en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

周红文,E⁃mail:drhongwenzhou@njmu.edu.cn

中图分类号:R575.5

文献标识码:A

文章编号:1007-4368(2022)02-153-07

DOI:10.7655/NYDXBNS20220201

参考文献 1
CHALASANI N,YOUNOSSI Z,LAVINE J E,et al.The diagnosis and management of nonalcoholic fatty liver dis⁃ ease:practice guidance from the American Association for the Study of Liver Diseases[J].Hepatology,2018,67(1):328-357
参考文献 2
SHEKA A C,ADEYI O,THOMPSON J,et al.Nonalcohol⁃ ic steatohepatitis:a review[J].JAMA,2020,323(12):1175-1183
参考文献 3
周琪,许文立,王莉,等.多氯联苯118诱导大鼠非酒精性脂肪肝病的研究[J].南京医科大学学报(自然科学版),2019,39(5):659-663
参考文献 4
PIERANTONELLI I,SVEGLIATI ⁃ BARONI G.Nonalco⁃ holic fatty liver disease:basic pathogenetic mechanisms in the progression from NAFLD to NASH[J].Transplanta⁃ tion,2019,103(1):1-13
参考文献 5
SCHUPPAN D,SURABATTULA R,WANG X Y.Deter⁃ minants of fibrosis progression and regression in NASH [J].J Hepatol,2018,68(2):238-250
参考文献 6
YOUNOSSI Z M,KOENIG A B,ABDELATIF D,et al.Global epidemiology of nonalcoholic fatty liver disease ⁃ meta ⁃ analytic assessment of prevalence,incidence,and outcomes[J].Hepatology,2016,64(1):73-84
参考文献 7
POVSIC M,WONG O Y,PERRY R,et al.A structured literature review of the epidemiology and disease burden of non ⁃ alcoholic steatohepatitis(NASH)[J].Adv Ther,2019,36(7):1574-1594
参考文献 8
LEPORQ B,LAMBERT S A,RONOT M,et al.Simultane⁃ ous MR quantification of hepatic fat content,fatty acid composition,transverse relaxation time and magnetic sus⁃ ceptibility for the diagnosis of non⁃alcoholic steatohepati⁃ tis[J].NMR Biomed,2017,30(10):doi:10.1002/nbm.3766
参考文献 9
LUUKKONEN P K,ZHOU Y,SADEVIRTA S,et al.He⁃ patic ceramides dissociate steatosis and insulin resistance in patients with non ⁃ alcoholic fatty liver disease[J].J Hepatol,2016,64(5):1167-1175
参考文献 10
SIMON J,OURO A,ALA⁃IBANIBO L,et al.Sphingolip⁃ ids in non⁃alcoholic fatty liver disease and hepatocellular carcinoma:ceramide turnover[J].Int J Mol Sci,2019,21(1):40
参考文献 11
KARTSOLI S,KOSTARA C E,TSIMIHODIMOS V,et al.Lipidomics in non⁃alcoholic fatty liver disease[J].World J Hepatol,2020,12(8):436-450
参考文献 12
SVEGLIATI⁃BARONI G,PIERANTONELLI I,TORQUA⁃ TO P,et al.Lipidomic biomarkers and mechanisms of li⁃ potoxicity in non ⁃ alcoholic fatty liver disease[J].Free Radic Biol Med,2019,144:293-309
参考文献 13
RÉGNIER M,POLIZZI A,GUILLOU H,et al.Sphingolip⁃ id metabolism in non ⁃ alcoholic fatty liver diseases[J].Biochimie,2019,159:9-22
参考文献 14
INOKUCHI J,INAMORI K,KABAYAMA K,et al.Biolo⁃ gy of GM3 ganglioside[J].Prog Mol Biol Transl,2018,156:151-195
参考文献 15
XIA Q S,LU F E,WU F,et al.New role for ceramide in hypoxia and insulin resistance[J].World J Gastroenterol,2020,26(18):2177-2186
参考文献 16
COLOMBINI M.Ceramide Channels[J].Adv Exp Med Bi⁃ ol,2019,1159:33-48
参考文献 17
BELARBI K,CUVELIER E,BONTE M A,et al.Glyco⁃ sphingolipids and neuroinflammation in Parkinson's dis⁃ ease[J].Mol Neurodegener,2020,15(1):59
参考文献 18
LAM S M,WANG R,MIAO H,et al.An integrated meth⁃ od for direct interrogation of sphingolipid homeostasis in the heart and brain tissues of mice through postnatal de⁃ velopment up to reproductive senescence[J].Anal Chim Acta,2018,1037:152-158
参考文献 19
KOMATSUYA K,KANEKO K,KASAHARA K.Function of Platelet glycosphingolipid microdomains/lipid rafts[J].Int J Mol Sci,2020,21(15):5539
参考文献 20
DAM D H M,PALLER A S.Gangliosides in diabetic wound healing[J].Prog Mol Biol Transl Sci,2018,156:229-239
参考文献 21
SHIMIZU T,NAGANE M,SUZUKI M,et al.Tumor hy⁃ poxia regulates ganglioside GM3 synthase,which contrib⁃ utes to oxidative stress resistance in malignant melanoma [J].Biochim Biophys Acta Gen Subj,2020,1864(12):129723
参考文献 22
LALAZAR G,ZIGMOND E,WEKSLER ⁃ ZANGEN S,et al.Oral administration of beta ⁃ glucosylceramide for the treatment of insulin resistance and nonalcoholic steato⁃ hepatitis:results of a double⁃blind,placebo⁃controlled tri⁃ al[J].J Med Food,2017,20(5):458-464
参考文献 23
PARK J,KWAK C H,HA S H,et al.Ganglioside GM3 suppresses lipopolysaccharide ⁃ induced inflammatory re⁃ sponses in rAW 264.7 macrophage cells through NF⁃kap⁃ paB,AP ⁃ 1,and MAPKs signaling[J].J Cell Biochem,2018,119(1):1173-1182
参考文献 24
LOMBARDO E,VAN ROOMEN C P,VAN PUIJVELDE G H,et al.Correction of liver steatosis by a hydrophobic iminosugar modulating glycosphingolipids metabolism [J].PLoS One,2012,7(10):e38520
参考文献 25
LOFT A,ALFARO A J,SCHMIDT S F,et al.Liver⁃fibro⁃ sis ⁃ activated transcriptional networks govern hepatocyte reprogramming and intra⁃hepatic communication[J].Cell Metab,2021,33(8):1685-1700 e9
参考文献 26
LEE S M,PUSEC C M,NORRIS G H,et al.Hepatocyte⁃ specific loss of PPARgamma protects mice from NASH and increases the therapeutic effects of rosiglitazone in the liver[J].Cell Mol Gastroenterol Hepatol,2021,11(5):1291-1311
参考文献 27
XU H,ZHAO Q,SONG N,et al.AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum ⁃mitochondria axis[J].Nat Commun,2020,11(1):5807
参考文献 28
XIONG X,WANG Q,WANG S,et al.Mapping the molec⁃ ular signatures of diet ⁃induced NASH and its regulation by the hepatokine Tsukushi[J].Mol Metab,2019,20:128-137
参考文献 29
ZHENG C P,TERRENI M,SOLLOGOUB M,et al.Gan⁃ glioside GM3 and its role in cancer[J].Curr Med Chem,2019,26(16):2933-2947
参考文献 30
ZHENG C,GUAN H,LIU Y,et al.Chemoenzymatically synthesized ganglioside GM3 analogues with inhibitory ef⁃ fects on tumor cell growth and migration[J].Eur J Med Chem,2019,165:107-114
参考文献 31
ZHENG C,HUANG R,BAVARO T,et al.Design,synthe⁃ sis and biological evaluation of new ganglioside GM3 ana⁃ logues as potential agents for cancer therapy[J].Eur J Med Chem,2020,189:112065
参考文献 32
OHMI Y,KAMBE M,OHKAWA Y,et al.Differential roles of gangliosides in malignant properties of melanomas [J].PLoS One,2018,13(11):e0206881
参考文献 33
MIYAGI T,TAKAHASHI K,YAMAMOTO K,et al.Bio⁃ logical and pathological roles of ganglioside sialidases [J].Prog Mol Biol Transl,2018,156:121-150
参考文献 34
NAGAFUKU M,SATO T,SATO S,et al.Control of ho⁃ meostatic and pathogenic balance in adipose tissue by ganglioside GM3[J].Glycobiology,2015,25(3):303-318
目录contents

