en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

邵芳,E⁃mail:fuchenai@foxmail.com

中图分类号:R393

文献标识码:A

文章编号:1007-4368(2022)02-171-07

DOI:10.7655/NYDXBNS20220204

参考文献 1
CHEN J,YANG R,LI H,et al.Green tea polyphenols pro⁃ mote functional recovery from peripheral nerve injury in rats[J].Med Sci Monit,2020,26:e923806
参考文献 2
XIE Y,HUANG J,DONG H,et al.Insight into perfor⁃ mance and mechanism of tea polyphenols and ferric ions on reductive decolorization of malachite green cationic dye under moderate conditions[J].J Environ Manage,2020,261:110226
参考文献 3
XING C,ZHANG Y,SU R,et al.Anticancer activity of Fi⁃ setin against the human osteosarcoma cell lines involves G2/M cell cycle arrest,mitochondrial apoptosis and inhi⁃ bition of cell migration and invasion[J].J BUON,2020,25(2):1022-1027
参考文献 4
SUNDARRAJ K,RAGHUNATH A,PANNEERSELVAM L,et al.Fisetin,a phytopolyphenol,targets apoptotic and necroptotic cell death in HepG2 cells[J].Bio Factors,2020,46(1):118-135
参考文献 5
HAYES J D,KELLEHER M O,EGGLESTON I M.The cancer chemopreventive actions of phytochemicals de⁃ rived from glucosinolates[J].Eur J Nutr,2008,47(2):73-88
参考文献 6
ARUMUGAM A,ABDULL RAZIS A F.Apoptosis as a mechanism of the cancer chemopreventive activity of glu⁃ cosinolates:a review[J].APJCP,2018,19(6):1439-1448
参考文献 7
KIM S H,PARK H J,MOON D O.Sulforaphane sensitiz⁃ es human breast cancer cells to paclitaxel⁃induced apopto⁃ sis by downregulating the NF ⁃ kappaB signaling pathway [J].Oncol Lett,2017,13(6):4427-4432
参考文献 8
FAHEY J W,HARISTOY X,DOLAN P M,et al.Sulfora⁃ phane inhibits extracellular,intracellular,and antibiotic ⁃ resistant strains of Helicobacter pylori and prevents benzo [a]pyrene ⁃induced stomach tumors[J].Proc Nati Acad Sci U S A,2002,99(11):7610-7615
参考文献 9
RUTZ J,THALER S,MAXEINER S,et al.Sulforaphane reduces prostate cancer cell growth and proliferation in vi⁃ tro by modulating the cdk ⁃ cyclin axis and expression of the CD44 variants 4,5,and 7[J].Int J Mol Sci,2020,21(22):8724
参考文献 10
SANTOS P W,MACHADO A R T,DE GRANDIS R,et al.Effects of sulforaphane on the oxidative response,apoptosis,and the transcriptional profile of human stomach mucosa cells in vitro[J].Mutat Res,2020,854 ⁃ 855:503201
参考文献 11
WANG F,LIU P,AN H,et al.Sulforaphane suppresses the viability and metastasis,and promotes the apoptosis of bladder cancer cells by inhibiting the expression of FAT1[J].Int J Mol Med,2020,46(3):1085-1095
参考文献 12
CITI V,PIRAGINE E,PAGNOTTA E,et al.Anticancer properties of erucin,an H2 S⁃releasing isothiocyanate,on human pancreatic adenocarcinoma cells(AsPC ⁃ 1)[J].PTR,2019,33(3):845-855
参考文献 13
SAYEED M A,BRACCI M,CIARAPICA V,et al.Allyl isothiocyanate exhibits no anticancer activity in MDA⁃MB ⁃231 breast cancer cells[J].Int J Mol Sci,2018,19(1):145
参考文献 14
ABBAOUI B,LUCAS C R,RIEDL K M,et al.Crucifer⁃ ous vegetables,isothiocyanates,and bladder cancer pre⁃ vention[J].Mol Nutr Food Res,2018,62(18):e1800079
参考文献 15
GASPARELLO J,GAMBARI L,PAPI C,et al.High lev⁃ els of apoptosis are induced in the human colon cancer HT⁃ 29 cell line by co ⁃ administration of sulforaphane and a peptide nucleic acid targeting miR ⁃ 15b ⁃ 5p[J].Nucleic Acid Ther,2020,30(3):164-174
参考文献 16
ULLAH M F.Sulforaphane(SFN):an isothiocyanate in a cancer chemoprevention paradigm[J].Medicines,2015,2(3):141-156
参考文献 17
ALZOUBI K,CALABRO S,FAGGIO C,et al.Stimulation of suicidal erythrocyte death by sulforaphane[J].Basic Clin Pharmacol Toxicol,2015,116(3):229-235
参考文献 18
ZHOU L,LIU R,LIANG X,et al.lncRNA RP11⁃624L4.1 is associated with unfavorable prognosis and promotes proliferation via the CDK4/6⁃Cyclin D1⁃Rb ⁃E2F1 path⁃ way in NPC[J].Mol Ther Nucleic Acids,2020,22:1025-1039
参考文献 19
COSTA ⁃ GUDA J,CORRADO K,BELLIZZI J,et al.CDK4/6 dependence of cyclin D1⁃driven parathyroid neo⁃ plasia in transgenic mice[J].Endocrinol,2020,161(10):bqaa159
参考文献 20
XIE X,LIN W,ZHENG W,et al.Downregulation of G2/mitotic ⁃ specific cyclinB1 triggers autophagy via AMPK ⁃ ULK1⁃dependent signal pathway in nasopharyngeal carci⁃ noma cells[J].Cell Death Dis,2019,10(2):94
参考文献 21
LV D,ZHOU Q,XIA Y,et al.The association between ox⁃ idative stress alleviation via sulforaphane ⁃induced Nrf2 ⁃ HO⁃1/NQO⁃1 signaling pathway activation and chronic re⁃ nal allograft dysfunction improvement[J].Kidney Blood Press Res,2018,43(1):191-205
参考文献 22
XUE D,ZHOU X,QIU J.Emerging role of NRF2 in ROS⁃ mediated tumor chemoresistance[J].Biomed pharmacoth⁃ er,2020,131:110676
参考文献 23
CHOI J W,KIM G J,KIM H J,et al.Identification and evaluation of a napyradiomycin as a potent Nrf2 activator:anti⁃oxidative and anti⁃inflammatory activities[J].Bioorg Chem,2020,105:104434
参考文献 24
FENG H,WANG L,ZHANG G,et al.Oxidative stress ac⁃ tivated by Keap⁃1/Nrf2 signaling pathway in pathogenesis of preeclampsia[J].Int J Clin Exp Pathol,2020,13(3):382-392
参考文献 25
LONDON N R J R,THARAKAN A,MENDIOLA M,et al.Nrf2 activation via Keap1 deletion or sulforaphane treat⁃ ment reduces ova⁃induced sinonasal inflammation[J].Al⁃ lergy,2019,74(9):1780-1783
参考文献 26
LICZNERSKA B,SZAEFER H,KRAJKA ⁃KUZNIAK V.R⁃sulforaphane modulates the expression profile of AhR,ERalpha,Nrf2,NQO1,and GSTP in human breast cell lines[J].Mol Cell Biochem,2021,476(2):525-533
参考文献 27
LI Z,GUO H,LI J,et al.Sulforaphane prevents type 2 di⁃ abetes ⁃induced nephropathy via AMPK ⁃mediated activa⁃ tion of lipid metabolic pathways and Nrf2 antioxidative function[J].Clin Sci,2020,134(18):2469-2487
参考文献 28
HANLON N,COLDHAM N,GIELBERT A,et al.Abso⁃ lute bioavailability and dose ⁃ dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothio⁃ cyanate sulforaphane in rat[J].Br J Nutr,2008,99(3):559-564
目录contents

