en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

刘苏,E⁃mail:nfmkls@163.com

中图分类号:R587.2

文献标识码:A

文章编号:1007-4368(2022)01-014-09

DOI:10.7655/NYDXBNS20220103

参考文献 1
MENON M C,ROSS M J.Epithelial⁃to⁃mesenchymal tran⁃ sition of tubular epithelial cells in renal fibrosis:a new twist on an old tale[J].Kidney Int,2016,89(2):263-266
参考文献 2
ZHAO Y,YIN Z,LI H,et al.MiR ⁃30c protects diabetic nephropathy by suppressing epithelial ⁃ to ⁃ mesenchymal transition in db/db mice[J].Aging Cell,2017,16(2):387-400
参考文献 3
WONG G L,ABU JALBOUSH S,LO H W.Exosomal mi⁃ croRNAs and organotropism in breast cancer metastasis[J].Cancers,2020,12(7):1827
参考文献 4
黄颖,李锐钊,梁馨苓.外泌体在糖尿病肾病中的研究进展[J].中华肾脏病杂志,2020,36(7):568-572
参考文献 5
CHEN M,CHEN C,LUO H,et al.MicroRNA⁃296⁃5p in⁃ hibits cell metastasis and invasion in nasopharyngeal car⁃ cinoma by reversing transforming growth factor ⁃ β ⁃ in⁃ duced epithelial⁃mesenchymal transition[J].Cell Mol Bi⁃ ol Lett,2020,25(1):49
参考文献 6
KUPPE C,IBRAHIM M M,KRANZ J,et al.Decoding myofibroblast origins in human kidney fibrosis[J].Na⁃ ture,2021,589(7841):281-286
参考文献 7
LOVISA S,LEBLEU V S,TAMPE B,et al.Epithelial⁃to⁃ mesenchymal transition induces cell cycle arrest and pa⁃ renchymal damage in renal fibrosis[J].Nat Med,2015,21(9):998-1009
参考文献 8
GRANDE M T,SÁNCHEZ⁃LAORDEN B,LÓPEZ⁃BLAU C,et al.Snail1⁃induced partial epithelial ⁃to ⁃mesenchy⁃ mal transition drives renal fibrosis in mice and can be tar⁃ geted to reverse established disease[J].Nat Med,2015,21(9):989-997
参考文献 9
LI J,QU J,SHI Y,et al.Nicotinic acid inhibits glioma in⁃ vasion by facilitating Snail1 degradation[J].Sci Rep,2017,7:43173
参考文献 10
VILLAREJO A,CORTÉS⁃CABRERA A,MOLINA⁃ORTÍZ P,et al.Differential role of Snail1 and Snail2 zinc fingers in E ⁃ cadherin repression and epithelial to mesenchymal transition[J].J Biol Chem,2014,289(2):930⁃941
参考文献 11
OHNUKI K,UMEZONO T,ABE M,et al.Expression of transcription factor Snai1 and tubulointerstitial fibrosis in progressive nephropathy[J].J Nephrol,2012,25(2):233 ⁃239
参考文献 12
QI R,WANG J,JIANG Y,et al.Snai1⁃induced partial ep⁃ ithelial⁃mesenchymal transition orchestrates p53⁃p21⁃me⁃ diated G2/M arrest in the progression of renal fibrosis via NF⁃κB⁃mediated inflammation[J].Cell Death Dis,2021,12(1):44
参考文献 13
LI Y,HU Q,LI C,et al.PTEN⁃induced partial epithelial⁃ mesenchymal transition drives diabetic kidney disease[J].J Clin Invest,2019,129(3):1129-1151
参考文献 14
WANG Y,LIU Y,ZHANG L,et al.miR⁃30b⁃5p modulate renal epithelial ⁃ mesenchymal transition in diabetic ne⁃ phropathy by directly targeting SNAI1[J].Biochem Bio⁃ phys Res Commun,2021,535:12-18
参考文献 15
杨章元,周正菊.血清外泌体中miR⁃125a⁃3p、miR⁃192、 miR⁃223联合检测对早期结直肠癌的诊断价值[J].国际检验医学杂志,2020,41(24):3059-3061
参考文献 16
THOMOU T,MORI M A,DREYFUSS J M,et al.Adipose⁃ derived circulating miRNAs regulate gene expression in other tissues[J].Nature,2017,542(7642):450-455
参考文献 17
袁雯,郑美丽,韩瑞娟,等.急性心肌梗死患者血浆外泌体mRNA表达谱分析[J].中国动脉硬化杂志,2020,28(10):882-889
参考文献 18
刘青.糖尿病肾病系膜细胞源外泌体促进足细胞损伤的机制及小檗碱的作用[D].合肥:安徽医科大学,2020
目录contents