    摘要

    目的:探究高脂高糖饮食诱导的非酒精性脂肪肝炎(non⁃alcoholic steatohepatitis,NASH)小鼠模型较对照组肝脏内单唾液酸神经节苷脂 3(monosialodihexosylganglioside,GM3)等鞘糖脂的变化。方法:16只6周龄C57BL/6J小鼠随机分为对照组和模型组,每组8只,对照组喂普通饲料,正常饮水;模型组喂高脂饲料,含糖饮水(23.1 g/L蔗糖+18.9 g/L葡萄糖)。检测两组小鼠血清生化指标丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天门冬氨酸氨基转移酶(aspartate aminotransferase, AST),采用HE染色观察两组小鼠肝脏组织病理变化。使用Exion UPLC⁃QTRAP 6500 PLUS(Sciex)液质联用仪,以电喷雾电离 (ESI)模式进行脂质组学分析。采用独立样本t检验、曼⁃惠特尼检验进行组间差异的统计学分析。结果:①高脂高糖饮食喂养 7个月组小鼠较普通饲料喂养组ALT、AST水平显著升高(P < 0.05)。②模型组较对照组显著降低的指标有肝脏内总GM3(P = 0.016)及GM3 d18:1/20:0(P =0.005)、GM3 d18:1/22:0(P =0.004)、GM3 d18:1/24:0(P =0.004)和GM3 d18:1/26:0(P =0.042),总神经酰胺、总乳糖神经酰胺等显著升高(P < 0.05)。结论:高脂高糖饮食喂养的NASH模型小鼠肝脏中经乳糖神经酰胺向GM3 转化的合成通路受阻。

    Abstract

    Objective:This study aims to investigate the changes of glycosphingolipid,especially the ganglioside GM3,in the liver of NASH model mice induced by high ⁃ fat and high ⁃ sugar diet . Methods:A total of 16 C57BL/6J mice aged 6 ⁃ weeks old were randomly allocated into control group and NASH group(control n =8;NASH n =8). Control mice were fed with a standard chow diet and water as control group,while the other mice were fed high fat diet accompanied by ad libitum consumption of water with high fructose and glucose content(23.1 g/L d⁃fructose +18.9 g/L d⁃glucose)to establish NASH models as model group. Serum levels of ALT and AST were measured to evaluate the pathological changes of liver tissues. Liver histology was assessed using HE stains in paraffin⁃embedded sections using standard commercially used methods. Liver lipidomics analysis was perfonned in an electrospray ionization mode using Exion UPLC ⁃QTRAP 6500 PLUS(Sciex)LC/MS. The student’s t test and Mann ⁃Whitney U test were used for statistical analysis. Results:① The levels of alanine aminotransferase(ALT)and aspartate aminotransferase(AST)in NASH mice were significantly higher than that in control group(P < 0.05). ②Compared with the control group,total GM3 and subtype species,including GM3 d18:1/ 20:0(P =0.005),GM3 d18:1/22:0(P =0.004),GM3 d18:1/24:0(P =0.004)and GM3 d18:1/26:0(P =0.042)were significantly lower in the model group,which were dignosed as NASH group based on the NAFLD activity score. Conversely,total ceramide and total lactosylceramide(LacCer)were remarkably elevated in NASH group than control group(P < 0.05). Conclusion:The synthetic pathway from LacCer to GM3 is dampened in NASH model mice,which are established by high⁃fat and high⁃fructose diet.