    摘要

    目的:研究莱菔硫烷(sulforaphane,SFN)对小鼠肺癌细胞系(Lewis lung cancer cells,LLC)细胞的生长抑制作用,并探讨其作用机制。方法:CCK⁃8 法鉴定SFN对LLC细胞增殖率的影响;流式细胞术检测SFN对LLC细胞周期和细胞凋亡的影响;DCFH⁃DA 探针检测 SFN 对 LLC 细胞活性氧(reactive oxygen species,ROS)表达的影响;Western blot 检测 SFN 对 LLC 细胞 Nrf2蛋白和ERK信号通路的影响。最后通过皮下注射建立C57BL/6J小鼠肺癌模型,建模后实验组及对照组分别给予SFN及 PBS灌胃处理,检测SFN治疗对小鼠肿瘤的影响。结果:细胞实验证实SFN能显著抑制小鼠LLC细胞的增殖(P < 0.05),促进 LLC 细胞的凋亡,随着 SFN 浓度的增加,LLC 细胞晚期凋亡比例逐渐升高(P < 0.05)。细胞周期分析提示 12.5 μmol/L 和 25.0 μmol/L的SFN处理可减少LLC细胞G1期比例(P < 0.05),增加G2/M期的细胞比例(P < 0.01),细胞周期相关基因CyclinD1、 CDK4、CDK6、CyclinB1和CDK1的表达显著下降(P < 0.01)。Western blot提示SFN促进LLC细胞ERK磷酸化以及增加Nrf2表达(P < 0.05)。流式细胞术检测DCFH⁃DA探针显示SFN能显著提高LLC细胞内ROS水平。动物实验结果发现SFN处理组小鼠肿瘤显著小于对照组(P< 0.05)。结论:体内及体外实验证实SFN触发LLC细胞内ERK磷酸化,使得细胞内Nrf2表达增加,细胞内ROS水平升高,阻滞细胞周期,从而加速LLC细胞的凋亡。SFN可能会是一种安全且有效的抗癌药物。

    Abstract

    Objective:This study aims to explore the inhibitory effect and mechanism of sulforaphane(SFN)on proliferation and migration of mouse lewis lung cancer cells (LLC). Methods:CCK ⁃ 8 method was used to identify the effect of SFN on LLC proliferation. Flow cytometry technology was used to detect the effect of SFN on cell cycle and apoptosis of LLC cells. DCFH⁃DA probe was used to detect the ROS expression in LLC cells. The effect of SFN on ERK signaling pathway in LLC cells was detected by Western blot. Finally,C56BL/6 mouse lung cancer tumor model was established by subcutaneous injection. After modeling,the experimental group and the control group were given SFN and PBS gavage treatment respectively,to detect the effect of SFN treatment on mouse tumors. Results:Cell experiments confirmed that SFN can significantly inhibit the proliferation and promote the apoptosis of LLC cells (P < 0.05). With the increase of SFN concentration,the proportion of late apoptosis of LLC cells gradually increased(P < 0.05). Cell cycle analysis showed that 12.5 μmol/L and 25.0 μmol/L SFN treatment reduced the proportion in G1 phase(P < 0.05)and increased the proportion of LLC cells in G2/M phase(P < 0.01). The expression of cycle⁃related genes CyclinD1,CDK4,CDK6,CyclinB1 and CDK1 decreased significantly(P < 0.01). Western blot suggested that SFN promoted ERK phosphorylation and increased Nrf2 expression in LLC cells(P < 0.05). The flow test results showed that SFN could significantly increase ROS level in LLC cells. The results of animal experiments showed that the tumor volume of SFN treated mice was significantly smaller than that of control group (P < 0.05). Conclusion:In vivo and in vitro experiments confirmed that SFN triggered ERK phosphorylation,which increased the expression of Nrf2,improved the expression level of ROS and blocked cell cycle,thus accelerating apoptosis and inhibiting the growth of tumor cells. SFN may be a safe and effective anti⁃cancer drug.