    摘要

    目的:明确miR⁃296⁃5p在糖尿病肾病(diabetic nephropathy,DN)db/db小鼠血浆外泌体中的表达并初探其在转录因子Snail1介导的上皮⁃间充质转化(epithelial⁃mesenchymal transition,EMT)中的作用。方法:先后采集12只12周龄db/db小鼠 (模型组)和12只12周龄db/m小鼠(对照组)血浆,提取外泌体RNA进行测序,利用生物信息学软件筛选靶向Snail1的差异 miRNA;利用透视电镜、纳米颗粒跟踪分析鉴定外泌体;并通过小鼠肾组织及血浆外泌体验证获得目标miRNA,双荧光素酶实验明确其与Snail1的靶向关系,RT⁃qPCR和免疫组化检测db/db小鼠和db/m小鼠肾组织中Snail1、钙黏附蛋白(E⁃cadherin) 和α⁃平滑肌肌动蛋白(α⁃smooth muscle actin,α⁃SMA)基因和蛋白的表达。结果:miR⁃296⁃5p在db/db小鼠血浆外泌体及肾组织中表达下调(P =0.011,P =0.001);双荧光素酶实验证实miR⁃296⁃5p与Snail1的靶向关系;db/db小鼠肾组织中Snail1 mRNA 和蛋白表达显著升高(P < 0.001,P =0.005),E⁃cadherin mRNA 和蛋白表达降低(P =0.012,P =0.020),α⁃SMA mRNA 表达增加 (P =0.042)。结论:miR⁃296⁃5p在db/db小鼠血浆外泌体中低表达,进而可能通过血浆外泌体递送,靶向上调肾小管上皮细胞 Snail1,诱导肾小管上皮细胞EMT,加速DN肾间质纤维化。

    Abstract

    Objective:To investigate the expression of miR ⁃296⁃5p in plasma exosomes of db/db mice with diabetic nephropathy (DN)and explore its role in Snail1⁃mediated epithelial⁃mesenchymal transition. Methods:The plasma of 1212⁃week⁃old db/db mice (Model group)and 1212⁃week⁃old db/m mice(Control group)were collected successively,and plasma exosomal RNA was extracted and sequenced. The differential miRNAs targeting Snail1 were summarized by bioinformatics software. Exosomes were identified with transmission electron microscopy and nanoparticle tracking analyzer. The objective miRNA was obtained by screening using kidney tissues and plasma exosomes in db/db mice. The targeting relationship between miR ⁃ 296 ⁃ 5p and Snail1 was verified by double luciferase experiment. The expression of Snail1,E ⁃ cadherin(E ⁃ cadherin),and α⁃ smooth muscle actin(α⁃ SMA)were detected in kidney tissues of db/db mice and db/m mice by RT⁃qPCR and immunohistochemistry. Results:The miR⁃296⁃5p was significantly down⁃ regulated in plasma exosomes and kidney of db/db mice,respectively(P =0.011;P =0.001). The miR ⁃ 296 ⁃ 5p and Snail1 showed a targeted negative regulation relationship in double luciferase experiment. The gene and protein expression of Snail1 in kidney tissue of db/db mice increased significantly respectively(P < 0.001;P =0.005). However,the mRNA and protein expression of E ⁃ cadherin decreased significantly(P =0.012;P =0.020),while the mRNA expression of α ⁃ SMA up ⁃ regulated(P =0.042). Conclusion:The expression of miR⁃296⁃5p is down⁃regulated in plasma exosomes of db/db mice,which may be delivered to renal tubular epithelial cells by plasma exosomes,targeting up⁃regulated expression of Snail1,and inducing EMT of renal tubular epithelial cells and accelerating renal interstitial fibrosis of DN.

  • 肾间质纤维化是糖尿病肾病(diabetic nephropa⁃ thy,DN)进展至终末期肾病的主要病理途径,转录因子Snail1介导的肾小管上皮细胞⁃间充质转化(ep⁃ ithelial⁃mesenchymal transition,EMT)通过旁分泌等作用,促进肌成纤维细胞的募集或增殖,是加速肾间质纤维化的重要环节之一[1]。Snail1受到多种微小核糖核酸(miRNA,miR)的调控[2],血浆/血清外泌体包裹的miRNA具有高稳定性、源细胞特征及靶向功能性[3],是体内各组织/器官间细胞通讯的新途径[4],血浆外泌体miR⁃296⁃5p与肿瘤细胞的EMT相关[5],目前尚无miR⁃296⁃5p在DN血浆外泌体中表达及对肾小管上皮细胞EMT影响的相关研究,因此,本研究拟通过DN小鼠模型,利用外泌体RNA测序及生物信息学分析等手段,明确miR⁃296⁃5p在DN小鼠血浆外泌体中的表达变化,并进一步探索其参与糖尿病肾病EMT进程的可能机制。