    关键词

    NASH神经节苷脂GM3鞘糖脂ST3GAL5

  • 非酒精性脂肪肝病(non⁃alcoholic fatty liver dis⁃ ease,NAFLD)是指除外酒精和其他明确肝损害因素所致的以肝脏脂肪变性为主要特征的临床病理综合征,其疾病谱包括非酒精性脂肪肝,以及由其演变而来的非酒精性脂肪性肝炎(non⁃alcoholic steato⁃ hepatitis,NASH)、脂肪性肝纤维化、肝硬化甚至肝癌[1-2]。其中,NASH的特征是在肝脂肪变性的基础上,组织学证据显示炎症伴肝细胞损伤(如气球样变),并伴有或不伴有肝纤维化[3-5]。近年来,NAFLD的患病率在国内外均呈上升趋势[6-7],与糖尿病和代谢综合征的全球性增长并行,是目前全球慢性肝病的主要原因。随着脂质组学分析技术的发展,不同脂质亚型在脂质堆积、炎症等病理进展过程中的动态变化可被精准测量分析。临床研究数据显示,随着NAFLD的发生发展,肝脏脂质谱发生显著变化,包括甘油磷脂、鞘磷脂和脂肪酸[8-12] 等。此外,脂质中间体介导的细胞功能障碍和损伤已经被证实与NASH的发生发展相关。

  • 以往对NASH病理进程中鞘脂谱的相关研究主要集中在神经酰胺(ceramide,Cer)、鞘磷脂等的变化上[13],尚缺乏对神经节苷脂及相关代谢产物的研究。神经节苷脂是一类Cer的重要下游代谢物, Cer是一种经酰胺键连接鞘氨醇和脂肪酸链所形成的鞘脂,脂肪酸延长酶负责脂肪酸链的合成和延伸,Cer合成酶1⁃6催化不同长度的脂肪酸链合成不同亚类的Cer,参与多种细胞活动[14-16]。Cer在UDP葡萄糖神经酰胺葡糖转移酶(UDP ⁃glucose ceramide glucosyltransferase,UGCG)和β⁃1,4⁃半乳糖基转移酶5(beta ⁃ 1,4⁃ galactosyltransferase5/6, B4GALT5/6)催化下逐级转化为葡糖神经酰胺 (glucosylceramide,GlcCer)和乳糖神经酰胺(lacto⁃ sylceramide,LacCer),后者即为神经节苷脂GM3 (monosialodihexosylganglioside,GM3)的前体鞘糖脂[17]。 GM3合成酶(ST3Beta⁃galactoside alpha⁃2,3⁃ sialyltransferase5,ST3GAL5)通过结合唾液酸进一步将LacCer转化为GM3 [1418]。GM3是最简单的神经节苷脂,由唾液酸、半乳糖、葡萄糖和神经酰胺相结合而成,其结构具有多样性。

  • GM3作为组织中最常见的膜结合鞘糖脂存在于所有哺乳动物的细胞膜上,与Cer、鞘磷脂、胆固醇等脂质共同构成细胞膜上的脂筏(lipid raft)区,参与细胞黏附生长、信号识别传递活动[1419]。既往研究发现肥胖、2型糖尿病及NAFLD等与生活方式相关的疾病均与鞘糖脂异常表达相关[20]。鞘糖脂可以通过调节膜相关激酶和受体活性介导细胞因子和免疫细胞信号,参与脂质堆积、胰岛素抵抗、炎症、纤维化和肿瘤等病理进程的进展[1421]。有关GM3等鞘糖脂和NASH的相关性研究,目前结果不一。

  • 研究发现,补充β鞘糖脂可以减少临床NASH患者的胰岛素抵抗及肝脏内的脂质堆积水平[22]。神经节苷脂GM3可以在体内外炎症过程中通过抑制白细胞⁃内皮相互作用,减少炎症相关因子的表达,发挥抗炎作用[23]。然而在另一项研究中,GlcCer及下游合成的LacCer和GM3等鞘糖脂被认为是细胞生长和激素信号调节的致病因素,通过使用GlcCer合成酶抑制剂减少鞘糖脂合成可以缓解西方饮食喂养18周诱导的LDLR-/-NASH模型小鼠肝脏内脂质堆积及炎症状态,并且这一作用主要通过减少GM2 ⁃乙二醇而非GM3的合成来实现[24]。鉴于NASH模型研究造模方式各异,造模时长不一, NASH病理进程较为复杂,鞘糖脂与NASH不同进展阶段的关联性及相关机制仍需全面深入挖掘。

  • 本项研究主要探讨GM3相关脂质谱在NASH小鼠肝脏中的变化,采用高脂高糖饮食喂养7个月构建NASH小鼠模型,该模型较好地模拟了临床NASH患者疾病进程及病理变化,为更深入地挖掘鞘糖脂在NASH发生发展中的分子机制奠定基础。