  • 肿瘤的发生发展非常复杂,涉及到多个基因和多个通路的紊乱,尽管近年来国内外在肿瘤的预防和治疗研究方面取得了较大的进展,但是恶性肿瘤造成的患者死亡率仍然很高,对肿瘤的预防和治疗仍然是医学科研界面对的一大难题。研究发现,人们日常食用的植物或水果中含有丰富的抗肿瘤成分,如绿茶中含有茶多酚[1-2],葡萄中含有漆树黄酮[3-4],十字花科植物含有硫代葡萄糖苷[5-6] 等。

  • 莱菔硫烷(sulforaphane,SFN)又名萝卜硫素,是一种主要存在于西兰花和其他十字花科蔬菜中的异硫氰酸盐类物质,能够在肿瘤的起始与肿瘤发展的各个环节发挥作用,是抗肿瘤能力最强的植物活性物质之一[7-8]。目前,有报道称SFN对肿瘤增殖的抑制、对肿瘤细胞凋亡的诱导以及化学致癌物代谢的影响都显示出很好的预防前景[9-11]。但是对SFN的研究还需要更加深入,目前缺乏对SFN作用机制的全面了解。SFN参与多种细胞生命活动,与SFN相互作用的分子有待鉴定,对细胞周期调控、细胞凋亡、细胞信号转导等的影响机制还需要更进一步探讨。本研究拟用不同浓度的SFN作用于小鼠肺癌细胞系(Lewis lung cancer cells,LLC)细胞,观察其对LLC细胞生长、凋亡、氧化应激反应和信号通路的影响,探寻SFN抑制LLC细胞生长的作用及其作用机制。

  • 1 材料和方法

  • 1.1 材料

  • SFN、DCFH⁃DA探针(Sigma公司,美国),CCK⁃8溶液、RIPA裂解液、BCA试剂及ECL试剂盒(上海碧云天公司),细胞凋亡检测试剂盒(BioLegend公司,美国),细胞周期检测试剂盒(BD公司,),TRIzol试剂(Invitrogen公司,美国),反转录试剂盒、DNA Marker DL2000、SYBR Premix Ex TaqTM(Perfect Re⁃ al Time)(大连TaKaRa公司),兔抗鼠ERK、p⁃ERK、 Nrf2、β⁃actin mAb(Abcam公司,美国)。

  • 1.2 方法

  • 1.2.1 细胞及培养

  • LLC细胞购自中国科学院上海生科院细胞资源中心,生长培养基为含10%胎牛血清的RPM1640培养基(Gibco公司,美国),置于37℃、5% CO2的培养箱中培养,取对数生长期细胞做后续实验。

  • 1.2.2 CCK8增殖实验

  • 细胞增殖实验CCK8检测SFN对LLC细胞增殖能力的影响。用胰蛋白酶消化对数期生长的LLC细胞,制成单细胞悬液以每孔2×104 个/mL细胞接种到96孔板中,每孔设置5个复孔,继续培养24h后进行分组及不同浓度SFN处理,分别在处理6、24、 48、72h终止培养,每孔加入CCK8试剂10 μL后继续放入培养箱孵育3h,最后在酶标仪上测各孔450nm波长处的吸光值,绘制细胞生长曲线。

  • 1.2.3 细胞凋亡检测

  • 胰蛋白酶消化对数期生长的LLC细胞,制成单细胞悬液以每孔3×105 个/mL细胞接种到6孔板中,培养24h后进行不同浓度SFN处理,细胞经SFN后用不含EDTA的胰酶消化细胞,终止消化后收集细胞,用PBS洗涤离心2次后加入100 μL的binding buffer和5 μL的荧光团标记的抗体(Annexin V ⁃ APC、7 ⁃ ADD),室温孵育15min,加入400 μL的binding buffer后再流式细胞仪上检测凋亡情况。结果用FlowJo 7.6.1分析细胞凋亡率。

  • 1.2.4 细胞周期试验

  • 取对数生长期LLC细胞悬液,接种于6孔板,每孔接种数为5×105 个细胞,各细胞孔分别加入0、 12.5、25.0 μmol/L SFN。加药后48h胰酶消化细胞, PBS洗2遍后,用70%冰乙醇重悬,于-20℃固定过夜。固定离心后PBS清洗2遍,进行PI染色后流式细胞仪检测,Modifit软件分析结果,实验过程重复3次。

  • 1.2.5 基因表达量检测

  • 根据NCBI(http://www.ncbi.nlm.nih.gov)上GAP⁃ DH、CyclinD1、CDK4、CDK6、CDK1和CyclinB1基因核苷酸序列,利用DNAMAN 6.0及Primer Premier 5.0软件,设计正、反向引物(表1),引物合成和测序由上海生工生物公司完成。

