en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

毛慧娟,E⁃mail:huijuanmao@126.com;

邢昌赢,cyxing62@126.com

中图分类号:R542.21

文献标识码:A

文章编号:1007-4368(2022)02-279-07

DOI:10.7655/NYDXBNS20220222

参考文献 1
RADHAKRISHNAN A,PICKUP L C,PRICE A M,et al.Coronary microvascular dysfunction:a key step in the de⁃ velopment of uraemic cardiomyopathy?[J].Heart,2019,105(17):1302-1309
参考文献 2
LAW J P,PRICE A M,PICKUP L,et al.Clinical poten⁃ tial of targeting fibroblast growth factor⁃23 and αklotho in the treatment of uremic cardiomyopathy[J].J Am Heart Assoc,2020,9(7):e016041
参考文献 3
WANNER C,AMANN K,SHOJI T.The heart and vascu⁃ lar system in dialysis[J].Lancet,2016,388(10041):276-284
参考文献 4
AOKI J,IKATI Y,NAKAJIMA H,et al.Clinical and pathologic characteristics of dilated cardiomyopathy in he⁃ modialysis patients[J].Kidney Int,2005,67(1):333-340
参考文献 5
ZOCCALI C,MOISSL U,CHAZOT C,et al.Chronic fluid overload and mortality in esrd[J].J Am Soc Nephrol,2017,28(8):2491-2497
参考文献 6
WANG X,SHAPIRO J I.Evolving concepts in the patho⁃ genesis of uraemic cardiomyopathy[J].Nat Rev Nephrol,2019,15(3):159-175
参考文献 7
FERNANDEZ⁃RUIZ I.Pharmacotherapy:angiotensin ii ⁃ a new tool in vasodilatory shock[J].Nat Rev Cardiol,2017,14(7):384
参考文献 8
PARK J.Cardiovascular risk in chronic kidney disease:Role of the sympathetic nervous system[J].Cardiol Res Pract,2012:319432
参考文献 9
ANDERSSON P,RYDBERG E,WILLENHEIMER R.Pri⁃mary hyperparathyroidism and heart disease ⁃ ⁃ a review [J].Eur Heart J,2004,25(20):1776-1787
参考文献 10
郁娃林,白剑,王彦涵,等.25⁃羟维生素D、血清甲状旁腺激素与射血分数减低心力衰竭的相关性分析[J].南京医科大学学报(自然科学版),2018,38(8):1124-1130
参考文献 11
SLININ Y,FOLEY R N,COLLINS A J,et al.Calcium,phosphorus,parathyroid hormone,and cardiovascular dis⁃ ease in hemodialysis patients:the usrds waves 1,3,and 4 study[J].J Am Soc Nephrol,2005,16(6):1788-1793
参考文献 12
NITSA A,TOUTOUZA M,MACHAIRAS N,et al.Vita⁃ min d in cardiovascular disease[J].In Vivo,2018,2(5):977-981
参考文献 13
LEIFHEIT⁃NESTLERM,GRABNER A,HERMANN L,et al.Vitamin D treatment attenuates cardiac fgf23/fgfr4 sig⁃ naling and hypertrophy in uremic rats[J].Nephrol Dial Transplant,2017,32(9):1493-1503
参考文献 14
FAUL C.Fibroblast growth factor 23 and the heart[J].Curr Opin Nephrol Hypertens,2012,21(4):369-375
参考文献 15
PASTOR⁃ARROYO E M,GEHRING N,KRUDEWIG C,et al.The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascu⁃ lar disease risk[J].Kidney Int,2018,94(1):49-59
参考文献 16
DE ⁃ALBUQUERQUE P G,SANDERS ⁃ PINHEIRO H,De⁃ PAULA R B.Uremic cardiomyopathy:a new piece in the chronic kidney disease ⁃ mineral and bone disorder puzzle[J].Front Med(Lausanne),2018,5:206
参考文献 17
HALLER S T,YAN Y,DRUMMOND C A,et al.Rapamy⁃ cin attenuates cardiac fibrosis in experimental uremic car⁃ diomyopathy by reducing marinobufagenin levels and in⁃ hibiting downstream pro ⁃ fibrotic signaling[J].J Am Heart Assoc,2016,5(10):e004106
参考文献 18
SODHI K,WANG X L,CHAUDHRY M A,et al.Central role for adipocyte Na,K⁃atpase oxidant amplification loop in the pathogenesis of experimental uremic cardiomyopa⁃ thy[J].J Am Soc Nephrol,2020,31(8):1746-1760
参考文献 19
WINTERBERG P D,ROBERTSON J M,KELLEMAN M S,et al.T cells play a causal role in diastolic dysfunction during uremic cardiomyopathy[J].J Am Soc Nephrol,2019,30(3):407-420
参考文献 20
WANG B,WANG Z M,Ji J L,et al.Macrophage ⁃derived exosomal miR ⁃ 155 regulating cardiomyocyte pyroptosis and hypertrophy in uremic cardiomyopathy[J].JACC Ba⁃ sic Transl Sci,2020,5(2):148-166
参考文献 21
WANG B,ZHANG A Q,WANG H D,et al.miR⁃26a lim⁃ its muscle wasting and cardiac fibrosis through exosome ⁃ mediated microRNA transfer in chronic kidney disease [J].Theranostics,2019,9(7):1864-1877
参考文献 22
VANHOLDER R,SCHEPERS E,PLETINCK A,et al.The uremic toxicity of indoxyl sulfate and p⁃cresyl sulfate:a systematic review[J].J Am Soc Nephrol,2014,25(9):1897-1907
参考文献 23
FUJII H,GOTO S,FUKAGAWA M.Role of uremic tox⁃ ins for kidney,cardiovascular,and bone dysfunction[J].Toxins(Basel),2018,10(5):202
参考文献 24
KOPPE L,FOUQUE D.Microbiota and prebiotics modu⁃ lation of uremic toxin generation[J].Panminerva Med,2017,59(2):173-187
