置和操作规程下对种植体及种植体周围组织不会产生明显损害。临床上Er:YAG激光治疗种植体周围炎也可以取得一定治疗效果。但是现有的证据无法说明Er:YAG激光是否可以替代传统的治疗方式。此外,一项评估各种非手术方法治疗种植体周围炎的成本效益研究指出,选择Er: YAG激光单一疗法治疗种植体周围炎相对于喷砂、机械清创以及机械清创联合抗生素这三种非手术治疗方法,并不是一个更有经济价值的治疗策略[41]。在临床制定方案的时候,需要针对种植体的表面类型、Er:YAG激光的物理特性、患者经济情况进行综合考量,以获得较为满意的治疗效果。

  • 参考文献

    • [1] POLI P,CICCIU M,BERETTA M,et al.Peri⁃implant mucositis and peri ⁃ implantitis:a current understanding of their diagnosis,clinical implications,and a report of treatment using a combined therapy approach[J].J Oral Implantol,2017,43(1):45-50

    • [2] SALVI G,COSGAREA R,SCULEAN A.Prevalence and mechanisms of Peri ⁃ implant diseases[J].J Dent Res,2017,96(1):31-37

    • [3] XU Z,STEFANIE K,TOBIAS W,et al.Application of totarol as natural antibacterial coating on dental implants for prevention of peri⁃implantitis[J].Mater Sci Eng C Mater Biol Appl,2020,110:110701

    • [4] MATSUBARA V,LEONG B,LEONG M,et al.Cleaning potential of different air abrasive powders and their impact on implant surface roughness[J].Clin Implant Dent Relat Res,2020,22(1):96-104

    • [5] IATROU P,CHAMILOS C,NICKLES K,et al.In vitro efficacy of three different nonsurgical implant surface decontamination methods in three different defect configurations[J].Int J Oral Maxillofac Implants,2021,36(2):271-280

    • [6] CHA J,PAENG K,JUNG U,et al.The effect of five mechanical instrumentation protocols on implant surface topography and roughness:a scanning electron microscope and confocal laser scanning microscope analysis[J].Clin Oral Implants Res,2019,30(6):578-587

    • [7] LARSEN O,ENERSEN M,KRISTOFFERSEN A,et al.Antimicrobial effects of three different treatment modalities on dental implant surfaces[J].J Oral Implantol,2017,43(6):429-436

    • [8] WANG C,ASHNAGAR S,GIANFILIPPO R,et al.Laser⁃ assisted regenerative surgical therapy for peri⁃implantitis:a randomized controlled clinical trial[J].Periodontol,2021,92(3):378-388

    • [9] FENELON T,BAKR M,WALSH L,et al.Effects of lasers and their delivery characteristics on machined and micro⁃ roughened titanium dental implant surfaces[J].Bioengi⁃ neering,2020,7(3):93

    • [10] MONZAVI A,FEKRAZAD R,CHINIPARDAZ Z,et al.Effect of various laser wavelengths on temperature changes during periimplantitis treatment:an in vitro study[J].Implant Dent,2018,27(3):311-316

    • [11] MISISCHIA W P,XENOUDI P,YUKNA R,et al.Bacterial reduction effect of four different dental lasers on titanium surfaces in vitro[J].Lasers Med Sci,2021,36(8):1759-1767

    • [12] ERIKSSON A,ALBREKTSSON T.Temperature threshold levels for heat ⁃induced bone tissue injury:a vital ⁃micro⁃ scopic study in the rabbit[J].J Prosthet Dent,1983,50(1):101-107

    • [13] MATYS J,BOTZENHART U,GEDRANGE T,et al.Ther⁃ modynamic effects after Diode and Er:YAG laser irradia⁃ tion of grade Ⅳ and Ⅴ titanium implants placed in bone ⁃ an ex vivo study.Preliminary report[J].Biomed Tech(Berl),2016,61(5):499-507

    • [14] HAKKI S,TATAR G,DUNDAR N,et al.The effect of different cleaning methods on the surface and temperature of failed titanium implants:an in vitro study[J].Lasers Med Sci,2017,32(3):563-571

    • [15] PASSARELLI P,LEONARDIS M,PICCIRILLO G,et al.The effectiveness of chlorhexidine and air polishing system in the treatment of infected dental implants:an exper⁃ imental in vitro study[J].Antibiotics(Basel),2020,9(4):179