  • 提取12.5、25.0 μmol/L SFN处理24h、48h的LLC细胞RNA,RNase free H2O充分溶解,测定其浓度,于-80℃保存备用。取5 μL(100ng/μL)RNA进行反转录反应,再运用荧光定量PCR检测,反应体系总体积为20 μL:SYBR Premix ExTapTM Ⅱ(2×) 10 μL,PCR Forward Primer(10 μmol/L)0.4 μL,PCR Reverse Primer(10 μmol/L)0.4 μL,ROX Reference Dye Ⅱ(50×)0.4 μL,cDNA 1 μL,RNase ⁃free H2O 6.8 μL;qRT⁃PCR扩增条件为:95℃ 30s,95℃ 10s, 60℃ 30s,循环40次。在AB(应用生物系统)公司的7500型实时荧光定量PCR仪上进行。

  • 表1 PCR引物的信息

  • Table1 Information of PCR primers

  • 1.2.6 细胞内活性氧(reactive oxygen species,ROS) 检测

  • 将对数生长期的LLC细胞接种于6孔板,每孔接种5×105 个细胞,在37℃含5%C02培养箱中培养24h,分别加入12.5、25.0 μmol/L SFN,继续培养24、 48h。细胞用胰蛋白酶进行消化,PBS清洗后,向200 μL细胞悬液中加入5 μL DCFH⁃DA,并在室温黑暗条件下孵育30min,离心,弃上清,用PBS洗2次。用流式细胞仪分析细胞,检测荧光变化情况。

  • 1.2.7 Western blot实验

  • 收集SFN处理的细胞,PBS洗涤2次,去除上清,每个样品加入100 μL RIPA+1 μL PMSF后放置冰上30min,每隔10min摇匀1次,然后在12 000 g 4℃ 离心15min,收集上清并用BCA试剂盒检测其蛋白浓度。每100 μL样品加入25 μL 5×SDS⁃PAGE蛋白上样缓冲液,混匀后100℃变性10min。将蛋白样品进行SDS⁃PAGE,湿转至甲醇浸润过的PVDF膜上。用50g/L脱脂奶粉溶液封闭1.5h,PBST洗膜3次,每次10min,加入一抗(1∶1 000),4℃摇床过夜;去除一抗液,用PBST洗膜3次,每次10min,加入二抗(1∶3 000),室温孵育1.5h,PBST洗涤3次后采用ECL化学发光法曝光拍照。用Image J对实验结果进行分析。

  • 1.2.8 小鼠成瘤实验

  • 取对数生长期的LLC细胞,细胞达80%~90%密度为宜。胰酶消化细胞后用预冷的PBS洗2遍。用PBS吹打细胞沉淀至浓度为3×106 个/mL。每只C57BL/6J小鼠腹股沟中上部皮下注射100 μL细胞混悬液,建模1周待小鼠皮下出现肿块后,随机将小鼠进行分组,给予药物干预,即分别用PBS和0.5mg/kg的SFN灌胃处理,1周5次,连续处理2周,并对肿块进行测量,1周3次,游标卡尺测量肿瘤最长和最短部位。V=1/2×a×b2(a为长轴,b为短轴)。

  • 1.3 统计学方法

  • 实时荧光定量PCR结果采用2-ΔCT进行分析。采用SPSS 21.0统计软件,数据用均值±标准差(x- ± s) 表示,组间比较采用 t 检验或方差分析,P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 SFN对LLC细胞增殖的影响

  • 利用CCK8检测了SFN对小鼠肺癌细胞LLC增殖的影响,与对照组相比,随着处理时间增加,SFN处理LLC细胞后增殖能力明显减弱。12.5 μmol/L SFN处理细胞48h后细胞数量较对照组减少,差异有统计学意义(P< 0.01),25.0 μmol/L SFN处理细胞24h后细胞数量软对照组减少,差异有统计学意义(P< 0.05,图1),表明SFN可以抑制LLC细胞的增殖。

  • 2.2 SFN对LLC细胞凋亡的影响

  • 为研究SFN对LLC细胞凋亡能力的影响,细胞计数培养24h后,分别用12.5和25.0 μmol/L的SFN处理LLC细胞,用细胞凋亡试剂盒Annexin V⁃APC/7⁃ AAD对LLC细胞染色,结果发现,随着SFN浓度的增加,LLC细胞晚期凋亡比例逐渐升高,12.5 μmol/L的SFN处理LLC细胞24h、48h的细胞凋亡率分别是7.24%和16.22%,25.0 μmol/L的SFN处理LLC细胞24h、48h的细胞凋亡率分别是57.22%和75.12%(图2),表明SFN可以促进LLC细胞的凋亡。

  • 2.3 SFN对LLC细胞周期阻滞的影响

  • 为了研究SFN对LLC细胞周期阻滞的影响,细胞计数培养24h后,用SFN处理LLC细胞,流式细胞术检测发现,25.0 μmol/L的SFN作用LLC细胞24h后,细胞周期分布出现了显著变化,处于G1期的细胞比例明显下降(P< 0.05),G2/M期的细胞比例明显上升(P< 0.01,图3)。同时检测了细胞周期相关基因的表达量,25.0 μmol/L的SFN处理LLC细胞24h后,CyclinB、CyclinD、CDK1、CDK4和CDK6基因的表达量下降(P< 0.01,图4),说明SFN处理细胞后,将细胞周期阻滞在G2/M期,使其不能进入下一个细胞阶段。