参考文献 25
CHEN T C,WANG C Y,HSU C Y,et al.Free p ⁃ cresol sulfate is associated with survival and function of vascular access in chronic hemodialysis patients[J].Kidney Blood Press Res,2012,35(6):583-588
参考文献 26
GRYP T,VANHOLDER R,VANEECHOUTTE M,et al.P⁃cresyl sulfate[J].Toxins(Basel),2017,9(2):52
参考文献 27
JING Y J,NI J W,DING F H,et al.P⁃cresyl sulfate is as⁃ sociated with carotid arteriosclerosis in hemodialysis pa⁃ tients and promotes atherogenesis in apoe ⁃/⁃ mice[J].Kidney Int,2016,89(2):439-449
参考文献 28
LI H Y,LIU F,GAO C,et al.Protective effect of simvas⁃ tatin on arterial plaque instability induced by p⁃cresyl sul⁃ fate[J].Eur Rev Med Pharmacol Sci,2018,22(18):6149-6155
参考文献 29
GROSS P,MASSY Z A,HENAUT L,et al.Para ⁃ cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling[J].J Cell Physiol,2015,230(12):2927-2935
参考文献 30
OPDEBEECK B,D’HAESE P C,VERHULST A.Molecu⁃ lar and cellular mechanisms that induce arterial calcifica⁃ tion by indoxyl sulfate and p⁃cresyl sulfate[J].Toxins(Ba⁃ sel),2020,12(1):58
参考文献 31
OPDEBEECK B,MAUDSLEY S,AZMI A,et al.Indoxyl sulfate and p⁃cresyl sulfate promote vascular calcification and associate with glucose intolerance[J].J Am Soc Nephrol,2019,30(5):751-766
参考文献 32
HAN H,ZHU J,ZHU Z,et al.P⁃cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney dis⁃ ease by enhancing apoptosis of cardiomyocytes[J].J Am Heart Assoc,2015,4(6):e001852
参考文献 33
YANG K,WANG C,NIE L,et al.Klotho protects against indoxyl sulphate ⁃ induced myocardial hypertrophy[J].J Am Soc Nephrol,2015,26(10):2434-2446
参考文献 34
HSU Y,HSU S,CHANG Y,et al.Indoxyl sulfate upregu⁃ lates the cannabinoid type 1 receptor gene via an ATF3/c⁃ Jun complex ⁃mediated signaling pathway in the model of uremic cardiomyopathy[J].Int J Cardiol,2018,252:128-135
参考文献 35
YISIREYILI M,SHIMIZU H,SAITO S,et al.Indoxyl sul⁃ fate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats[J].Life Sci,2013,92(24⁃26):1180-1185
参考文献 36
SATO B,YOSHIKAWA D,ISHII H,et al.Relation of⁃ plasma indoxyl sulfate levels and estimated glomerular fil⁃ tration rate to left ventricular diastolic dysfunction[J].Am J Cardiol,2013,111(5):712-716
参考文献 37
TANG W H,WANG C P,CHUNG F M,et al.Uremic re⁃ tention solute indoxyl sulfate level is associated with pro⁃ longed QT cinterval in early CKD patients[J].PLoS One,2015,10(4):e0119545
参考文献 38
CHEN WT,CHEN Y C,HSIEH M H,et al.The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis[J].J Cardiovasc Electrophysiol,2015,26(2):203-210
参考文献 39
DUQUE E J,Elias R M,Moysés R M.Parathyroid hor⁃ mone:a uremic toxin[J].Toxins(Basel),2020,12(3):189
参考文献 40
LEKAWANVIJIT S.Cardiotoxicity of uremic toxins:a driver of cardiorenal syndrome[J].Toxins(Basel).2018,10(9):352
参考文献 41
KURO⁃O M,MATSUMURA Y,AIZAWA H,et al.Muta⁃ tion of the mouse Klotho gene leads to a syndrome resem⁃ bling ageing[J].Nature,1997,390(6655):45-51
参考文献 42
梁艳,陈波,位云艳,等.KLl 在人非小细胞肺癌A549细胞中的作用及其相关机制研究[J].南京医科大学学报(自然科学版),2016,36(9):1031-1045
参考文献 43
BARKER S L,PASTOR J,CARRANZA D,et al.The dem⁃ onstration of αklotho deficiency in human chronic kidney disease with a novel synthetic antibody[J].Nephrol Dial Transplant,2015,30(2):223-233
参考文献 44
HU M C,SHI M,CHO H J,et al.Klotho and phosphate are modulators of pathologic uremic cardiac remodeling [J].J Am Soc Nephrol,2015,26(6):1290-1302
参考文献 45
XIE J,YOON J,AN S W,et al.Soluble klotho protects against uremic cardiomyopathy independently of fibro⁃ blast growth factor 23 and phosphate[J].J Am Soc Nephrol,2015,26(5):1150-1160
参考文献 46
MING CHANG H U,MINGJUN S H I,HAN JUN C H O,et al.Klotho and phosphate are modulators of pathologic uremic cardiac remodeling[J].J Am Soc Nephrol.2015,26(6):1290-1302
参考文献 47
YANG K,WANG C,NIE L,et al.Klotho protects against indoxyl sulphate ⁃ induced myocardial hypertrophy[J].J Am Soc Nephrol,2015,26(10):2434-2446
参考文献 48
XIE J,CHA S K,AN S W,et al.Cardioprotection by klotho through downregulation of TRPC6 channels in the mouse heart[J].Nat Commun,2012,3:1238
目录contents