  • 1 材料和方法

  • 1.1 材料

  • 动物:10周龄SPF级健康雄性db/db小鼠12只,雄性db/m小鼠12只,体重20~45g,由南京大学实验动物中心提供[动物许可证号:SCXK(苏):2018⁃ 0008]。

  • 主要试剂:exoRNeasy Midi Kit(Qiagen公司,美国);miRNA 1st Strand cDNA Synthesis Kit(by stem⁃ loop)、miRNA Universal SYBR qPCR Master Mix(南京诺唯赞生物);Snail1野生型双荧光素酶报告质粒、Snail1突变型双荧光素酶报告质粒(安徽通用生物);miR⁃296mimics、NC(苏州吉玛基因);293T细胞(ATCC,美国);LipofectamineTM 2000(Invitrogen公司,美国);DMEM高糖、FBS(Hyclone公司,美国); 青链双抗(上海生工生物);双荧光检测试剂盒(Pro⁃ mega公司,美国);苏木素⁃伊红染液试剂盒(南京凯基生物)。

  • 主要仪器:荧光定量PCR仪(ABI7300)、细胞培养箱(Thermo)、荧光倒置显微镜(OLYMPUS,IX71)、超净工作台(苏州安泰科技有限公司)、低温冷冻离心机 (Sigma3K15)、脱色摇床(海门市其林贝尔TS200A)、发光检测仪(Molecular Devices SpectraMax®i3)、超速离心机(Himac CP80WX)、透视电子显微镜(Tec⁃ nai)、ZetaView Particle Metrix(Particle Metrix)。

  • 1.2 方法

  • 1.2.1 分组及取样

  • 首先选取6只10周龄db/db小鼠为模型组,6只10周龄db/m小鼠为对照组,在南京医科大学实验动物中心适应性喂养2周,麻醉后对小鼠行眼眶采血致死,血浆混样后行外泌体RNA测序及生化检测。完成差异miRNA筛选后,再次选取6只10周龄db/db小鼠为模型组,6只10周龄db/m小鼠为对照组,重复上述饲养及处死流程,血浆混样后行外泌体鉴定及外泌体miRNA验证。24h尿液标本利用代谢笼收集。肾组织标本部分冻存于液氮中,用于RNA和蛋白提取;部分保存于多聚甲醛,包埋后用于Masson染色及免疫组化。动物实验按照南京医科大学实验动物福利伦理委员会规定进行操作,伦理批件编号:IACUC⁃2103058。

  • 1.2.2 小鼠生化指标检测

  • 血、尿标本送南京润太医学检验有限公司实验室,测定血尿素(BUN)、血肌酐(Scr)、血胱抑素C (Cys⁃C)、空腹血糖(FBG)、24h尿蛋白定量(Upro)。

  • 1.2.3 小鼠血浆外泌体miRNA测序

  • 分别取2mL db/m组和db/db组小鼠血浆,送上海其明生物技术有限公司进行血浆外泌体miRNA测序,并利用生物信息学软件进行分析。按|log2 FC| 值由高到低进行验证。

  • 1.2.4 血浆外泌体提取

  • 分别取2mL db/m组和db/db组小鼠血浆,采用差速超速离心法,予300g,4℃离心10min;取上清液,2 000 g 4℃离心10min,12 000 g 4℃离心30min; 120 000 g 4℃离心70min,取透明沉淀重悬于PBS,所得即为外泌体溶液;取其中20 μL,加入PBS后再次120 000 g 4℃离心70min,取透明沉淀重悬于PBS,所得即为电镜使用。

  • 1.2.5 透视电子显微镜及纳米颗粒跟踪分析 (nanoparticle tracking analyze,NTA)鉴定外泌体

  • 外泌体样本静置于铜网上1min,2%醋酸双氧铀染色液室温染色1min,将染色完成的样本放于灯下烤10min,透射电镜观察拍照,保存图片。外泌体样本以1×PBS buffer稀释,使用ZetaView PMX110进行NTA,结合Stockes⁃Einstein方程式计算外泌体粒径和浓度。

  • 1.2.6 小鼠血浆外泌体RNA提取

  • 使用QIAGEN exoRNeasy Midi Kit试剂盒直接提取血浆外泌体RNA,步骤为:加等体积Buffer XBP到样品中,500 g离心1min;5 000 g离心1min,将离心柱转移到新的收集管中,加700 μL QIAzol到膜上,5 000 g离心5min,收集裂解液,室温孵育5min; 加入90 μL氯仿,震荡15s,室温孵育2~3min,4℃12 000g离心15min;转移上层水相到新的离心管中,加入2倍体积的无水乙醇,颠倒混匀;转移混合样品到离心柱中,放入2mL收集管中,室温,> 8 000 g 离心15s;加700 μL Buffer RWT到离心柱中,>8 000 g 离心15s;加500 μL Buffer RPE到离心柱中,>8 000 g 离心15s,重复这一步骤;将离心柱转移到新的收集管中,开盖全速离心5min使膜晾干;将离心柱放入新的1.5mL离心管中,加14 μL水到膜中央,室温放置1min,全速离心1min,获得的RNA放-80℃冰箱备用,行血浆外泌体miRNA验证。