  • 图1 SFN对LLC细胞增殖的影响

  • Fig.1 The effect of SFN on the LLC cell proliferation

  • 2.4 SFN对LLC细胞内ROS表达的影响

  • DCFH⁃DA探针用于特异性鉴定细胞内ROS含量,它可以穿过细胞膜并被细胞内的酯酶水解生成DCFH,而细胞内的ROS可以将无荧光标记的DCFH转变为有荧光标记的DCF。所以,通过检测细胞内DCF的荧光强度就可以检测ROS的水平。LLC细胞计数培养24h后,分别用12.5 μmol/L和25.0 μmol/L的SFN作用LLC细胞24h后,流式细胞术检测发现,当用12.5 μmol/L和25.0 μmol/L的SFN处理LLC细胞24h后,细胞内ROS的表达水平显著增高(图5)。

  • 2.5 SFN对ERK磷酸化的影响

  • 为进一步研究SFN促进乳腺癌细胞迁移和侵袭能力的分子机制,通过Western blot检测对照组和SFN处理组中的ERK的磷酸化水平变化。结果显示,随着SFN浓度的增高,细胞内Nrf2的蛋白表达水平显著增高,ERK磷酸化水平逐渐增强(P< 0.01);用25.0 μmol/L处理LLC细胞4h后,Nrf2的蛋白表达水平和ERK磷酸化水平表达显著高于对照组,差异有统计学意义(P< 0.05,图6)。

  • 图2 SFN对LLC细胞凋亡的影响

  • Fig.2 The effect of SFN on the apoptosis of LLC cell line

  • 图3 SFN对LLC细胞周期阻滞的影响

  • Fig.3 Effect of SFN on the cell cycle of LLC cells

  • 2.6 SFN对小鼠体内肿瘤生长的影响

  • 小鼠成瘤实验结果发现,给药10d后,SFN组小鼠的肿瘤体积与对照组相比明显减小(P< 0.05,图7)。

  • 图4 SFN对细胞周期相关基因表达的影响

  • Fig.4 The effect of SFN on the expression of cell cycle related genes

  • 3 讨论

  • 植物中存在的天然异硫氰酸酯可以显著降低肿瘤的发生率[12-14]。目前已经证明的具有抗肿瘤活性的异硫氰酸酯类化合物有多种,SFN便是其中之一[15-17]。研究表明,SFN可以在肿瘤发生发展的各个阶段起到抑制作用,还可以通过线粒体通路、死亡配体通路、内质网通路等多种不同的途径诱导肿瘤细胞凋亡。

  • 本研究从细胞及动物水平验证SFN对LLC细胞的影响,通过CCK⁃8法检测SFN对LLC增殖率的影响,结果显示SFN能显著抑制LLC细胞的增殖,且这种抑制作用呈SFN浓度依赖性;用流式细胞术研究了SFN对LLC细胞周期和细胞凋亡的影响,发现随着SFN浓度的增加,LLC细胞晚期凋亡率逐渐增加;其次,处于G0/G1期的细胞比例明显下降,而G2/M期的细胞比例明显上升,细胞周期相关基因CCDN1、CDK4、CDK6、CyclinB1和CDK1表达显著性下降。细胞周期的调控涉及细胞周期蛋白、细胞周期依赖性蛋白激酶及周期蛋白依赖性激酶抑制因子的整个协同运作。Cyclin D1基因编码G1/S特异性周期蛋白D1,是细胞周期的启动因子,属于高度保守的细胞周期家族,该家族在整个细胞周期中蛋白丰度具有周期性变化。CCND1这种亚型的周期蛋白与CDK4或CDK6形成复合物并作为它们的调节亚基,促进细胞增殖[18-19]。CyclinB1和CDK1作为细胞周期G2/M检查点的主要调控元件,CDK1与CyclinB1复合物的活化是启动有丝分裂的关键,同样是G2期进入M期的必要条件,是一个主要的在G2/M期发生转变,调控细胞是否通过G2期检查点的总开关[20]。SFN作用LLC细胞后的周期变化说明其可以调控LLC细胞的细胞周期,将其细胞周期阻滞在G2/M期,使其不能进入下一个细胞阶段G0/G1期和S期,从而阻止细胞完成DNA的合成和修复,进而使LLC细胞的增殖不能进入到下一个细胞周期,启动细胞凋亡,抑制LLC细胞生长增殖,从而可能达到治疗肿瘤的目的。

  • 图5 SFN对LLC细胞中ROS水平的影响

  • Fig.5 The effect of SFN on the ROS levels of LLC cell line

  • 图6 SFN对Nrf2⁃ERK蛋白表达的影响

  • Fig.6 The effect of SFN on the Nrf2⁃ERK signaling pathway

  • 图7 SFN对小鼠肿瘤体积和重量的影响

  • Fig.7 Effect of SFN on tumor size and weight in tu⁃ mor mice model

  • 在细胞凋亡的调控过程中氧化应激反应的作用至关重要,肿瘤细胞内的氧化还原稳态依赖于促氧和抗氧两个过程的相互平衡,两者异常都会造成细胞内ROS水平的升高。研究表明,SFN是一种有效的Nrf2诱导剂,其能够调控Nrf2从而诱导Ⅱ相解毒酶的活性,诱导细胞防御[21-22]。Nrf2为细胞防御机制的激活剂,氧化还原主要开关[23]。Nrf2可以在细胞核之间自由穿梭、迁移,胞质内的Keap ⁃1与Nrf2结合在肌动蛋白的骨架上,两者的结合状态可以调控细胞内蛋白体的降解[24]。本研究用SFN处理LLC细胞后,细胞的ERK磷酸化程度随着SFN的作用浓度和作用时间显著增强,Nrf2的蛋白水平也显著上升,且细胞内ROS表达水平显著升高。这一结果可能由于SFN能够直接结合在Keap⁃1的巯基上切断与Nrf2的结合,从而触发细胞的ERK磷酸化作用使得Nrf2从结合体上释放出来,分离后的Nrf2进入细胞核与ARE结合,诱导和上调Ⅱ相解毒酶的水平[25-27],抑制肿瘤细胞的抗氧化活性,使得肿瘤细胞内的ROS水平升高,促进肿瘤细胞的凋亡。