    摘要

    尿毒症心肌病是慢性肾脏病常见的心血管并发症之一,是导致尿毒症患者病死率增高的重要原因。尿毒症心肌病主要表现为左心室肥厚、心脏纤维化、心脏收缩和/或舒张功能障碍。尿毒症心肌病发病机制复杂,目前尚未完全阐明。文章从非传统心血管危险因素角度,综述了近年来尿毒症心肌病发病机制的新进展,并且介绍了本课题组最新的研究结果,为尿毒症心肌病的发病机制研究提供新的可能切入点。

    Abstract

    Uremia cardiomyopathy,the most important direct cause of death in end stage kidney disease patients,is one of the important cardiovascular complications of chronic kidney disease. Uremia cardiomyopathy is characterized by left ventricular hypertrophy,fibrosis,systolic and/or diastolic dysfunction. The pathogenesis of uremia cardiomyopathy is complex and has not been fully elucidated. This article reviews the recent advances in the pathogenesis of uremia cardiomyopathy from the perspectives of non⁃ traditional cardiovascular risk factors. In addition,we introduce our latest results,and provide a new possible entry point for the research of pathogenesis of uremia cardiomyopathy.

  • 慢性肾脏病(chronic kidney disease,CKD)是一个全球性的公共健康问题,CKD可导致心血管疾病风险增高,最终缩短患者寿命。在终末期肾脏病 (end stage renal disease,ESRD)患者中,心血管疾病导致的病死率较普通人群高出15~30倍。在诸多CKD心血管并发症中,尿毒症心肌病(uremic cardio⁃ myopathy,UCM)日益受到人们关注。UCM常表现为左心室肥厚(left ventricular hypertrophy,LVH)、心脏收缩和/或舒张功能障碍,并可出现心脏纤维化。超过70%的ESRD患者会出现LVH[1]。上述心脏结构与功能异常可导致心脏机械活动和心脏电活动异常[2]

  • LVH是UCM特征性的病理改变,约40%的估计肾小球滤过率(estimated glomerular filtration rate, eGFR)<30mL/(min·1.73m2)的患者心脏超声检查已出现LVH,而在ESRD患者中有80%左右出现LVH。在CKD或ESRD患者中,LVH与患者死亡、伴有心脏收缩和舒张功能异常的心力衰竭、心律失常等密切相关。事实上,心脏结构改变在CKD早期就已开始,LVH患病率增高与肾功能恶化呈线性相关。在CKD患者中,心脏舒张功能异常很常见,有2/3的CKD 2~4期患者已出现心脏舒张功能异常,在ESRD患者中这一比例则高达85%。舒张功能障碍与LVH、心脏纤维化高度相关,并可导致患者病死率上升。并且舒张功能障碍是透析患者频繁出现肺水肿、透析过程中低血压的主要原因之一[3]。左心室收缩功能异常在CKD早期患者中发生率低于舒张功能异常,但在ESRD患者中,左心室收缩功能异常发生率明显升高,是正常人群的10~30倍。心脏纤维化也是UCM特征之一。在上世纪90年代,对于CKD或ESRD死者尸检的研究中发现,有91%的心脏标本出现心脏纤维化,同时动脉却尚未见明显的管腔狭窄。纤维化的程度与透析时间有关,与血压、糖尿病、贫血等因素无关。数十年后,Aoki等[4] 对40例伴有左心室射血分数降低但无冠脉疾病的ESRD患者进行心内膜下心肌活检,发现心脏存在广泛的纤维化。

  • 1 尿毒症心肌病的危险因素与发病机制

  • UCM的发病机制非常复杂,目前尚未全完阐明。学者们普遍认为导致UCM的原因既有传统危险因素,也有与CKD特异性相关的非传统因素。

  • 1.1 传统危险因素

  • 血流动力学负荷异常[5-6]、肾素⁃血管紧张素⁃醛固酮系统激活[7]、交感神经系统激活[8]、转化生长因子⁃β(transforming growth factor⁃β)表达增加等。