    • [16] PISTILLI R,GENOVA T,CANULLO L,et al.Effect of bioactivation on traditional surfaces and zirconium nitride:adhesion and proliferation of preosteoblastic cells and bacteria[J].Int J Oral Maxillofac Implants,2018,33(6):1247-1254

    • [17] VIITANIEMI L,ABDULMAjEED A,SULAIMAN T,et al.Adhesion and early colonization of s.mutans on lithium disilicate reinforced glass ⁃ ceramics,monolithic zirconia and dual cure resin cement.[J].Eur J Prosthodont Restor Dent,2017,25(4):228-234

    • [18] QIANG W,HE X,ZHANG K,et al.Mussel adhesive mimetic silk sericin prepared by enzymatic oxidation for the construction of antibacterial coatings[J].ACS Biomater Sci Eng,2021,7(7):3379-3388

    • [19] RAJAN A,SIVARAJAN S,VALLABHAN C,et al.An in vitro study to evaluate and compare the hemocompatibility of titanium and zirconia implant materials after sand⁃ blasted and acid⁃etched surface treatment[J].J Contemp Dent Pract,2018,19(12):1448-1454

    • [20] KHOSRAVI N,DACOSTA R,DAVIES J.New insights into spatio ⁃ temporal dynamics of mesenchymal progenitor cell ingress during peri ⁃implant wound healing:Provided by intravital imaging [J].Biomaterials,2021,273:120837

    • [21] NASIRZADE J,KARGARPOUR Z,HASANNIA S,et al.Platelet ⁃ rich fibrin elicits an anti ⁃inflammatory response in macrophages in vitro[J].J Periodontol,2020,91(2):244-252

    • [22] NAKAMURA M,AIZAWA H,KAWABATA H,et al.Platelet adhesion on commercially pure titanium plates in vitro Ⅲ:effects of calcium phosphate⁃blasting on titanium plate biocompatibility[J].Int J Implant Dent,2020,6(1):74

    • [23] ALBREKTSSON T,WENNERBERG A.Oral implant surfaces:Part 1⁃review focusing on topographic and chemical properties of different surfaces and in vivo responses to them[J].Int J Prosthodont,2004,17(5):536-543

    • [24] SHIN S,MIN H,PARK B,et al.The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces:an in vitro study[J].Lasers Med Sci,2011,26(6):767-776

    • [25] SHIN S,LEE E,KIM J,et al.The effect of Er:YAG laser irradiation on hydroxyapatite⁃coated implants and fluoride ⁃modified TiO2⁃blasted implant surfaces:a microstructural analysis[J].Lasers Med Sci,2013,28(3):823-831

    • [26] TAKAGI T,AOKI A,ICHINOSE S,et al.Effective remov⁃ al of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers[J].J Peri⁃ odontol,2018,89(6):680-690

    • [27] TANIGUCHI Y,AOKI A,MIZUTANI K,et al.Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants[J].Lasers Med Sci,2013,28(4):1057-68

    • [28] MATYS J,ROMEO U,MROCZKA K,et al.Temperature changes and sem effects of three different implants ⁃abutment connection during debridement with ER:YAG laser:an ex vivo study[J].Materials(Basel),2019,12(22):3748

    • [29] SAFFARPOUR A,NOZARI A,FEKRAZAD R,et al.Microstructural evaluation of contaminated implant surface treated by laser,photodynamic therapy,and chlorhexidine 2 percent[J].Int J Oral Maxillofac Implants,2018,33(5):1019-1026

    • [30] LI H,SHEN C,RUAN D,et al.Microstructure,mechanical properties,and in vitro behavior of biodegradable Zn⁃ 1Mg ⁃ 0.1Ca and Zn ⁃ 1Mg ⁃ 0.5Ca[J].J Mater Sci Mater Med,2020,31(10):88

    • [31] 汤泽华,朱文卿,邱憬.Ag_2S@BSA存储液对纯钛表面成骨细胞行为的影响[J].南京医科大学学报(自然科学版),2021,41(5):670-676

    • [32] BAI L,ZHAO Y,CHEN P,et al.Targeting early healing phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration[J].Small,2021,17(4):e2006287