  • 1.2.7 实时定量qPCR(RT⁃qPCR)检测

  • 外泌体RNA提取、逆转录及荧光定量PCR反应体系及程序参照试剂说明书,miR ⁃296⁃5p和Snail1mRNA的表达情况用2-ΔΔCt方法进行相对定量分析,分别以U6和GAPDH为内参,引物序列见表1。

  • 表1 用于RT⁃qPCR的引物序列

  • Table1 Primer sequences for RT⁃qPCR

  • 1.2.8 生物信息学分析

  • 利用TargetScan、miRanda软件,预测靶向Snail1的miRNA,取两种软件预测结果的并集。mmu⁃miR⁃ 296⁃5p成熟体序列来自miRBase数据库。利用Tar⁃ getScan软件预测mmu⁃miR⁃296⁃5p与Snail1的结合位点,根据结合位点碱基序列设计突变型载体序列,突变序列为:5′ ⁃ ACATGTCCAGGTGCCCCT⁃GGGCCTGGGCAACTGTTTCAGCCCCCGCCCCCAT⁃TTGTCCTGGTGACACCTGTTTCACAGCAGTTTAAC⁃TGTCTCAGAAGGGACCATGAATAATGGCCATCAC⁃TTGTTAGGGGCCAAGTGGGGTGCTTCAGCCTGGC⁃CAATGTGTCTCCCAGAACTATTTTCCCCGGGTAC⁃AGGTGGCCCCGGGAGAAAGATGTTTACATTTTAA⁃AGGTATTTATATTGTAAGCAGCATTTTGTATAGTT⁃AATATGTACAGTTTATTGATATTCAATAAAATGG⁃TTAATTTATATACTAAAAA⁃3′(下划线部分为结合位点突变后的基因序列)。

  • 1.2.9 双荧光素酶实验

  • 构建野生型和突变型的Snail1⁃UTR双荧光报告质粒(Snail1⁃WT,Snail1⁃MUT)。将对数生长期的293T细胞以1×105 个/mL接种至24孔培养板,每孔500 μL。将Snail1⁃WT、Snail1⁃MUT与miR⁃296⁃5p mimics和mimics NC按照LipofectamineTM 2000说明书步骤转染至293T细胞,每组实验设置3个重复。培养箱内培养48h后,参照双荧光素酶报告基因检测试剂盒步骤检测荧光素酶活性。

  • 1.2.10 小鼠肾组织病理学检查

  • 肾组织用4%多聚甲醛固定,梯度乙醇脱水,二甲苯透明,浸蜡包埋,4 μm切片,Masson、HE染色后光镜下观察肾组织病理学变化。免疫组化分析小鼠肾组织E⁃cadherin、α⁃SMA及Snail1蛋白表达。定量方法为将每个指标db/m组小鼠的染色面积作为1,db/db组小鼠的染色面积与db/m组小鼠的染色面积的比值即为该指标的相对表达量。

  • 1.3 统计学方法

  • 数据分析采用GraphPad Prism 5软件,计量资料采用均数±标准差(x- ± s)表示,两组间比较采用student⁃t 检验;计数资料采用频数和百分比(%)表示,两组间比较采用χ2 检验。P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 小鼠代谢及生化指标比较

  • 与db/m组比较,db/db组小鼠24h尿蛋白定量、血尿素、血肌酐、血胱抑素C、空腹血糖、体重均升高,其中Upro、FBG、体重升高显著(P=0.003,P< 0.001,P =0.020),符合2型糖尿病肾病小鼠临床表现(表2)。

  • 表2 小鼠尿蛋白、肾功能、血糖及体重比较

  • Table2 Comparison of urine protein,renal function,blood glucose and weight in mice

  • 2.2 小鼠血浆外泌体鉴定

  • 电镜视野下,两组小鼠血浆均可见少量外泌体样结构(图1)。NTA结果显示,db/m组小鼠血浆外泌体的颗粒检测浓度为6.4×107 个/mL,平均粒径132.1nm;db/db组小鼠血浆外泌体的颗粒检测浓度7.7×107 个/mL,平均粒径126.8nm,均符合外泌体分布范围,两组血浆外泌体粒径比较,差异无统计学意义(P=0.890)。

  • 2.3 小鼠血浆外泌体miRNA测序分析及验证

  • db/m组、db/db组小鼠血浆外泌体行miRNA测序,通过TargetScan、MiRanda软件,并集筛选出32个靶向Snail1的差异miRNA,其中17个miRNA表达上调,15个miRNA表达下调(表3)。