  • 1.2 非传统危险因素

  • 1.2.1 继发性甲状旁腺功能亢进

  • CKD患者中持续升高的甲状旁腺激素(parathy⁃ roid hormone,PTH)在血管钙化、心脏肥厚、心脏功能异常中发挥了重要作用[9-10]。高PTH血症可能是导致CKD(特别是ESRD)患者心血管原因死亡的重要因素。在ESRD患者中的研究已证实,高甲PTH血症和心血管事件正相关。在心肌细胞中,PTH与1型G蛋白偶联受体结合,激活腺苷酸环化酶,随后使得钙离子内流。钙离子内流可活化磷脂酶C⁃蛋白激酶C(phospholipase C ⁃ protein kinase C,PLC ⁃ PKC)信号通路,PKC作用于其下游靶基因,促进心肌肥厚。肾脏是调节磷排泄、维持血磷平衡的重要器官,CKD时血磷平衡受到影响,出现高磷血症。研究显示,在CKD患者中血磷升高和心血管死亡风险增加密切相关,一项超过14 000例透析患者的研究结果证实,血磷浓度和心血管疾病呈现正相关[11]。高血磷导致心血管疾病的机制非常复杂,高磷可能通过影响血管平滑肌细胞的Ⅲ型钠磷共转运体诱导血管钙化,导致血管顺应性降低,增加心脏后负荷,最终诱导心肌肥厚。大部分CKD患者因25羟维生素D转化酶功能异常而出现维生素D缺乏,多项流行病学及临床研究提示,在CKD患者中维生素D缺乏和心血管疾病密切相关,维生素D除了影响肠道的钙磷吸收外,在心血管疾病中也发挥了重要作用。维生素D在心脏中具有抗增殖作用[12],其机制既与维生素D对心肌细胞的直接作用有关,又与维生素D调控肾素⁃血管紧张素⁃醛固酮系统、胰岛素系统有关。在体外培养的心肌细胞研究中发现,活性维生素D可以抑制心肌细胞肥大。相反,维生素D受体敲除的小鼠可出现肾素mRNA和血浆血管紧张素Ⅱ水平的升高,并产生高血压和心脏肥厚,血管紧张素转化酶抑制剂则可减轻上述表现,补充维生素D也可降低肾素mRNA水平。在肾切除大鼠模型中,补充维生素D可降低成纤维细胞生长因子23 (fibroblast growth factors,FGF23)的表达,并抑制其下游信号通路[13]。FGF23是一种由成骨细胞产生的可调节钙磷代谢的激素,通常情况下FGF23以具有生物学活性的全长分子形式存在,但也可被蛋白酶水解为氨基端和羧基端。FGF23可以和1型FGF受体以及其辅助因子Klotho蛋白结合,减少肾小管对磷的重吸收,增加磷的排泄降低血磷。FGF23还可通过抑制肾脏中α⁃羟化酶活性抑制1,25羟维生素D的活化。随着肾功能的下降,血清中FGF23浓度进行性升高,ESRD患者体内FGF23浓度较正常人升高数千倍。临床研究已发现,血清FGF23水平和心血管疾病具有明显相关性,特别是和心脏肥厚密切相关,提示FGF23可能是UCM的致病因素。 FGF23干预体外培养的乳大鼠心肌细胞后发现,其具有诱导心肌细胞肥大,促进各种促心肌细胞肥大基因的表达的作用,其机制与FGF受体介导的磷脂酶γ⁃钙调磷酸酶⁃活化T细胞核因子(PLCγ⁃calcineu⁃ rin⁃nuclear target of activated T cells)通路有关。向小鼠注射FGF23可以诱导促心脏肥厚基因表达,并且小鼠心室肥厚不依赖于血压和心脏收缩力的改变。在5/6肾切除大鼠肾衰模型中,血清FGF23水平明显升高,给予FGF受体抑制剂可减少左室质量、室壁厚度和心肌细胞体积的增加[14]。但也有研究发现,FGF23与尿毒症心肌病无明确关系。2018年的一项研究报道,在无肾脏损害的前提下,循环中高FGF23水平并不足以引起心血管疾病[15],并且,不含钙的磷结合剂可以降低血清FGF23水平,但并不能改善CKD患者左心室肥厚或心功能。显而易见,FGF23对心脏结构和功能影响的机制目前尚不完全清楚,除了FGF23对心脏的直接作用外,CKD相关的高FGF23血症可能通过多个协同机制共同损害心脏。PTH、血磷、维生素D、FGF23水平异常是慢性肾脏病⁃矿物质与骨代谢紊乱(chronic kidney disease⁃mineral and bone disorder,CKD⁃MBD)重要的表现之一。鉴于上述分子与UCM之间的密切联系, Paulo等[16] 提出,CKD⁃MBD概念的范围应该加以扩大,尿毒症心肌病应包含在CKD⁃MBD范围中。

  • 1.2.2 胰岛素抵抗

  • CKD患者常出现能量代谢异常,随着肾功能的下降,胰岛素抵抗愈发严重,当疾病进展为ESRD时,胰岛素的清除严重受损,这会进一步加重高胰岛素血症。临床研究证实胰岛素抵抗和CKD患者心血管并发症密切相关,是ESRD患者心血管死亡的独立预测因子。

  • 1.2.3 内源性强心激素水平升高

  • 已有研究发现通过部分肾切除术构建实验性CKD动物体内循环中的海蟾蜍毒素水平升高,而拮抗海蟾蜍毒素可缓解实验性UCM的发展。通过微泵向大鼠体内输注海蟾蜍毒素,并使其浓度达到与部分肾切除导致CKD时相似的海蟾蜍毒素水平后, 实验动物会出现与部分肾切除CKD模型相似的UCM表型。在部分肾切除或海蟾蜍毒素输注的大鼠模型中,氧化应激、促心脏肥厚基因表达是增加的。来源于心脏组织的海蟾蜍毒素具有促纤维化的作用,非特异性的酪氨酸激酶抑制剂除莠霉素 (herbimycin)或非特异性的抗氧剂N⁃乙酰半胱氨酸则可以阻断这种作用,提示了内源性强心激素通过促纤维化参与UCM发展。通过中和抗体拮抗内源性强心激素,或使用螺内酯和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路抑制剂雷帕霉素阻断其与Na+ ⁃K+ ⁃ATP酶结合,都可以抑制部分肾切除诱导CKD心脏肥厚和纤维化[17]。 内源性强心激素可以在不影响Na+ ⁃K+ ⁃ATP酶泵活性的前提下激活Na+ ⁃K+ ⁃ATP酶介导的级联信号通路,改变靶基因表达,这表明Na+ ⁃K+ ⁃ATP酶具有受体样作用。Na+ ⁃K+ ⁃ATP酶受体功能的实现也需要原癌分子酪氨酸激酶Src通路介导的表皮生长因子反式激活后的蛋白募集和组装。当哇巴因与Na+ ⁃K+ ⁃ ATP酶结合后,原癌分子酪氨酸激酶Src就离开其与Na+ ⁃K+ ⁃ATP酶α1亚基的结合位点并被活化。活化的原癌分子酪氨酸激酶Src可反式激活下游大量的效应器如细胞外调节蛋白激酶(extracellular regulat⁃ ed protein kinases,ERK)、mTOR以及丝裂原活化蛋白激酶(mitogen ⁃ activated protein kinase,MAPK) 等。通过对哇巴因敏感或抵抗的Na+ ⁃K+ ⁃ATP酶亚基转基因鼠进行胸主动脉缩窄手术增加心室负荷的研究发现,对哇巴因敏感的转基因鼠表现出更为严重的心功能障碍。此外,敲除Na+ ⁃K+ ⁃ATP酶α1亚基的小鼠行部分肾切除诱导CKD手术后可以发现,心脏中死亡的细胞明显增加,这些研究结果也进一步验证了内源性强心激素介导的Na+ ⁃K+ ⁃ATP酶信号通路在UCM有着重要的作用。