    • [33] AYOBIAN⁃MARKAZI N,KARIMI M,SAFAR⁃HAjHOS⁃ SEINI A.Effects of Er:YAG laser irradiation on wettability,surface roughness,and biocompatibility of SLA titanium surfaces:an in vitro study[J].Lasers Med Sci,2015,30(2):561-566

    • [34] PARK S,KIM O,CHUNG H,et al.Effect of a Er,Cr:YS⁃ GG laser and a Er:YAG laser treatment on oral biofilm ⁃ contaminated titanium[J].J Appl Oral Sci,2020,28:e20200528

    • [35] ALMOHARIB H,STEFFENSEN B,ZOUKHRI D,et al.Efficacy of an Er:YAG laser in the decontamination of dental implant surfaces:an in vitro study[J].J Periodontol,2021,undefined:undefined

    • [36] WEHNER C,LAKY M,SHOKOOHI ⁃ TABRIZI H,et al.Effects of Er:YAG laser irradiation of different titanium surfaces on osteoblast response[J].J Mater Sci Mater Med,2021,32(3):22

    • [37] GIANNELLI M,BANI D,TANI A,et al.Effects of an Er⁃ bium:yttrium⁃aluminum⁃garnet laser and ultrasonic scaler on titanium dioxide ⁃coated titanium surfaces contaminated with subgingival plaque:an in vitro study to assess post ⁃treatment biocompatibility with osteogenic cells[J].J Periodontol,2017,88(11):1211-1220

    • [38] JOHN G,BECKER J,SCHMUCKER A,et al.Non⁃surgical treatment of peri⁃implant mucositis and peri⁃implantitis at two ⁃piece zirconium implants:A clinical follow ⁃up observation after up to 3 years[J].J Clin Periodontol,2017,44(7):756-761

    • [39] CLEM D,GUNSOLLEY J.Peri ⁃implantitis treatment using Er:YAG laser and bone grafting.a prospective consecutive case series evaluation:1 year posttherapy[J].Int J Periodontics Restorative Dent,2019,39(4):479-489

    • [40] SCHWARZ F,JOHN G,SCHMUCKER A,et al.Combined surgical therapy of advanced peri⁃implantitis evaluating two methods of surface decontamination:a 7 ⁃ year follow ⁃ up observation[J].J Clin Periodontol,2017,44(3):337-342

    • [41] LISTL S,FRüHAUF N,DANNEWITZ B,et al.Cost⁃effec⁃ tiveness of non⁃surgical peri⁃implantitis treatments[J].J Clin Periodontol,2015,42(5):470-477

  • 参考文献

    • [1] POLI P,CICCIU M,BERETTA M,et al.Peri⁃implant mucositis and peri ⁃ implantitis:a current understanding of their diagnosis,clinical implications,and a report of treatment using a combined therapy approach[J].J Oral Implantol,2017,43(1):45-50

    • [2] SALVI G,COSGAREA R,SCULEAN A.Prevalence and mechanisms of Peri ⁃ implant diseases[J].J Dent Res,2017,96(1):31-37

    • [3] XU Z,STEFANIE K,TOBIAS W,et al.Application of totarol as natural antibacterial coating on dental implants for prevention of peri⁃implantitis[J].Mater Sci Eng C Mater Biol Appl,2020,110:110701

    • [4] MATSUBARA V,LEONG B,LEONG M,et al.Cleaning potential of different air abrasive powders and their impact on implant surface roughness[J].Clin Implant Dent Relat Res,2020,22(1):96-104

    • [5] IATROU P,CHAMILOS C,NICKLES K,et al.In vitro efficacy of three different nonsurgical implant surface decontamination methods in three different defect configurations[J].Int J Oral Maxillofac Implants,2021,36(2):271-280

    • [6] CHA J,PAENG K,JUNG U,et al.The effect of five mechanical instrumentation protocols on implant surface topography and roughness:a scanning electron microscope and confocal laser scanning microscope analysis[J].Clin Oral Implants Res,2019,30(6):578-587

    • [7] LARSEN O,ENERSEN M,KRISTOFFERSEN A,et al.Antimicrobial effects of three different treatment modalities on dental implant surfaces[J].J Oral Implantol,2017,43(6):429-436

    • [8] WANG C,ASHNAGAR S,GIANFILIPPO R,et al.Laser⁃ assisted regenerative surgical therapy for peri⁃implantitis:a randomized controlled clinical trial[J].Periodontol,2021,92(3):378-388