  • 按照|log2FC|值由高到低顺序,利用小鼠肾组织行RT⁃qPCR验证,优先检测TargetScan、MiRan⁃ da软件中重复的miRNA。结果显示,与db/m组相比,db/db组小鼠肾组织mmu⁃miR⁃296⁃5p降低, mmu⁃miR⁃34a⁃5p升高(P=0.001,P=0.011),差异有统计学意义(图2)。进一步利用小鼠血浆外泌体行RT⁃qPCR验证,发现db/db组小鼠血浆外泌体中mmu⁃miR⁃296⁃5p表达下降,mmu⁃miR⁃34a⁃5p表达升高(P=0.011,P=0.013),差异有统计学意义(图3)。结合|log2FC|值,选取miR⁃296⁃5p为本研究目标miRNA。

  • 图1 透视电镜及NTA技术鉴定小鼠血浆外泌体

  • Fig.1 Characterization of mouse plasma exosomes by transmission electron microscope and NTA

  • 表3 靶向Snail1的小鼠血浆外泌体差异miRNA

  • Table3 Sequencing results of different plasma exosomal miRNA targeting Snail1

  • 2.4 双荧光素酶实验检测mmu⁃miR⁃296⁃5p与Mus⁃ Snail1的靶向关系

  • TargetScan软件预测mmu⁃miR⁃296⁃5p与Snail1 3′UTR的结合位点位于Snail1 3′UTR区596~603位置(图4)。双荧光素酶报告基因检测实验结果显示:与miR⁃296⁃5p mimics NC组相比,miR⁃296⁃5p mimics组Snail1⁃WT细胞的荧光素酶活性强度明显降低 (P< 0.001);Snail1⁃MUT细胞的荧光素酶活性强度无明显变化(P=0.060);Snail1⁃WT细胞miR⁃296⁃ 5p mimics组与Snail1⁃MUT细胞miR⁃296⁃5p mimics组比较,荧光素酶活性强度差异有统计学意义(P=0.003,图5),证明miR⁃296⁃5p靶向结合Snail1。

  • 图2 RT⁃qPCR验证小鼠肾组织miRNA表达

  • Fig.2 Verification of miRNAs in mouse kidneys by RT⁃qPCR

  • 图3 RT⁃qPCR验证小鼠血浆外泌体miRNA表达

  • Fig.3 Verification of miRNAs in mouse plasma exsomes by RT⁃qPCR

  • 2.5 RT⁃qPCR检测小鼠肾组织EMT相关基因表达水平

  • 与db/m组相比,db/db组小鼠肾组织中E⁃cad⁃ herin mRNA表达下调(P=0.012),α⁃SMA mRNA表达上调(P=0.042),差异有统计学意义;Snail1mRNA表达极度上调(P< 0.001,图6),提示db/db小鼠肾组织存在α⁃SMA阳性肌成纤维细胞增殖及Snail1介导的EMT。

  • 2.6 小鼠肾组织病理切片的观察

  • Masson染色见db/m组小鼠肾小球大小正常,无肾小管扩张、萎缩,细胞外Masson染色阳性面积小于视野面积的10%。db/db组小鼠肾小球、肾间质均见Masson阳性染色,肾小管扩张明显,细胞外Masson染色阳性面积占视野面积的50%左右。HE染色见db/m组小鼠系膜基质无增多,肾小管上皮细胞形态正常;db/db组小鼠肾小球中性粒细胞浸润,系膜基质增多,间质见炎症细胞、浆细胞浸润 (图7)。db/db小鼠肾组织呈现间质炎症、纤维化的病理表现。

  • 图4 Snail1与miR⁃296⁃5p的结合位点序列图

  • Fig.4 Sequence of the binding sites of Snail1and miR⁃296⁃5p

  • 图5 双荧光素酶检测结果

  • Fig.5 Results of dual luciferase assay

  • 图6 RT⁃qPCR检测小鼠肾组织中E⁃cadherin、α⁃SMA及Snail1mRNA表达

  • Fig.6 The mRNA expression of E ⁃ cadherin,α⁃ SMA and Snail1in mouse kidney by RT⁃qPCR

  • 2.7 免疫组化染色观察小鼠肾组织中E⁃cadherin、 α⁃SMA、Snail1蛋白表达水平

  • 与db/m组相比,db/db组小鼠E⁃cadherin蛋白表达量下降,差异具有统计学意义(P=0.020);α⁃SMA蛋白表达量有上升趋势(P=0.152),但无统计学差异;Snail1蛋白表达量明显增加(P=0.005,图8)。

  • 图7 Masson、HE染色观察小鼠肾组织形态学(×100)