  • 1.2.4 Na+ ⁃K+ ⁃ATP酶⁃原癌分子酪氨酸激酶Src⁃活性氧放大环

  • 在早期的研究中已发现,Na+ ⁃K+ ⁃ATP酶介导的信号转导和活性氧(reactive oxygen species,ROS)生成之间存在内在联系,并且在哇巴因诱导心肌细胞肥大的体外研究中发现,ROS在此过程中起到了十分重要的作用,抗氧化剂N⁃乙酰半胱氨酸或维生素E都可以减轻心肌细胞肥大。ROS可以调控Na+ ⁃K+ ⁃ ATP酶α1亚基的结构和功能,其可通过诱导α1亚基的羰基化激活Na+ ⁃K+ ⁃ATP酶信号通路,继而激活原癌分子酪氨酸激酶Src及其下游的ERK信号通路,最终促进ROS生成。因此ROS不仅是由Na + ⁃K+ ⁃ ATP酶产生,也可以反过来激活Na+ ⁃K+ ⁃ATP酶,形成一个正反馈的Na+ ⁃K+ ⁃ATP酶放大环[18]。使用可以拮抗Na+ ⁃K+ ⁃ATP酶⁃原癌分子酪氨酸激酶Src信号通路的Na+ ⁃K+ ⁃ATP肽可以减轻UCM[18]。在肾大部切除诱导UCM小鼠中,Na+ ⁃K+ ⁃ATP肽干预可以减轻系统性的氧化应激和Na+ ⁃K+ ⁃ATP酶放大环,改善心脏肥厚与纤维化,改善左心室舒张功能,甚至可以减轻贫血[18]

  • 1.2.5 T细胞也参与了UCM的发展

  • Pamela等[19] 发现CKD小鼠心脏内T细胞浸润,其中包括带有记忆分化标记CD44hi的T细胞以及带有激活标记PD⁃1、KLRG1、OX40的T细胞。耗竭T细胞可以改善CKD小鼠心脏的舒张功能和心肌劳损。

  • 1.2.6 microRNA

  • 国内学者发现,microRNA(miR)亦参与了UCM。Wang等[20] 研究发现,miR⁃155可加重UCM,其机制与抑制FoXO3a表达,促进心肌细胞焦亡(py⁃ roptosis)有关。有趣的是,miR ⁃ 26a却可以减轻UCM。Wang等[21] 的另外一个研究发现,CKD小鼠心脏中miR⁃26a表达降低,向CKD小鼠注射miR⁃ 26a可减轻心脏纤维化,改善心功能。以上结果提示,miR参与UCM,且不同miR对UCM产生不同的影响。

  • 1.2.7 尿毒症毒素

  • 越来越多的证据表明,尿毒症状态是UCM发生发展的重要原因[22],正常人体需要经过肾脏代谢或排出大量化合物,但肾功能异常时,这些化合物会在机体内大量蓄积[22-24],这些在体内异常蓄积的化合物被称为尿毒症毒素。有些毒素,如硫酸对甲酚 (p⁃cresyl sulfate,PCS)是CKD患者全因死亡和心血管死亡的独立预测因子[25]

  • 一般情况下,一个人每日肠道摄入的蛋白或多肽大部分来自于外源性的食物。蛋白或多肽被分解为小的寡肽或者氨基酸。这些寡肽、氨基酸可以被结肠内的菌群吸收利用,或在酶作用下进一步代谢。酪氨酸、苯丙氨酸等芳香族氨基酸主要在结肠远端经过一系列脱氨基、转氨基、脱羧基等化学反应转换成苯酚或甲酚等酚类化合物[26]。在结肠黏膜、肝脏中甲苯酚被硫化为PCS,进入循环系统,并与血浆蛋白可逆性结合。游离型的PCS经过肾小球滤过排出,结合型的PCS由肾小管上皮细胞分泌排出。CKD时PCS排泄受到损害,导致体内PCS浓度增高。