  • 总之,本研究结果表明SFN处理LLC细胞后激活了细胞内ERK磷酸化,使得细胞内Nrf2表达增加,细胞内ROS含量升高,阻滞细胞周期,从而加速肿瘤细胞的凋亡,抑制肿瘤细胞的生长。SFN大量存在于常见的可食性十字花科蔬菜,具有很好的安全性。此外,SFN的亲脂性和低分子量易于被动扩散到细胞中,可以被迅速吸收[28]。因此,SFN将会是一种安全且有效的抗癌药物,可能具有一定的市场应用前景。

  • 参考文献

    • [1] CHEN J,YANG R,LI H,et al.Green tea polyphenols pro⁃ mote functional recovery from peripheral nerve injury in rats[J].Med Sci Monit,2020,26:e923806

    • [2] XIE Y,HUANG J,DONG H,et al.Insight into perfor⁃ mance and mechanism of tea polyphenols and ferric ions on reductive decolorization of malachite green cationic dye under moderate conditions[J].J Environ Manage,2020,261:110226

    • [3] XING C,ZHANG Y,SU R,et al.Anticancer activity of Fi⁃ setin against the human osteosarcoma cell lines involves G2/M cell cycle arrest,mitochondrial apoptosis and inhi⁃ bition of cell migration and invasion[J].J BUON,2020,25(2):1022-1027

    • [4] SUNDARRAJ K,RAGHUNATH A,PANNEERSELVAM L,et al.Fisetin,a phytopolyphenol,targets apoptotic and necroptotic cell death in HepG2 cells[J].Bio Factors,2020,46(1):118-135

    • [5] HAYES J D,KELLEHER M O,EGGLESTON I M.The cancer chemopreventive actions of phytochemicals de⁃ rived from glucosinolates[J].Eur J Nutr,2008,47(2):73-88

    • [6] ARUMUGAM A,ABDULL RAZIS A F.Apoptosis as a mechanism of the cancer chemopreventive activity of glu⁃ cosinolates:a review[J].APJCP,2018,19(6):1439-1448

    • [7] KIM S H,PARK H J,MOON D O.Sulforaphane sensitiz⁃ es human breast cancer cells to paclitaxel⁃induced apopto⁃ sis by downregulating the NF ⁃ kappaB signaling pathway [J].Oncol Lett,2017,13(6):4427-4432

    • [8] FAHEY J W,HARISTOY X,DOLAN P M,et al.Sulfora⁃ phane inhibits extracellular,intracellular,and antibiotic ⁃ resistant strains of Helicobacter pylori and prevents benzo [a]pyrene ⁃induced stomach tumors[J].Proc Nati Acad Sci U S A,2002,99(11):7610-7615

    • [9] RUTZ J,THALER S,MAXEINER S,et al.Sulforaphane reduces prostate cancer cell growth and proliferation in vi⁃ tro by modulating the cdk ⁃ cyclin axis and expression of the CD44 variants 4,5,and 7[J].Int J Mol Sci,2020,21(22):8724

    • [10] SANTOS P W,MACHADO A R T,DE GRANDIS R,et al.Effects of sulforaphane on the oxidative response,apoptosis,and the transcriptional profile of human stomach mucosa cells in vitro[J].Mutat Res,2020,854 ⁃ 855:503201

    • [11] WANG F,LIU P,AN H,et al.Sulforaphane suppresses the viability and metastasis,and promotes the apoptosis of bladder cancer cells by inhibiting the expression of FAT1[J].Int J Mol Med,2020,46(3):1085-1095

    • [12] CITI V,PIRAGINE E,PAGNOTTA E,et al.Anticancer properties of erucin,an H2 S⁃releasing isothiocyanate,on human pancreatic adenocarcinoma cells(AsPC ⁃ 1)[J].PTR,2019,33(3):845-855

    • [13] SAYEED M A,BRACCI M,CIARAPICA V,et al.Allyl isothiocyanate exhibits no anticancer activity in MDA⁃MB ⁃231 breast cancer cells[J].Int J Mol Sci,2018,19(1):145

    • [14] ABBAOUI B,LUCAS C R,RIEDL K M,et al.Crucifer⁃ ous vegetables,isothiocyanates,and bladder cancer pre⁃ vention[J].Mol Nutr Food Res,2018,62(18):e1800079

    • [15] GASPARELLO J,GAMBARI L,PAPI C,et al.High lev⁃ els of apoptosis are induced in the human colon cancer HT⁃ 29 cell line by co ⁃ administration of sulforaphane and a peptide nucleic acid targeting miR ⁃ 15b ⁃ 5p[J].Nucleic Acid Ther,2020,30(3):164-174