  • 1 材料和方法

  • 1.1 材料

  • C57BL/6J雄性小鼠16只,6周龄(北京维通利华),在中国药科大学实验动物中心(SPF级)进行饲养及相关实验。普通对照饲料(TP26352),高脂饲料(TP26304),以及果糖和蔗糖均购自南通特洛菲饲料科技有限公司。其中高脂饲料热量组成为:脂肪42%,蛋白质14%,碳水化合物44%。胆固醇含量0.2%。光学倒置显微镜(Olympus公司,日本);组织切片机(上海徕卡仪器有限公司)。

  • 1.2 方法

  • 1.2.1 动物分组和模型建立

  • 实验小鼠饲养于SPF级动物房,自由进食、饮水,动物房具备独立通风笼具(IVC)系统,室温24℃,相对湿度55%~65%,采用12h/12h昼夜交替光照。16只6周龄C57BL/6J小鼠经普通饲料适应性喂养1周后,随机分为对照组和模型组,每组8只。对照组予以普通饲料,正常饮水;模型组喂食高脂饲料,同时给予含糖饮水(23.1g/L蔗糖+18.9g/L葡萄糖),持续造模7个月。

  • 1.2.2 小鼠血清生化指标检测

  • 取各组小鼠空腹血清,按试剂盒说明书检测血清生化指标丙氨酸氨基转移酶(alanine aminotrans⁃ ferase,ALT)、天门冬氨酸氨基转移酶(aspartate ami⁃ notransferase,AST)水平。读取酶标仪450nm波长处吸光度值,采用相应软件绘制标准曲线,得到各样品检测值。

  • 1.2.3 小鼠肝脏组织病理学检查

  • 小鼠部分肝组织,以生理盐水洗涤,于4%多聚甲醛中固定24h,石蜡包埋、切片后行HE染色,于光镜下评估肝脏脂肪变性和炎症活动情况。NASH的病理诊断标准采用《亚太地区非酒精性脂肪性肝病诊断与治疗共识》推荐的美国国立卫生研究院NASH临床研究网络病理委员会2005年所定指南[22],根据其制定的NAFLD活动度积分(NAFLD activity score,NAS)进行评估。

  • 1.2.4 高通量靶向脂质组学方法

  • 使用氯仿∶甲醇(1∶1)从血清样本中提取脂质,采用Exion UPLC⁃QTRAP 6500PLUS(Sciex)液质联用仪,以电喷雾电离(ESI)模式进行所有分析。通过加入以下内标进行脂质量化:Cer ⁃ d18:1/17:0, GlcCer⁃d18:1/8:0,d3⁃LacCer⁃d18:1/16:0,d3⁃GM3d18:1/18:0。使用四极飞行质谱仪(QTOF micro)及ACQUITY UPLC系统进行检测分析。

  • 1.3 统计学方法

  • 采用SPSS 23.0软件建立数据库并进行统计分析,对各项指标进行正态性分布的检验和方差齐性检验。GraphPad Prism 9软件制图。正态分布的计量资料以均数±标准差(x- ± s)表示,组间比较采用独立样本t检验。不符合正态性分布的数据采用曼⁃惠特尼检验。P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 NASH小鼠模型成功建立

  • 为了构建NASH小鼠模型,采用高脂高糖饮食喂养小鼠7个月。肝脏HE染色结果显示,普通饮食对照组小鼠肝脏细胞排列整齐,细胞质均匀;高脂高糖饮食模型组小鼠肝小叶结构紊乱,可见大量气球样变细胞,肝脏细胞胞质内呈现大小不一的脂滴空泡,局部可见炎症灶,表示模型组小鼠肝脏较对照组有严重的脂质堆积和炎症反应(图1)。按照NAS评分标准对其进行诊断(NAS≥5分可明确诊断NASH;NAS<3分可排除NASH;3~4分表示处在NAFL~NASH病程之间)。进一步检测了小鼠血清中肝细胞损伤指标AST和ALT的水平,结果显示, NASH小鼠中血清AST、ALT显著高于正常组小鼠 (P=0.012、P=0.001)。由此证明NASH组小鼠造模成功(图2)。

  • 图1 对照组和NASH组小鼠肝脏切片HE染色(×200)

  • Fig.1 HE staining of liver sections in mice from con⁃ trol and NASH group

  • 图2 小鼠血清肝损标志物AST、ALT水平

  • Fig.2 Measurement of serum liver injury markers of AST and ALT

  • 2.2 小鼠肝脏鞘糖脂检测结果

  • 为研究NASH模型鼠肝脏内鞘糖脂含量及亚类是否发生变化,进一步探索鞘糖脂代谢通路与NASH病理变化的内在关联,采用LC⁃MS/MS方法对NASH模型鼠及健康对照组小鼠肝脏进行脂质谱检测。结果显示,与对照组小鼠相比,NASH组小鼠肝脏中总Cer和总LacCer含量显著上升(图3),与既往研究结果一致。而神经酰胺三己糖苷(globotriaosyl⁃ sphingosine,Gb3)也有上升趋势,GlcCer表达呈下降趋势,但差异没有统计学意义。此外,NASH组小鼠肝脏总GM3(图3)及长链GM3d18:1/20:0、超长链GM3d18:1/22:0、GM3d18:1/24:0和GM3d18:1/26:0等GM3亚链在NASH小鼠肝脏内含量显著降低 (表1)。

  • 图3 对照组小鼠和NASH组小鼠肝脏鞘糖脂表达谱

  • Fig.3 Glycosphingolipid expression of control and NASH mice

  • 2.3 NASH组小鼠中肝脏LacCer向GM3转化减少

  • NASH组小鼠肝脏内总LacCer含量上升,而其下游产物总GM3含量下降,为了进一步探究小鼠肝脏内各类鞘脂间的转化关系,计算发现GM3/LacCer比值在NASH组显著降低,提示鞘糖脂代谢通路由LacCer向GM3的转化受抑制(图4)。进一步从编码GM3合成酶的ST3GAL5基因入手,总结GEO数据库中不同造模方式诱导的NASH小鼠模型肝脏RNA ⁃seq数据中ST3GAL5基因表达水平的变化(表2),发现ST3GAL5基因表达水平的变化在不同模型中存在差异,与本研究中造模方式相近的高脂高糖NASH模型中ST3GAL5基因下调,而缺乏蛋氨酸胆碱饮食诱导模型可出现上调。