  • PCS对心血管系统具有明显的毒性作用。首先,PCS可以损伤血管内皮细胞,伴有颈动脉粥样斑块的透析患者体内PCS浓度高于无颈动脉粥样斑块的患者,并且在为期5年的随访中发现,PCS浓度与颈动脉斑块面积增加正相关。多因素Logistic回归分析提示PCS是颈动脉粥样硬化性斑块发生和进展的独立危险因素。在体外细胞实验中发现PCS处理内皮细胞后肿瘤坏死因子⁃α(tumor necrosis factor⁃ α,TNF⁃α)、单核细胞趋化蛋白⁃1(monocyte chemo⁃ tactic protein⁃1,MCP⁃1)水平明显增加。内皮细胞中细胞间黏附因子(intercellular adhesion molecule, ICAM)、血管间黏附分子(vascular cell adhesion mol⁃ ecule,VCAM)水平也明显增加。在体内研究中发现,对行CKD造模的载脂蛋白E基因敲除(apo E⁃/⁃) 组小鼠再予PCS后,小鼠动脉的粥样斑块的面积较假手术组明显增加,斑块内胶原含量减少,这就提示了在体内PCS可促进动脉粥样硬化的发生[27]。Li等[28] 对载脂蛋白E基因敲除(apo E⁃/⁃)组小鼠PCS灌胃,发现PCS可以诱导动脉粥样硬化斑块的生长和不稳定。Gross等[29] 研究发现,PCS可以诱导内皮细胞氧化应激,加重苯肾上腺素诱导小鼠主动脉血管的收缩,其机制和PCS激活Rho激酶有关。有研究选取了100例透析患者,检测了血清中PCS前体甲苯酚的浓度,发现血清甲苯酚的浓度与循环中内皮微粒的数量正相关。此外,他们还在体外实验中发现,予PCS处理人脐静脉内皮细胞,PCS以浓度依赖性的方式,促进内皮微粒的释放。在血液透析患者中,颈动脉脉搏波速度与血清PCS浓度具有相关性。其次,PCS可诱导血管平滑肌钙化。研究发现,予腺嘌呤喂食大鼠构建CKD大鼠模型,并予PCS灌胃,可诱导大鼠主动脉和外周动脉钙化,为了明确PCS诱导血管钙化的机制,研究者应用蛋白组学结合生信分析的方法发现PCS激活急性时相反应信号通路以及凝血、糖代谢信号通路。此外PCS还可促进miRNA29b、miRNA223表达,继而激活wnt7b/β⁃catenin通路,诱导平滑肌细胞向成骨细胞转分化[30-31]。除此之外,PCS对心脏也有毒性作用。Han等[32] 研究发现,通过5/6肾切除手术建立CKD小鼠模型,并予PCS灌胃。相比对照组或未摄入PCS的CKD组,CKD+PCS组小鼠的心脏超声显示E峰/A峰下降,这提示了PCS处理的CKD小组心脏舒张功能出现明显减退。小鼠心脏组织Tunel检测提示CKD+PCS组小鼠心肌细胞凋亡明显增加,其机制与PCS促进NADPH氧化酶亚基和细胞内ROS表达有关。

  • 本课题组最新研究发现,PCS可以诱导心肌细胞肥大,其机制和PCS下调去乙酰化酶SIRT6表达,继而诱导mTOR信号通路活化有关。此外还发现PCS可以诱导心肌细胞凋亡,其机制与PCS诱导心肌细胞DNA双链断裂有关。动物实验发现,PCS可以加重5/6肾切除诱导的小鼠UCM,主要表现为加重心脏肥大、纤维化,增加心脏细胞凋亡。

  • 除了PCS,另一种尿毒症毒素硫酸吲哚酚(in⁃ doxyl sulfate,IS)在UCM中也起到了重要作用。国内学者Yang等[33] 发现,IS通过活化NADPH氧化酶2/4、MAPK信号通路等途径诱导心肌细胞肥大。 Hsu等[35] 发现,IS诱导心肌细胞线粒体产生活性氧,损伤心肌细胞,其机制与IS促进心肌细胞中1型大麻素受体(cannabinoid receptor type1)和转录激活因子3(activating transcription factor,ATF3)表达,增加c⁃Jun通路磷酸化水平有关[34]。在盐敏感高血压大鼠中,输注外源性IS可导致心脏纤维化。临床研究也发现,循环中IS水平增高与左心室舒张功能异常有关[36]。此外,IS还可影响心脏的电活动,IS与QT间期延长独立相关,而QT间期延长可导致室性心律失常[37],其机制可能与增加氧化应激[38]、延迟整流钾电流通道导致复极推迟有关[38]。有趣的是,除了上述蛋白质代谢产物类的毒素,有学者提出,尿毒症时机体内过高的FGF23、PTH等也应视为尿毒症毒素[39-40]

  • 1.2.8 Klotho缺乏

  • Kuro⁃o等[41] 在研究原发性高血压病实验中发现了具有抗衰老作用的Klotho基因及其编码的Klotho蛋白,其主要在肾脏、甲状旁腺以及脉络膜中表达。在人类和小鼠中,Klotho基因由5个外显子构成,Klotho蛋白存在1个较长的胞外域和1个较短的C基端的胞内域。胞外域由两个氨基酸重复序列Kl1和Kl2组成[42]。Klotho蛋白有膜型与可溶性两种形式。膜型Klotho蛋白与FGF23受体结合充当辅助受体介导FGF23信号的转导。Klotho亦以可溶性蛋白的形式存在于血液、尿液、脑脊液中。可溶性Klotho(soluble Klotho)包括由选择性转录剪切合成分泌性Klotho(secreted Klotho)以及裂解性Klotho (cleaved Klotho)组成。

  • 研究已证实,CKD时Klotho表达减少[43],Klotho缺陷小鼠会自发性产生早衰、血管钙化、LVH以及心脏纤维化[44]。通过5/6肾切除法诱导野生型CKD的小鼠会出现Klotho表达表达下降,心脏肥厚、纤维化。Klotho基因敲除杂合子(Kl/+)CKD小鼠的心脏肥厚、纤维化更为严重[45]。膜型Klotho蛋白并不在心脏直接表达,所以Klotho蛋白对心脏的保护作用可能是由可溶性Klotho实现。在体外实验中, Klotho可以拮抗TGF⁃β 以及血管紧张素Ⅱ诱导大鼠心肌细胞肥大[46]。在体内实验中发现Klotho可以抑制IS诱导的小鼠心肌肥厚,其机制和Klotho阻断ROS生成,抑制MAPK信号通路有关[47]。迄今为止, Klotho对心脏保护的机制目前尚未完全阐明,但可能与以下机制有关:①过表达Klotho可以减少系统性氧化应激、延长小鼠寿命,所以Klotho可能通过增强机体抗氧化应激能力保护心脏。②Klotho通过抑制瞬时受体电位钙离子通道亚基6(transient recep⁃ tor potential Ca2+ canonical isoform 6,TRPC6)保护心肌细胞,心脏特异性过表达TRPC6的小鼠会出现自发性心脏肥厚和纤维化,而Klotho则可通过抑制TRPC6表达和其离子通道的功能实现保护心脏的作用[48]