  • Fig.7 The morphology of mouse kidney by Masson and HE staining(×100)

  • 图8 免疫组化染色观察小鼠肾组织E⁃cadherin、α⁃SMA、Snail1的表达(×100)

  • Fig.8 The expression of E⁃cadherin,α⁃SMA and Snail1in mouse kidney by immunohistochemical staining(×100)

  • 3 讨论

  • 肾间质纤维化的主要特征是α⁃SMA阳性肌成纤维细胞增殖和细胞外基质过度沉积,是DN肾功能进行性下降的主要原因之一。目前研究显示,肾小管上皮细胞EMT不是肌成纤维细胞的主要来源[6],而是通过诱导上皮细胞周期阻滞[7]、促进肌成纤维细胞分化及维持间质炎症等方式[8],加速肾间质纤维化。因此,明确EMT的调控机制,对防治糖尿病肾病至关重要。

  • EMT的本质是上皮细胞向间充质细胞表型转化的过程,在糖尿病背景下,损伤的肾小管上皮细胞E⁃cadherin表达下调,细胞丧失黏附特性,逐渐从基底膜上脱落,表达α⁃SMA间充质细胞表型,并通过断裂的肾小管基底膜移行到肾间质中。本研究中,12周龄db/db小鼠肾组织病理见间质炎症细胞浸润,Masson染色阳性;肾组织α⁃SMA基因表达增加,蛋白表达有上升趋势,符合早期DN肾小管间质纤维化改变。与此同时,肾组织E⁃cadherin基因和蛋白下调显著,提示在DN肾小管间质病变早期即存在上皮细胞EMT,EMT与间质炎症及肌成纤维细胞增殖相关。本研究免疫组化检测未见α⁃SMA蛋白显著上升,可能和造模时间短、肾间质病变早期纤维化程度不严重有关。

  • E⁃cadherin表达减少或缺失是EMT的标志,受到转录因子Snail1的调节[9]。在肾脏上皮细胞正常分化过程中,低表达的Snail1可维持肾组织结构及内环境稳态;而病理状态下,升高的Snail1与E⁃cad⁃ herin启动子的E2⁃box特异性结合,抑制E⁃cadherin基因的转录,下调E⁃cadherin表达,触发上皮细胞EMT[10]。既往文献报道,Snail1在糖尿病肾病、IgA肾病、微小病变肾病等多种肾脏疾病中均可升高,而在DN时升高显著[11]。肾纤维化小鼠模型[12] 及肾小管上皮细胞EMT模型[13]进一步证实,升高的Snail1可诱导肾小管上皮细胞EMT。本研究db/db小鼠肾组织Snail1基因及蛋白表达显著增加,而E⁃cadherin降低明显,结合文献资料,本研究提出,DN时,肾组织局部Snail1表达增加,通过下调E⁃cadherin,诱导了肾小管上皮细胞EMT。

  • Snail1又受到多种miRNA的靶向调控[214],而血浆或血清中的miRNA发挥调控功能需要外泌体介导。首先,外泌体是循环miRNA的主要存在形式,其特殊的脂质双层膜结构将miRNA与外界核酸酶相隔绝,相比血循环中游离的miRNA,外泌体中的miRNA具有良好的生物稳定性。其次,外泌体由来源细胞主动胞吐释放到细胞外,其包裹的miRNA能够直接反映机体的生理病理状态,在癌症[15]、脂肪营养不良[16]、心血管疾病[17] 等疾病中,循环外泌体miRNA表达谱呈特异性改变,是疾病诊断的新型标志物。本研究通过小鼠血浆外泌体miRNA测序及RT⁃qPCR验证,发现db/db小鼠miRNA在血浆外泌体中呈差异表达,其中miR⁃296⁃5p显著下调,可能是DN潜在的生物标志物。本研究认为,miR⁃296⁃5p在db/db小鼠血浆外泌体表达下降,是在糖尿病背景下,肾脏及肾外组织功能障碍的共同结果。首先,肾脏作为DN的主要病变器官,可能释放富集差异表达miRNA的外泌体[18];其次,脂肪细胞被认为是循环外泌体miRNA的主要来源[16],在高糖背景下,包括肾脏、脂肪在内的胰岛素敏感组织均可出现功能障碍,血浆外泌体miR⁃296⁃5p的来源细胞有待后续研究进一步明确。

  • 目前血浆外泌体miRNA的研究多围绕疾病诊断及病情评估,其靶向调节功能的相关研究甚少,血浆外泌体可通过直接融合胞膜或内陷胞吞、水平转移miRNA等进入靶细胞,调控靶细胞基因。本研究miR⁃296⁃5p在db/db小鼠肾组织中表达下调,与血浆外泌体中表达一致,双荧光素酶检测提示, miR⁃296⁃5p与Snail1存在靶向关系,因此,本研究提出,表达下调的miR⁃296⁃5p可能通过血浆外泌体递送,靶向上调肾小管上皮细胞Snail1,诱导肾小管上皮细胞EMT,加速DN肾间质纤维化。