  • 3 讨论

  • 应用脂质组学技术寻找NASH生物学标志物及治疗靶点已成为当前研究热点。本研究采用高脂高糖饮食模式喂养小鼠7个月成功构建NASH模型小鼠,同时用普通饮食正常饮水喂养鼠做为对照组;取两组小鼠肝脏做肝脏切片、HE染色后显微镜下拍摄后进行NAS评分,对符合NASH标准的小鼠和对照组小鼠肝脏进行了鞘脂谱检测。结果显示, NASH组小鼠肝脏内总Cer及LacCer表达量较对照组显著升高,与既往研究一致;而以LacCer为底物经GM3合成酶催化形成的下游产物⁃神经节苷脂GM3在NASH组小鼠肝脏内含量较对照组小鼠显著降低。这一变化引起了我们对肝脏内GM3代谢通路与NASH病理变化关联性的关注。本实验结果显示,NASH组小鼠肝脏中总GM3及长链GM3d18:1/20:0、超长链GM3d18:1/22:0、GM3d18:1/24:0和GM3d18:1/26:0亚型含量较对照组小鼠显著降低,且该下降是由于上游LacCer向GM3转化合成减少所致。高脂高糖饮食下形成的NASH小鼠肝脏中由β⁃鞘糖脂合成GM3通路受阻,推测编码GM3合成酶的ST3GAL5基因表达水平变化在此过程起重要作用。

  • 表1 对照组与NASH组小鼠神经节苷脂GM3及各亚型在肝脏中的含量

  • Table1 The expression of ganglioside GM3and subtype species in liver samples of control and NASH mice

  • 图4 对照组小鼠和NASH组小鼠GM3/LacCer的比值

  • Fig.4 The ratio of GM3verus LacCer in liver samples from control and NASH mice

  • 表2 不同造模方式诱导的NASH小鼠体内St3gal5基因表达变化

  • Table2 Changes of ST3GAL5gene expression in different diet⁃induced NSAH mouse models

  • 具有亮点的是,本研究发现GM3/LacCer比值在NASH模型鼠中显著降低,提示由LacCer向GM3的合成受到抑制。本文总结了目前GEO数据库中不同造模方式诱导的NASH模型小鼠肝脏RNA⁃seq中编码GM3合成酶的ST3GAL5基因变化情况,可知该基因变化趋势受不同饮食模式影响,在给予胆碱缺乏的氨基酸饮食及单纯的胆碱蛋氨酸缺乏饮食喂养诱导形成的NASH模型鼠中ST3GAL5基因显著上调[25],而在高脂高糖饮食诱导下形成的NASH小鼠肝脏中ST3GAL5基因显著下调[26-28],与本研究结果具有一致性。这可能是由于高糖高脂饮食与蛋氨酸胆碱缺乏饮食所诱发的NASH模型相应病理机制有所差异。本研究所采用的高脂饲料伴含糖饮水喂养所诱导的NASH模型较蛋氨酸胆碱缺乏饮食所构建的NASH模型更能模拟临床上NASH患者的所有生理、代谢、组织学和临床终点,能够复制胰岛素抵抗、氧化应激等全身代谢紊乱表现,包含NAFLD的不同发展阶段,模型中临床终点即肝癌的发生也由疾病状态而非化学致癌物引起。NAFLD进一步可发展为肝癌,大量证据表明,内源性GM3与凋亡发生密切相关,随着肿瘤发生发展,GM3合成酶活性受抑制,GM3表达量下降;而当GM3合成增加时能显著减弱细胞的恶性特征[29-32]。进一步研究发现,通过基因转导的方法上调细胞内神经节苷脂特异性唾液酸酶的表达导致内源性GM3下降和上游LacCer聚集会抑制凋亡信号转导,加速细胞增殖,从而促进病变向肿瘤发展恶化[33]。,由于本研究所采用的饮食诱导NAFLD模型能够模拟临床上NASH患者向肝癌进展的进程,因此在肝脏病变向肝癌进展时,NASH组小鼠肝脏内GM3表达量显著下降且上游LacCer显著聚集,进一步证明了本研究结果更符合临床NASH患者病理变化。

  • NAFLD的主要病理特征是肝脏的炎症及纤维化改变,关于神经节苷脂GM3与炎症反应的相关性,目前研究结果存在一定的争议。一方面研究者们在体内外证实了GM3可以通过AKT/IκB⁃α/NF⁃κB通路抑制血管内皮生长因子诱导的细胞间黏附分子和血管细胞粘附分子⁃1等炎性因子的产生,从而减轻炎症反应;另一方面,GM3可以通过抑制NF⁃ κB、AP⁃1和MAPKs信号通路缓解LPS诱导的RAW 264.7巨噬细胞炎症反应[23]。然而,此前相关研究发现GM3可通过PI3K/Akt途径促进TNF⁃α的表达,并且促炎细胞因子TNF⁃α和IL⁃1β可以促进脂肪细胞中GM3合成酶的表达以及GM3的产生[34]。此外,与野生型小鼠相比,敲除了GM3合成酶基因的小鼠表现出更高的胰岛素敏感性作用,并可抵御高脂饮食诱导的肥胖和炎症状态[34]