    • [16] ULLAH M F.Sulforaphane(SFN):an isothiocyanate in a cancer chemoprevention paradigm[J].Medicines,2015,2(3):141-156

    • [17] ALZOUBI K,CALABRO S,FAGGIO C,et al.Stimulation of suicidal erythrocyte death by sulforaphane[J].Basic Clin Pharmacol Toxicol,2015,116(3):229-235

    • [18] ZHOU L,LIU R,LIANG X,et al.lncRNA RP11⁃624L4.1 is associated with unfavorable prognosis and promotes proliferation via the CDK4/6⁃Cyclin D1⁃Rb ⁃E2F1 path⁃ way in NPC[J].Mol Ther Nucleic Acids,2020,22:1025-1039

    • [19] COSTA ⁃ GUDA J,CORRADO K,BELLIZZI J,et al.CDK4/6 dependence of cyclin D1⁃driven parathyroid neo⁃ plasia in transgenic mice[J].Endocrinol,2020,161(10):bqaa159

    • [20] XIE X,LIN W,ZHENG W,et al.Downregulation of G2/mitotic ⁃ specific cyclinB1 triggers autophagy via AMPK ⁃ ULK1⁃dependent signal pathway in nasopharyngeal carci⁃ noma cells[J].Cell Death Dis,2019,10(2):94

    • [21] LV D,ZHOU Q,XIA Y,et al.The association between ox⁃ idative stress alleviation via sulforaphane ⁃induced Nrf2 ⁃ HO⁃1/NQO⁃1 signaling pathway activation and chronic re⁃ nal allograft dysfunction improvement[J].Kidney Blood Press Res,2018,43(1):191-205

    • [22] XUE D,ZHOU X,QIU J.Emerging role of NRF2 in ROS⁃ mediated tumor chemoresistance[J].Biomed pharmacoth⁃ er,2020,131:110676

    • [23] CHOI J W,KIM G J,KIM H J,et al.Identification and evaluation of a napyradiomycin as a potent Nrf2 activator:anti⁃oxidative and anti⁃inflammatory activities[J].Bioorg Chem,2020,105:104434

    • [24] FENG H,WANG L,ZHANG G,et al.Oxidative stress ac⁃ tivated by Keap⁃1/Nrf2 signaling pathway in pathogenesis of preeclampsia[J].Int J Clin Exp Pathol,2020,13(3):382-392

    • [25] LONDON N R J R,THARAKAN A,MENDIOLA M,et al.Nrf2 activation via Keap1 deletion or sulforaphane treat⁃ ment reduces ova⁃induced sinonasal inflammation[J].Al⁃ lergy,2019,74(9):1780-1783

    • [26] LICZNERSKA B,SZAEFER H,KRAJKA ⁃KUZNIAK V.R⁃sulforaphane modulates the expression profile of AhR,ERalpha,Nrf2,NQO1,and GSTP in human breast cell lines[J].Mol Cell Biochem,2021,476(2):525-533

    • [27] LI Z,GUO H,LI J,et al.Sulforaphane prevents type 2 di⁃ abetes ⁃induced nephropathy via AMPK ⁃mediated activa⁃ tion of lipid metabolic pathways and Nrf2 antioxidative function[J].Clin Sci,2020,134(18):2469-2487

    • [28] HANLON N,COLDHAM N,GIELBERT A,et al.Abso⁃ lute bioavailability and dose ⁃ dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothio⁃ cyanate sulforaphane in rat[J].Br J Nutr,2008,99(3):559-564

  • 参考文献

    • [1] CHEN J,YANG R,LI H,et al.Green tea polyphenols pro⁃ mote functional recovery from peripheral nerve injury in rats[J].Med Sci Monit,2020,26:e923806

    • [2] XIE Y,HUANG J,DONG H,et al.Insight into perfor⁃ mance and mechanism of tea polyphenols and ferric ions on reductive decolorization of malachite green cationic dye under moderate conditions[J].J Environ Manage,2020,261:110226

    • [3] XING C,ZHANG Y,SU R,et al.Anticancer activity of Fi⁃ setin against the human osteosarcoma cell lines involves G2/M cell cycle arrest,mitochondrial apoptosis and inhi⁃ bition of cell migration and invasion[J].J BUON,2020,25(2):1022-1027

    • [4] SUNDARRAJ K,RAGHUNATH A,PANNEERSELVAM L,et al.Fisetin,a phytopolyphenol,targets apoptotic and necroptotic cell death in HepG2 cells[J].Bio Factors,2020,46(1):118-135

    • [5] HAYES J D,KELLEHER M O,EGGLESTON I M.The cancer chemopreventive actions of phytochemicals de⁃ rived from glucosinolates[J].Eur J Nutr,2008,47(2):73-88

    • [6] ARUMUGAM A,ABDULL RAZIS A F.Apoptosis as a mechanism of the cancer chemopreventive activity of glu⁃ cosinolates:a review[J].APJCP,2018,19(6):1439-1448

    • [7] KIM S H,PARK H J,MOON D O.Sulforaphane sensitiz⁃ es human breast cancer cells to paclitaxel⁃induced apopto⁃ sis by downregulating the NF ⁃ kappaB signaling pathway [J].Oncol Lett,2017,13(6):4427-4432

    • [8] FAHEY J W,HARISTOY X,DOLAN P M,et al.Sulfora⁃ phane inhibits extracellular,intracellular,and antibiotic ⁃ resistant strains of Helicobacter pylori and prevents benzo [a]pyrene ⁃induced stomach tumors[J].Proc Nati Acad Sci U S A,2002,99(11):7610-7615