  • 本课题组最新研究发现,Klotho可以抑制PCS诱导的心肌细胞肥大和凋亡,其机制和Klotho抑制PCS下调SIRT6,继而抑制mTOR信号通路活化和抑制DNA双链断裂有关。有趣的是,我们的研究发现PCS在蛋白水平下调SIRT6表达,但不影响SIRT6基因表达,而Klotho抑制PCS下调SIRT6的作用也发生在蛋白水平,Klotho对SIRT6基因表达也没有影响。这就提示了PCS/Klotho对SIRT6表达的调控发生在蛋白质翻译或翻译后修饰的环节。检测SIRT6泛素化修饰水平,发现PCS可以促进SIRT6泛素化,而Klotho抑制PCS诱导的泛素化。研究结果显示, Klotho对SIRT6的泛素化调控可能参与了UCM,干预其调控有望成为UCM防治的分子靶标。

  • 2 结论

  • UCM的病理生理机制包括了多种相互作用的机制,尚未得到完全阐明。在UCM发病机制中,既有传统的心血管危险因素,又有各种CKD特有的非传统因素,并且越来越多的证据提示,如尿毒症毒素蓄积、Klotho缺乏等CKD相关的非传统因素可能在UCM的发生发展过程中起到更为重要的作用。随着生物医学科技的进步和对于UCM发病机制研究的逐渐深入,UCM发病机制将被不断揭示,并为UCM患者带来新的治疗策略。

  • 参考文献

    • [1] RADHAKRISHNAN A,PICKUP L C,PRICE A M,et al.Coronary microvascular dysfunction:a key step in the de⁃ velopment of uraemic cardiomyopathy?[J].Heart,2019,105(17):1302-1309

    • [2] LAW J P,PRICE A M,PICKUP L,et al.Clinical poten⁃ tial of targeting fibroblast growth factor⁃23 and αklotho in the treatment of uremic cardiomyopathy[J].J Am Heart Assoc,2020,9(7):e016041

    • [3] WANNER C,AMANN K,SHOJI T.The heart and vascu⁃ lar system in dialysis[J].Lancet,2016,388(10041):276-284

    • [4] AOKI J,IKATI Y,NAKAJIMA H,et al.Clinical and pathologic characteristics of dilated cardiomyopathy in he⁃ modialysis patients[J].Kidney Int,2005,67(1):333-340

    • [5] ZOCCALI C,MOISSL U,CHAZOT C,et al.Chronic fluid overload and mortality in esrd[J].J Am Soc Nephrol,2017,28(8):2491-2497

    • [6] WANG X,SHAPIRO J I.Evolving concepts in the patho⁃ genesis of uraemic cardiomyopathy[J].Nat Rev Nephrol,2019,15(3):159-175

    • [7] FERNANDEZ⁃RUIZ I.Pharmacotherapy:angiotensin ii ⁃ a new tool in vasodilatory shock[J].Nat Rev Cardiol,2017,14(7):384

    • [8] PARK J.Cardiovascular risk in chronic kidney disease:Role of the sympathetic nervous system[J].Cardiol Res Pract,2012:319432

    • [9] ANDERSSON P,RYDBERG E,WILLENHEIMER R.Pri⁃mary hyperparathyroidism and heart disease ⁃ ⁃ a review [J].Eur Heart J,2004,25(20):1776-1787

    • [10] 郁娃林,白剑,王彦涵,等.25⁃羟维生素D、血清甲状旁腺激素与射血分数减低心力衰竭的相关性分析[J].南京医科大学学报(自然科学版),2018,38(8):1124-1130

    • [11] SLININ Y,FOLEY R N,COLLINS A J,et al.Calcium,phosphorus,parathyroid hormone,and cardiovascular dis⁃ ease in hemodialysis patients:the usrds waves 1,3,and 4 study[J].J Am Soc Nephrol,2005,16(6):1788-1793

    • [12] NITSA A,TOUTOUZA M,MACHAIRAS N,et al.Vita⁃ min d in cardiovascular disease[J].In Vivo,2018,2(5):977-981

    • [13] LEIFHEIT⁃NESTLERM,GRABNER A,HERMANN L,et al.Vitamin D treatment attenuates cardiac fgf23/fgfr4 sig⁃ naling and hypertrophy in uremic rats[J].Nephrol Dial Transplant,2017,32(9):1493-1503

    • [14] FAUL C.Fibroblast growth factor 23 and the heart[J].Curr Opin Nephrol Hypertens,2012,21(4):369-375

    • [15] PASTOR⁃ARROYO E M,GEHRING N,KRUDEWIG C,et al.The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascu⁃ lar disease risk[J].Kidney Int,2018,94(1):49-59

    • [16] DE ⁃ALBUQUERQUE P G,SANDERS ⁃ PINHEIRO H,De⁃ PAULA R B.Uremic cardiomyopathy:a new piece in the chronic kidney disease ⁃ mineral and bone disorder puzzle[J].Front Med(Lausanne),2018,5:206

    • [17] HALLER S T,YAN Y,DRUMMOND C A,et al.Rapamy⁃ cin attenuates cardiac fibrosis in experimental uremic car⁃ diomyopathy by reducing marinobufagenin levels and in⁃ hibiting downstream pro ⁃ fibrotic signaling[J].J Am Heart Assoc,2016,5(10):e004106

    • [18] SODHI K,WANG X L,CHAUDHRY M A,et al.Central role for adipocyte Na,K⁃atpase oxidant amplification loop in the pathogenesis of experimental uremic cardiomyopa⁃ thy[J].J Am Soc Nephrol,2020,31(8):1746-1760