    • [9] FENELON T,BAKR M,WALSH L,et al.Effects of lasers and their delivery characteristics on machined and micro⁃ roughened titanium dental implant surfaces[J].Bioengi⁃ neering,2020,7(3):93

    • [10] MONZAVI A,FEKRAZAD R,CHINIPARDAZ Z,et al.Effect of various laser wavelengths on temperature changes during periimplantitis treatment:an in vitro study[J].Implant Dent,2018,27(3):311-316

    • [11] MISISCHIA W P,XENOUDI P,YUKNA R,et al.Bacterial reduction effect of four different dental lasers on titanium surfaces in vitro[J].Lasers Med Sci,2021,36(8):1759-1767

    • [12] ERIKSSON A,ALBREKTSSON T.Temperature threshold levels for heat ⁃induced bone tissue injury:a vital ⁃micro⁃ scopic study in the rabbit[J].J Prosthet Dent,1983,50(1):101-107

    • [13] MATYS J,BOTZENHART U,GEDRANGE T,et al.Ther⁃ modynamic effects after Diode and Er:YAG laser irradia⁃ tion of grade Ⅳ and Ⅴ titanium implants placed in bone ⁃ an ex vivo study.Preliminary report[J].Biomed Tech(Berl),2016,61(5):499-507

    • [14] HAKKI S,TATAR G,DUNDAR N,et al.The effect of different cleaning methods on the surface and temperature of failed titanium implants:an in vitro study[J].Lasers Med Sci,2017,32(3):563-571

    • [15] PASSARELLI P,LEONARDIS M,PICCIRILLO G,et al.The effectiveness of chlorhexidine and air polishing system in the treatment of infected dental implants:an exper⁃ imental in vitro study[J].Antibiotics(Basel),2020,9(4):179

    • [16] PISTILLI R,GENOVA T,CANULLO L,et al.Effect of bioactivation on traditional surfaces and zirconium nitride:adhesion and proliferation of preosteoblastic cells and bacteria[J].Int J Oral Maxillofac Implants,2018,33(6):1247-1254

    • [17] VIITANIEMI L,ABDULMAjEED A,SULAIMAN T,et al.Adhesion and early colonization of s.mutans on lithium disilicate reinforced glass ⁃ ceramics,monolithic zirconia and dual cure resin cement.[J].Eur J Prosthodont Restor Dent,2017,25(4):228-234

    • [18] QIANG W,HE X,ZHANG K,et al.Mussel adhesive mimetic silk sericin prepared by enzymatic oxidation for the construction of antibacterial coatings[J].ACS Biomater Sci Eng,2021,7(7):3379-3388

    • [19] RAJAN A,SIVARAJAN S,VALLABHAN C,et al.An in vitro study to evaluate and compare the hemocompatibility of titanium and zirconia implant materials after sand⁃ blasted and acid⁃etched surface treatment[J].J Contemp Dent Pract,2018,19(12):1448-1454

    • [20] KHOSRAVI N,DACOSTA R,DAVIES J.New insights into spatio ⁃ temporal dynamics of mesenchymal progenitor cell ingress during peri ⁃implant wound healing:Provided by intravital imaging [J].Biomaterials,2021,273:120837

    • [21] NASIRZADE J,KARGARPOUR Z,HASANNIA S,et al.Platelet ⁃ rich fibrin elicits an anti ⁃inflammatory response in macrophages in vitro[J].J Periodontol,2020,91(2):244-252

    • [22] NAKAMURA M,AIZAWA H,KAWABATA H,et al.Platelet adhesion on commercially pure titanium plates in vitro Ⅲ:effects of calcium phosphate⁃blasting on titanium plate biocompatibility[J].Int J Implant Dent,2020,6(1):74

    • [23] ALBREKTSSON T,WENNERBERG A.Oral implant surfaces:Part 1⁃review focusing on topographic and chemical properties of different surfaces and in vivo responses to them[J].Int J Prosthodont,2004,17(5):536-543

    • [24] SHIN S,MIN H,PARK B,et al.The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces:an in vitro study[J].Lasers Med Sci,2011,26(6):767-776