  • NAFLD的病症较为复杂,它包括脂质堆积和炎症纤维化等因素,这几种因素相互影响从而对肝脏GM3的水平产生影响。随着近年来对细胞膜脂质的研究越来越重视,我们对细胞膜上脂质的认识也越来越深入,因此检测组织中的鞘脂水平、磷脂及鞘糖脂等脂质水平是非常重要的。本研究初步探讨了NAFLD的肝脏中神经节苷脂GM3的变化,也为后续实验提供了有用的线索。

  • 此外,未来的研究不仅应检查本研究中所包含的脂质,还应包括GM2和Gb3等来自GM3生物合成途径中的其他复合神经节苷。探索这些糖鞘脂蛋白在NASH发生发展进程中的变化,对于更好地理解NASH中GM3的病理生理学是必要的。

  • 参考文献

    • [1] CHALASANI N,YOUNOSSI Z,LAVINE J E,et al.The diagnosis and management of nonalcoholic fatty liver dis⁃ ease:practice guidance from the American Association for the Study of Liver Diseases[J].Hepatology,2018,67(1):328-357

    • [2] SHEKA A C,ADEYI O,THOMPSON J,et al.Nonalcohol⁃ ic steatohepatitis:a review[J].JAMA,2020,323(12):1175-1183

    • [3] 周琪,许文立,王莉,等.多氯联苯118诱导大鼠非酒精性脂肪肝病的研究[J].南京医科大学学报(自然科学版),2019,39(5):659-663

    • [4] PIERANTONELLI I,SVEGLIATI ⁃ BARONI G.Nonalco⁃ holic fatty liver disease:basic pathogenetic mechanisms in the progression from NAFLD to NASH[J].Transplanta⁃ tion,2019,103(1):1-13

    • [5] SCHUPPAN D,SURABATTULA R,WANG X Y.Deter⁃ minants of fibrosis progression and regression in NASH [J].J Hepatol,2018,68(2):238-250

    • [6] YOUNOSSI Z M,KOENIG A B,ABDELATIF D,et al.Global epidemiology of nonalcoholic fatty liver disease ⁃ meta ⁃ analytic assessment of prevalence,incidence,and outcomes[J].Hepatology,2016,64(1):73-84

    • [7] POVSIC M,WONG O Y,PERRY R,et al.A structured literature review of the epidemiology and disease burden of non ⁃ alcoholic steatohepatitis(NASH)[J].Adv Ther,2019,36(7):1574-1594

    • [8] LEPORQ B,LAMBERT S A,RONOT M,et al.Simultane⁃ ous MR quantification of hepatic fat content,fatty acid composition,transverse relaxation time and magnetic sus⁃ ceptibility for the diagnosis of non⁃alcoholic steatohepati⁃ tis[J].NMR Biomed,2017,30(10):doi:10.1002/nbm.3766

    • [9] LUUKKONEN P K,ZHOU Y,SADEVIRTA S,et al.He⁃ patic ceramides dissociate steatosis and insulin resistance in patients with non ⁃ alcoholic fatty liver disease[J].J Hepatol,2016,64(5):1167-1175

    • [10] SIMON J,OURO A,ALA⁃IBANIBO L,et al.Sphingolip⁃ ids in non⁃alcoholic fatty liver disease and hepatocellular carcinoma:ceramide turnover[J].Int J Mol Sci,2019,21(1):40

    • [11] KARTSOLI S,KOSTARA C E,TSIMIHODIMOS V,et al.Lipidomics in non⁃alcoholic fatty liver disease[J].World J Hepatol,2020,12(8):436-450

    • [12] SVEGLIATI⁃BARONI G,PIERANTONELLI I,TORQUA⁃ TO P,et al.Lipidomic biomarkers and mechanisms of li⁃ potoxicity in non ⁃ alcoholic fatty liver disease[J].Free Radic Biol Med,2019,144:293-309

    • [13] RÉGNIER M,POLIZZI A,GUILLOU H,et al.Sphingolip⁃ id metabolism in non ⁃ alcoholic fatty liver diseases[J].Biochimie,2019,159:9-22

    • [14] INOKUCHI J,INAMORI K,KABAYAMA K,et al.Biolo⁃ gy of GM3 ganglioside[J].Prog Mol Biol Transl,2018,156:151-195

    • [15] XIA Q S,LU F E,WU F,et al.New role for ceramide in hypoxia and insulin resistance[J].World J Gastroenterol,2020,26(18):2177-2186

    • [16] COLOMBINI M.Ceramide Channels[J].Adv Exp Med Bi⁃ ol,2019,1159:33-48

    • [17] BELARBI K,CUVELIER E,BONTE M A,et al.Glyco⁃ sphingolipids and neuroinflammation in Parkinson's dis⁃ ease[J].Mol Neurodegener,2020,15(1):59

    • [18] LAM S M,WANG R,MIAO H,et al.An integrated meth⁃ od for direct interrogation of sphingolipid homeostasis in the heart and brain tissues of mice through postnatal de⁃ velopment up to reproductive senescence[J].Anal Chim Acta,2018,1037:152-158

    • [19] KOMATSUYA K,KANEKO K,KASAHARA K.Function of Platelet glycosphingolipid microdomains/lipid rafts[J].Int J Mol Sci,2020,21(15):5539

    • [20] DAM D H M,PALLER A S.Gangliosides in diabetic wound healing[J].Prog Mol Biol Transl Sci,2018,156:229-239

    • [21] SHIMIZU T,NAGANE M,SUZUKI M,et al.Tumor hy⁃ poxia regulates ganglioside GM3 synthase,which contrib⁃ utes to oxidative stress resistance in malignant melanoma [J].Biochim Biophys Acta Gen Subj,2020,1864(12):129723