  • 综上所述,miR⁃296⁃5p在DN db/db小鼠血浆外泌体中表达显著下降,是DN的潜在生物标志物之一。同时,本研究在动物实验水平提出,表达下调的miR⁃296⁃5p可能通过血浆外泌体递送,靶向上调肾小管上皮细胞Snail1,诱导肾小管上皮细胞EMT,加速DN肾间质纤维化,但仍需通过细胞实验及药物干预实验等进一步验证。

  • 参考文献

    • [1] MENON M C,ROSS M J.Epithelial⁃to⁃mesenchymal tran⁃ sition of tubular epithelial cells in renal fibrosis:a new twist on an old tale[J].Kidney Int,2016,89(2):263-266

    • [2] ZHAO Y,YIN Z,LI H,et al.MiR ⁃30c protects diabetic nephropathy by suppressing epithelial ⁃ to ⁃ mesenchymal transition in db/db mice[J].Aging Cell,2017,16(2):387-400

    • [3] WONG G L,ABU JALBOUSH S,LO H W.Exosomal mi⁃ croRNAs and organotropism in breast cancer metastasis[J].Cancers,2020,12(7):1827

    • [4] 黄颖,李锐钊,梁馨苓.外泌体在糖尿病肾病中的研究进展[J].中华肾脏病杂志,2020,36(7):568-572

    • [5] CHEN M,CHEN C,LUO H,et al.MicroRNA⁃296⁃5p in⁃ hibits cell metastasis and invasion in nasopharyngeal car⁃ cinoma by reversing transforming growth factor ⁃ β ⁃ in⁃ duced epithelial⁃mesenchymal transition[J].Cell Mol Bi⁃ ol Lett,2020,25(1):49

    • [6] KUPPE C,IBRAHIM M M,KRANZ J,et al.Decoding myofibroblast origins in human kidney fibrosis[J].Na⁃ ture,2021,589(7841):281-286

    • [7] LOVISA S,LEBLEU V S,TAMPE B,et al.Epithelial⁃to⁃ mesenchymal transition induces cell cycle arrest and pa⁃ renchymal damage in renal fibrosis[J].Nat Med,2015,21(9):998-1009

    • [8] GRANDE M T,SÁNCHEZ⁃LAORDEN B,LÓPEZ⁃BLAU C,et al.Snail1⁃induced partial epithelial ⁃to ⁃mesenchy⁃ mal transition drives renal fibrosis in mice and can be tar⁃ geted to reverse established disease[J].Nat Med,2015,21(9):989-997

    • [9] LI J,QU J,SHI Y,et al.Nicotinic acid inhibits glioma in⁃ vasion by facilitating Snail1 degradation[J].Sci Rep,2017,7:43173

    • [10] VILLAREJO A,CORTÉS⁃CABRERA A,MOLINA⁃ORTÍZ P,et al.Differential role of Snail1 and Snail2 zinc fingers in E ⁃ cadherin repression and epithelial to mesenchymal transition[J].J Biol Chem,2014,289(2):930⁃941

    • [11] OHNUKI K,UMEZONO T,ABE M,et al.Expression of transcription factor Snai1 and tubulointerstitial fibrosis in progressive nephropathy[J].J Nephrol,2012,25(2):233 ⁃239

    • [12] QI R,WANG J,JIANG Y,et al.Snai1⁃induced partial ep⁃ ithelial⁃mesenchymal transition orchestrates p53⁃p21⁃me⁃ diated G2/M arrest in the progression of renal fibrosis via NF⁃κB⁃mediated inflammation[J].Cell Death Dis,2021,12(1):44

    • [13] LI Y,HU Q,LI C,et al.PTEN⁃induced partial epithelial⁃ mesenchymal transition drives diabetic kidney disease[J].J Clin Invest,2019,129(3):1129-1151

    • [14] WANG Y,LIU Y,ZHANG L,et al.miR⁃30b⁃5p modulate renal epithelial ⁃ mesenchymal transition in diabetic ne⁃ phropathy by directly targeting SNAI1[J].Biochem Bio⁃ phys Res Commun,2021,535:12-18

    • [15] 杨章元,周正菊.血清外泌体中miR⁃125a⁃3p、miR⁃192、 miR⁃223联合检测对早期结直肠癌的诊断价值[J].国际检验医学杂志,2020,41(24):3059-3061

    • [16] THOMOU T,MORI M A,DREYFUSS J M,et al.Adipose⁃ derived circulating miRNAs regulate gene expression in other tissues[J].Nature,2017,542(7642):450-455