    • [25] SHIN S,LEE E,KIM J,et al.The effect of Er:YAG laser irradiation on hydroxyapatite⁃coated implants and fluoride ⁃modified TiO2⁃blasted implant surfaces:a microstructural analysis[J].Lasers Med Sci,2013,28(3):823-831

    • [26] TAKAGI T,AOKI A,ICHINOSE S,et al.Effective remov⁃ al of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers[J].J Peri⁃ odontol,2018,89(6):680-690

    • [27] TANIGUCHI Y,AOKI A,MIZUTANI K,et al.Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants[J].Lasers Med Sci,2013,28(4):1057-68

    • [28] MATYS J,ROMEO U,MROCZKA K,et al.Temperature changes and sem effects of three different implants ⁃abutment connection during debridement with ER:YAG laser:an ex vivo study[J].Materials(Basel),2019,12(22):3748

    • [29] SAFFARPOUR A,NOZARI A,FEKRAZAD R,et al.Microstructural evaluation of contaminated implant surface treated by laser,photodynamic therapy,and chlorhexidine 2 percent[J].Int J Oral Maxillofac Implants,2018,33(5):1019-1026

    • [30] LI H,SHEN C,RUAN D,et al.Microstructure,mechanical properties,and in vitro behavior of biodegradable Zn⁃ 1Mg ⁃ 0.1Ca and Zn ⁃ 1Mg ⁃ 0.5Ca[J].J Mater Sci Mater Med,2020,31(10):88

    • [31] 汤泽华,朱文卿,邱憬.Ag_2S@BSA存储液对纯钛表面成骨细胞行为的影响[J].南京医科大学学报(自然科学版),2021,41(5):670-676

    • [32] BAI L,ZHAO Y,CHEN P,et al.Targeting early healing phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration[J].Small,2021,17(4):e2006287

    • [33] AYOBIAN⁃MARKAZI N,KARIMI M,SAFAR⁃HAjHOS⁃ SEINI A.Effects of Er:YAG laser irradiation on wettability,surface roughness,and biocompatibility of SLA titanium surfaces:an in vitro study[J].Lasers Med Sci,2015,30(2):561-566

    • [34] PARK S,KIM O,CHUNG H,et al.Effect of a Er,Cr:YS⁃ GG laser and a Er:YAG laser treatment on oral biofilm ⁃ contaminated titanium[J].J Appl Oral Sci,2020,28:e20200528

    • [35] ALMOHARIB H,STEFFENSEN B,ZOUKHRI D,et al.Efficacy of an Er:YAG laser in the decontamination of dental implant surfaces:an in vitro study[J].J Periodontol,2021,undefined:undefined

    • [36] WEHNER C,LAKY M,SHOKOOHI ⁃ TABRIZI H,et al.Effects of Er:YAG laser irradiation of different titanium surfaces on osteoblast response[J].J Mater Sci Mater Med,2021,32(3):22

    • [37] GIANNELLI M,BANI D,TANI A,et al.Effects of an Er⁃ bium:yttrium⁃aluminum⁃garnet laser and ultrasonic scaler on titanium dioxide ⁃coated titanium surfaces contaminated with subgingival plaque:an in vitro study to assess post ⁃treatment biocompatibility with osteogenic cells[J].J Periodontol,2017,88(11):1211-1220

    • [38] JOHN G,BECKER J,SCHMUCKER A,et al.Non⁃surgical treatment of peri⁃implant mucositis and peri⁃implantitis at two ⁃piece zirconium implants:A clinical follow ⁃up observation after up to 3 years[J].J Clin Periodontol,2017,44(7):756-761

    • [39] CLEM D,GUNSOLLEY J.Peri ⁃implantitis treatment using Er:YAG laser and bone grafting.a prospective consecutive case series evaluation:1 year posttherapy[J].Int J Periodontics Restorative Dent,2019,39(4):479-489

    • [40] SCHWARZ F,JOHN G,SCHMUCKER A,et al.Combined surgical therapy of advanced peri⁃implantitis evaluating two methods of surface decontamination:a 7 ⁃ year follow ⁃ up observation[J].J Clin Periodontol,2017,44(3):337-342

    • [41] LISTL S,FRüHAUF N,DANNEWITZ B,et al.Cost⁃effec⁃ tiveness of non⁃surgical peri⁃implantitis treatments[J].J Clin Periodontol,2015,42(5):470-477