    • [22] LALAZAR G,ZIGMOND E,WEKSLER ⁃ ZANGEN S,et al.Oral administration of beta ⁃ glucosylceramide for the treatment of insulin resistance and nonalcoholic steato⁃ hepatitis:results of a double⁃blind,placebo⁃controlled tri⁃ al[J].J Med Food,2017,20(5):458-464

    • [23] PARK J,KWAK C H,HA S H,et al.Ganglioside GM3 suppresses lipopolysaccharide ⁃ induced inflammatory re⁃ sponses in rAW 264.7 macrophage cells through NF⁃kap⁃ paB,AP ⁃ 1,and MAPKs signaling[J].J Cell Biochem,2018,119(1):1173-1182

    • [24] LOMBARDO E,VAN ROOMEN C P,VAN PUIJVELDE G H,et al.Correction of liver steatosis by a hydrophobic iminosugar modulating glycosphingolipids metabolism [J].PLoS One,2012,7(10):e38520

    • [25] LOFT A,ALFARO A J,SCHMIDT S F,et al.Liver⁃fibro⁃ sis ⁃ activated transcriptional networks govern hepatocyte reprogramming and intra⁃hepatic communication[J].Cell Metab,2021,33(8):1685-1700 e9

    • [26] LEE S M,PUSEC C M,NORRIS G H,et al.Hepatocyte⁃ specific loss of PPARgamma protects mice from NASH and increases the therapeutic effects of rosiglitazone in the liver[J].Cell Mol Gastroenterol Hepatol,2021,11(5):1291-1311

    • [27] XU H,ZHAO Q,SONG N,et al.AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum ⁃mitochondria axis[J].Nat Commun,2020,11(1):5807

    • [28] XIONG X,WANG Q,WANG S,et al.Mapping the molec⁃ ular signatures of diet ⁃induced NASH and its regulation by the hepatokine Tsukushi[J].Mol Metab,2019,20:128-137

    • [29] ZHENG C P,TERRENI M,SOLLOGOUB M,et al.Gan⁃ glioside GM3 and its role in cancer[J].Curr Med Chem,2019,26(16):2933-2947

    • [30] ZHENG C,GUAN H,LIU Y,et al.Chemoenzymatically synthesized ganglioside GM3 analogues with inhibitory ef⁃ fects on tumor cell growth and migration[J].Eur J Med Chem,2019,165:107-114

    • [31] ZHENG C,HUANG R,BAVARO T,et al.Design,synthe⁃ sis and biological evaluation of new ganglioside GM3 ana⁃ logues as potential agents for cancer therapy[J].Eur J Med Chem,2020,189:112065

    • [32] OHMI Y,KAMBE M,OHKAWA Y,et al.Differential roles of gangliosides in malignant properties of melanomas [J].PLoS One,2018,13(11):e0206881

    • [33] MIYAGI T,TAKAHASHI K,YAMAMOTO K,et al.Bio⁃ logical and pathological roles of ganglioside sialidases [J].Prog Mol Biol Transl,2018,156:121-150

    • [34] NAGAFUKU M,SATO T,SATO S,et al.Control of ho⁃ meostatic and pathogenic balance in adipose tissue by ganglioside GM3[J].Glycobiology,2015,25(3):303-318

  • 参考文献

    • [1] CHALASANI N,YOUNOSSI Z,LAVINE J E,et al.The diagnosis and management of nonalcoholic fatty liver dis⁃ ease:practice guidance from the American Association for the Study of Liver Diseases[J].Hepatology,2018,67(1):328-357

    • [2] SHEKA A C,ADEYI O,THOMPSON J,et al.Nonalcohol⁃ ic steatohepatitis:a review[J].JAMA,2020,323(12):1175-1183

    • [3] 周琪,许文立,王莉,等.多氯联苯118诱导大鼠非酒精性脂肪肝病的研究[J].南京医科大学学报(自然科学版),2019,39(5):659-663

    • [4] PIERANTONELLI I,SVEGLIATI ⁃ BARONI G.Nonalco⁃ holic fatty liver disease:basic pathogenetic mechanisms in the progression from NAFLD to NASH[J].Transplanta⁃ tion,2019,103(1):1-13

    • [5] SCHUPPAN D,SURABATTULA R,WANG X Y.Deter⁃ minants of fibrosis progression and regression in NASH [J].J Hepatol,2018,68(2):238-250

    • [6] YOUNOSSI Z M,KOENIG A B,ABDELATIF D,et al.Global epidemiology of nonalcoholic fatty liver disease ⁃ meta ⁃ analytic assessment of prevalence,incidence,and outcomes[J].Hepatology,2016,64(1):73-84

    • [7] POVSIC M,WONG O Y,PERRY R,et al.A structured literature review of the epidemiology and disease burden of non ⁃ alcoholic steatohepatitis(NASH)[J].Adv Ther,2019,36(7):1574-1594

    • [8] LEPORQ B,LAMBERT S A,RONOT M,et al.Simultane⁃ ous MR quantification of hepatic fat content,fatty acid composition,transverse relaxation time and magnetic sus⁃ ceptibility for the diagnosis of non⁃alcoholic steatohepati⁃ tis[J].NMR Biomed,2017,30(10):doi:10.1002/nbm.3766

    • [9] LUUKKONEN P K,ZHOU Y,SADEVIRTA S,et al.He⁃ patic ceramides dissociate steatosis and insulin resistance in patients with non ⁃ alcoholic fatty liver disease[J].J Hepatol,2016,64(5):1167-1175

    • [10] SIMON J,OURO A,ALA⁃IBANIBO L,et al.Sphingolip⁃ ids in non⁃alcoholic fatty liver disease and hepatocellular carcinoma:ceramide turnover[J].Int J Mol Sci,2019,21(1):40