    • [17] 袁雯,郑美丽,韩瑞娟,等.急性心肌梗死患者血浆外泌体mRNA表达谱分析[J].中国动脉硬化杂志,2020,28(10):882-889

    • [18] 刘青.糖尿病肾病系膜细胞源外泌体促进足细胞损伤的机制及小檗碱的作用[D].合肥:安徽医科大学,2020

  • 参考文献

    • [1] MENON M C,ROSS M J.Epithelial⁃to⁃mesenchymal tran⁃ sition of tubular epithelial cells in renal fibrosis:a new twist on an old tale[J].Kidney Int,2016,89(2):263-266

    • [2] ZHAO Y,YIN Z,LI H,et al.MiR ⁃30c protects diabetic nephropathy by suppressing epithelial ⁃ to ⁃ mesenchymal transition in db/db mice[J].Aging Cell,2017,16(2):387-400

    • [3] WONG G L,ABU JALBOUSH S,LO H W.Exosomal mi⁃ croRNAs and organotropism in breast cancer metastasis[J].Cancers,2020,12(7):1827

    • [4] 黄颖,李锐钊,梁馨苓.外泌体在糖尿病肾病中的研究进展[J].中华肾脏病杂志,2020,36(7):568-572

    • [5] CHEN M,CHEN C,LUO H,et al.MicroRNA⁃296⁃5p in⁃ hibits cell metastasis and invasion in nasopharyngeal car⁃ cinoma by reversing transforming growth factor ⁃ β ⁃ in⁃ duced epithelial⁃mesenchymal transition[J].Cell Mol Bi⁃ ol Lett,2020,25(1):49

    • [6] KUPPE C,IBRAHIM M M,KRANZ J,et al.Decoding myofibroblast origins in human kidney fibrosis[J].Na⁃ ture,2021,589(7841):281-286

    • [7] LOVISA S,LEBLEU V S,TAMPE B,et al.Epithelial⁃to⁃ mesenchymal transition induces cell cycle arrest and pa⁃ renchymal damage in renal fibrosis[J].Nat Med,2015,21(9):998-1009

    • [8] GRANDE M T,SÁNCHEZ⁃LAORDEN B,LÓPEZ⁃BLAU C,et al.Snail1⁃induced partial epithelial ⁃to ⁃mesenchy⁃ mal transition drives renal fibrosis in mice and can be tar⁃ geted to reverse established disease[J].Nat Med,2015,21(9):989-997

    • [9] LI J,QU J,SHI Y,et al.Nicotinic acid inhibits glioma in⁃ vasion by facilitating Snail1 degradation[J].Sci Rep,2017,7:43173

    • [10] VILLAREJO A,CORTÉS⁃CABRERA A,MOLINA⁃ORTÍZ P,et al.Differential role of Snail1 and Snail2 zinc fingers in E ⁃ cadherin repression and epithelial to mesenchymal transition[J].J Biol Chem,2014,289(2):930⁃941

    • [11] OHNUKI K,UMEZONO T,ABE M,et al.Expression of transcription factor Snai1 and tubulointerstitial fibrosis in progressive nephropathy[J].J Nephrol,2012,25(2):233 ⁃239

    • [12] QI R,WANG J,JIANG Y,et al.Snai1⁃induced partial ep⁃ ithelial⁃mesenchymal transition orchestrates p53⁃p21⁃me⁃ diated G2/M arrest in the progression of renal fibrosis via NF⁃κB⁃mediated inflammation[J].Cell Death Dis,2021,12(1):44

    • [13] LI Y,HU Q,LI C,et al.PTEN⁃induced partial epithelial⁃ mesenchymal transition drives diabetic kidney disease[J].J Clin Invest,2019,129(3):1129-1151

    • [14] WANG Y,LIU Y,ZHANG L,et al.miR⁃30b⁃5p modulate renal epithelial ⁃ mesenchymal transition in diabetic ne⁃ phropathy by directly targeting SNAI1[J].Biochem Bio⁃ phys Res Commun,2021,535:12-18

    • [15] 杨章元,周正菊.血清外泌体中miR⁃125a⁃3p、miR⁃192、 miR⁃223联合检测对早期结直肠癌的诊断价值[J].国际检验医学杂志,2020,41(24):3059-3061

    • [16] THOMOU T,MORI M A,DREYFUSS J M,et al.Adipose⁃ derived circulating miRNAs regulate gene expression in other tissues[J].Nature,2017,542(7642):450-455

    • [17] 袁雯,郑美丽,韩瑞娟,等.急性心肌梗死患者血浆外泌体mRNA表达谱分析[J].中国动脉硬化杂志,2020,28(10):882-889

    • [18] 刘青.糖尿病肾病系膜细胞源外泌体促进足细胞损伤的机制及小檗碱的作用[D].合肥:安徽医科大学,2020