    • [9] RUTZ J,THALER S,MAXEINER S,et al.Sulforaphane reduces prostate cancer cell growth and proliferation in vi⁃ tro by modulating the cdk ⁃ cyclin axis and expression of the CD44 variants 4,5,and 7[J].Int J Mol Sci,2020,21(22):8724

    • [10] SANTOS P W,MACHADO A R T,DE GRANDIS R,et al.Effects of sulforaphane on the oxidative response,apoptosis,and the transcriptional profile of human stomach mucosa cells in vitro[J].Mutat Res,2020,854 ⁃ 855:503201

    • [11] WANG F,LIU P,AN H,et al.Sulforaphane suppresses the viability and metastasis,and promotes the apoptosis of bladder cancer cells by inhibiting the expression of FAT1[J].Int J Mol Med,2020,46(3):1085-1095

    • [12] CITI V,PIRAGINE E,PAGNOTTA E,et al.Anticancer properties of erucin,an H2 S⁃releasing isothiocyanate,on human pancreatic adenocarcinoma cells(AsPC ⁃ 1)[J].PTR,2019,33(3):845-855

    • [13] SAYEED M A,BRACCI M,CIARAPICA V,et al.Allyl isothiocyanate exhibits no anticancer activity in MDA⁃MB ⁃231 breast cancer cells[J].Int J Mol Sci,2018,19(1):145

    • [14] ABBAOUI B,LUCAS C R,RIEDL K M,et al.Crucifer⁃ ous vegetables,isothiocyanates,and bladder cancer pre⁃ vention[J].Mol Nutr Food Res,2018,62(18):e1800079

    • [15] GASPARELLO J,GAMBARI L,PAPI C,et al.High lev⁃ els of apoptosis are induced in the human colon cancer HT⁃ 29 cell line by co ⁃ administration of sulforaphane and a peptide nucleic acid targeting miR ⁃ 15b ⁃ 5p[J].Nucleic Acid Ther,2020,30(3):164-174

    • [16] ULLAH M F.Sulforaphane(SFN):an isothiocyanate in a cancer chemoprevention paradigm[J].Medicines,2015,2(3):141-156

    • [17] ALZOUBI K,CALABRO S,FAGGIO C,et al.Stimulation of suicidal erythrocyte death by sulforaphane[J].Basic Clin Pharmacol Toxicol,2015,116(3):229-235

    • [18] ZHOU L,LIU R,LIANG X,et al.lncRNA RP11⁃624L4.1 is associated with unfavorable prognosis and promotes proliferation via the CDK4/6⁃Cyclin D1⁃Rb ⁃E2F1 path⁃ way in NPC[J].Mol Ther Nucleic Acids,2020,22:1025-1039

    • [19] COSTA ⁃ GUDA J,CORRADO K,BELLIZZI J,et al.CDK4/6 dependence of cyclin D1⁃driven parathyroid neo⁃ plasia in transgenic mice[J].Endocrinol,2020,161(10):bqaa159

    • [20] XIE X,LIN W,ZHENG W,et al.Downregulation of G2/mitotic ⁃ specific cyclinB1 triggers autophagy via AMPK ⁃ ULK1⁃dependent signal pathway in nasopharyngeal carci⁃ noma cells[J].Cell Death Dis,2019,10(2):94

    • [21] LV D,ZHOU Q,XIA Y,et al.The association between ox⁃ idative stress alleviation via sulforaphane ⁃induced Nrf2 ⁃ HO⁃1/NQO⁃1 signaling pathway activation and chronic re⁃ nal allograft dysfunction improvement[J].Kidney Blood Press Res,2018,43(1):191-205

    • [22] XUE D,ZHOU X,QIU J.Emerging role of NRF2 in ROS⁃ mediated tumor chemoresistance[J].Biomed pharmacoth⁃ er,2020,131:110676

    • [23] CHOI J W,KIM G J,KIM H J,et al.Identification and evaluation of a napyradiomycin as a potent Nrf2 activator:anti⁃oxidative and anti⁃inflammatory activities[J].Bioorg Chem,2020,105:104434

    • [24] FENG H,WANG L,ZHANG G,et al.Oxidative stress ac⁃ tivated by Keap⁃1/Nrf2 signaling pathway in pathogenesis of preeclampsia[J].Int J Clin Exp Pathol,2020,13(3):382-392

    • [25] LONDON N R J R,THARAKAN A,MENDIOLA M,et al.Nrf2 activation via Keap1 deletion or sulforaphane treat⁃ ment reduces ova⁃induced sinonasal inflammation[J].Al⁃ lergy,2019,74(9):1780-1783

    • [26] LICZNERSKA B,SZAEFER H,KRAJKA ⁃KUZNIAK V.R⁃sulforaphane modulates the expression profile of AhR,ERalpha,Nrf2,NQO1,and GSTP in human breast cell lines[J].Mol Cell Biochem,2021,476(2):525-533

    • [27] LI Z,GUO H,LI J,et al.Sulforaphane prevents type 2 di⁃ abetes ⁃induced nephropathy via AMPK ⁃mediated activa⁃ tion of lipid metabolic pathways and Nrf2 antioxidative function[J].Clin Sci,2020,134(18):2469-2487

    • [28] HANLON N,COLDHAM N,GIELBERT A,et al.Abso⁃ lute bioavailability and dose ⁃ dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothio⁃ cyanate sulforaphane in rat[J].Br J Nutr,2008,99(3):559-564