    • [11] KARTSOLI S,KOSTARA C E,TSIMIHODIMOS V,et al.Lipidomics in non⁃alcoholic fatty liver disease[J].World J Hepatol,2020,12(8):436-450

    • [12] SVEGLIATI⁃BARONI G,PIERANTONELLI I,TORQUA⁃ TO P,et al.Lipidomic biomarkers and mechanisms of li⁃ potoxicity in non ⁃ alcoholic fatty liver disease[J].Free Radic Biol Med,2019,144:293-309

    • [13] RÉGNIER M,POLIZZI A,GUILLOU H,et al.Sphingolip⁃ id metabolism in non ⁃ alcoholic fatty liver diseases[J].Biochimie,2019,159:9-22

    • [14] INOKUCHI J,INAMORI K,KABAYAMA K,et al.Biolo⁃ gy of GM3 ganglioside[J].Prog Mol Biol Transl,2018,156:151-195

    • [15] XIA Q S,LU F E,WU F,et al.New role for ceramide in hypoxia and insulin resistance[J].World J Gastroenterol,2020,26(18):2177-2186

    • [16] COLOMBINI M.Ceramide Channels[J].Adv Exp Med Bi⁃ ol,2019,1159:33-48

    • [17] BELARBI K,CUVELIER E,BONTE M A,et al.Glyco⁃ sphingolipids and neuroinflammation in Parkinson's dis⁃ ease[J].Mol Neurodegener,2020,15(1):59

    • [18] LAM S M,WANG R,MIAO H,et al.An integrated meth⁃ od for direct interrogation of sphingolipid homeostasis in the heart and brain tissues of mice through postnatal de⁃ velopment up to reproductive senescence[J].Anal Chim Acta,2018,1037:152-158

    • [19] KOMATSUYA K,KANEKO K,KASAHARA K.Function of Platelet glycosphingolipid microdomains/lipid rafts[J].Int J Mol Sci,2020,21(15):5539

    • [20] DAM D H M,PALLER A S.Gangliosides in diabetic wound healing[J].Prog Mol Biol Transl Sci,2018,156:229-239

    • [21] SHIMIZU T,NAGANE M,SUZUKI M,et al.Tumor hy⁃ poxia regulates ganglioside GM3 synthase,which contrib⁃ utes to oxidative stress resistance in malignant melanoma [J].Biochim Biophys Acta Gen Subj,2020,1864(12):129723

    • [22] LALAZAR G,ZIGMOND E,WEKSLER ⁃ ZANGEN S,et al.Oral administration of beta ⁃ glucosylceramide for the treatment of insulin resistance and nonalcoholic steato⁃ hepatitis:results of a double⁃blind,placebo⁃controlled tri⁃ al[J].J Med Food,2017,20(5):458-464

    • [23] PARK J,KWAK C H,HA S H,et al.Ganglioside GM3 suppresses lipopolysaccharide ⁃ induced inflammatory re⁃ sponses in rAW 264.7 macrophage cells through NF⁃kap⁃ paB,AP ⁃ 1,and MAPKs signaling[J].J Cell Biochem,2018,119(1):1173-1182

    • [24] LOMBARDO E,VAN ROOMEN C P,VAN PUIJVELDE G H,et al.Correction of liver steatosis by a hydrophobic iminosugar modulating glycosphingolipids metabolism [J].PLoS One,2012,7(10):e38520

    • [25] LOFT A,ALFARO A J,SCHMIDT S F,et al.Liver⁃fibro⁃ sis ⁃ activated transcriptional networks govern hepatocyte reprogramming and intra⁃hepatic communication[J].Cell Metab,2021,33(8):1685-1700 e9

    • [26] LEE S M,PUSEC C M,NORRIS G H,et al.Hepatocyte⁃ specific loss of PPARgamma protects mice from NASH and increases the therapeutic effects of rosiglitazone in the liver[J].Cell Mol Gastroenterol Hepatol,2021,11(5):1291-1311

    • [27] XU H,ZHAO Q,SONG N,et al.AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum ⁃mitochondria axis[J].Nat Commun,2020,11(1):5807

    • [28] XIONG X,WANG Q,WANG S,et al.Mapping the molec⁃ ular signatures of diet ⁃induced NASH and its regulation by the hepatokine Tsukushi[J].Mol Metab,2019,20:128-137

    • [29] ZHENG C P,TERRENI M,SOLLOGOUB M,et al.Gan⁃ glioside GM3 and its role in cancer[J].Curr Med Chem,2019,26(16):2933-2947

    • [30] ZHENG C,GUAN H,LIU Y,et al.Chemoenzymatically synthesized ganglioside GM3 analogues with inhibitory ef⁃ fects on tumor cell growth and migration[J].Eur J Med Chem,2019,165:107-114

    • [31] ZHENG C,HUANG R,BAVARO T,et al.Design,synthe⁃ sis and biological evaluation of new ganglioside GM3 ana⁃ logues as potential agents for cancer therapy[J].Eur J Med Chem,2020,189:112065

    • [32] OHMI Y,KAMBE M,OHKAWA Y,et al.Differential roles of gangliosides in malignant properties of melanomas [J].PLoS One,2018,13(11):e0206881

    • [33] MIYAGI T,TAKAHASHI K,YAMAMOTO K,et al.Bio⁃ logical and pathological roles of ganglioside sialidases [J].Prog Mol Biol Transl,2018,156:121-150

    • [34] NAGAFUKU M,SATO T,SATO S,et al.Control of ho⁃ meostatic and pathogenic balance in adipose tissue by ganglioside GM3[J].Glycobiology,2015,25(3):303-318