    • [19] WINTERBERG P D,ROBERTSON J M,KELLEMAN M S,et al.T cells play a causal role in diastolic dysfunction during uremic cardiomyopathy[J].J Am Soc Nephrol,2019,30(3):407-420

    • [20] WANG B,WANG Z M,Ji J L,et al.Macrophage ⁃derived exosomal miR ⁃ 155 regulating cardiomyocyte pyroptosis and hypertrophy in uremic cardiomyopathy[J].JACC Ba⁃ sic Transl Sci,2020,5(2):148-166

    • [21] WANG B,ZHANG A Q,WANG H D,et al.miR⁃26a lim⁃ its muscle wasting and cardiac fibrosis through exosome ⁃ mediated microRNA transfer in chronic kidney disease [J].Theranostics,2019,9(7):1864-1877

    • [22] VANHOLDER R,SCHEPERS E,PLETINCK A,et al.The uremic toxicity of indoxyl sulfate and p⁃cresyl sulfate:a systematic review[J].J Am Soc Nephrol,2014,25(9):1897-1907

    • [23] FUJII H,GOTO S,FUKAGAWA M.Role of uremic tox⁃ ins for kidney,cardiovascular,and bone dysfunction[J].Toxins(Basel),2018,10(5):202

    • [24] KOPPE L,FOUQUE D.Microbiota and prebiotics modu⁃ lation of uremic toxin generation[J].Panminerva Med,2017,59(2):173-187

    • [25] CHEN T C,WANG C Y,HSU C Y,et al.Free p ⁃ cresol sulfate is associated with survival and function of vascular access in chronic hemodialysis patients[J].Kidney Blood Press Res,2012,35(6):583-588

    • [26] GRYP T,VANHOLDER R,VANEECHOUTTE M,et al.P⁃cresyl sulfate[J].Toxins(Basel),2017,9(2):52

    • [27] JING Y J,NI J W,DING F H,et al.P⁃cresyl sulfate is as⁃ sociated with carotid arteriosclerosis in hemodialysis pa⁃ tients and promotes atherogenesis in apoe ⁃/⁃ mice[J].Kidney Int,2016,89(2):439-449

    • [28] LI H Y,LIU F,GAO C,et al.Protective effect of simvas⁃ tatin on arterial plaque instability induced by p⁃cresyl sul⁃ fate[J].Eur Rev Med Pharmacol Sci,2018,22(18):6149-6155

    • [29] GROSS P,MASSY Z A,HENAUT L,et al.Para ⁃ cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling[J].J Cell Physiol,2015,230(12):2927-2935

    • [30] OPDEBEECK B,D’HAESE P C,VERHULST A.Molecu⁃ lar and cellular mechanisms that induce arterial calcifica⁃ tion by indoxyl sulfate and p⁃cresyl sulfate[J].Toxins(Ba⁃ sel),2020,12(1):58

    • [31] OPDEBEECK B,MAUDSLEY S,AZMI A,et al.Indoxyl sulfate and p⁃cresyl sulfate promote vascular calcification and associate with glucose intolerance[J].J Am Soc Nephrol,2019,30(5):751-766

    • [32] HAN H,ZHU J,ZHU Z,et al.P⁃cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney dis⁃ ease by enhancing apoptosis of cardiomyocytes[J].J Am Heart Assoc,2015,4(6):e001852

    • [33] YANG K,WANG C,NIE L,et al.Klotho protects against indoxyl sulphate ⁃ induced myocardial hypertrophy[J].J Am Soc Nephrol,2015,26(10):2434-2446

    • [34] HSU Y,HSU S,CHANG Y,et al.Indoxyl sulfate upregu⁃ lates the cannabinoid type 1 receptor gene via an ATF3/c⁃ Jun complex ⁃mediated signaling pathway in the model of uremic cardiomyopathy[J].Int J Cardiol,2018,252:128-135

    • [35] YISIREYILI M,SHIMIZU H,SAITO S,et al.Indoxyl sul⁃ fate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats[J].Life Sci,2013,92(24⁃26):1180-1185

    • [36] SATO B,YOSHIKAWA D,ISHII H,et al.Relation of⁃ plasma indoxyl sulfate levels and estimated glomerular fil⁃ tration rate to left ventricular diastolic dysfunction[J].Am J Cardiol,2013,111(5):712-716

    • [37] TANG W H,WANG C P,CHUNG F M,et al.Uremic re⁃ tention solute indoxyl sulfate level is associated with pro⁃ longed QT cinterval in early CKD patients[J].PLoS One,2015,10(4):e0119545

    • [38] CHEN WT,CHEN Y C,HSIEH M H,et al.The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis[J].J Cardiovasc Electrophysiol,2015,26(2):203-210

    • [39] DUQUE E J,Elias R M,Moysés R M.Parathyroid hor⁃ mone:a uremic toxin[J].Toxins(Basel),2020,12(3):189

    • [40] LEKAWANVIJIT S.Cardiotoxicity of uremic toxins:a driver of cardiorenal syndrome[J].Toxins(Basel).2018,10(9):352

    • [41] KURO⁃O M,MATSUMURA Y,AIZAWA H,et al.Muta⁃ tion of the mouse Klotho gene leads to a syndrome resem⁃ bling ageing[J].Nature,1997,390(6655):45-51

    • [42] 梁艳,陈波,位云艳,等.KLl 在人非小细胞肺癌A549细胞中的作用及其相关机制研究[J].南京医科大学学报(自然科学版),2016,36(9):1031-1045

    • [43] BARKER S L,PASTOR J,CARRANZA D,et al.The dem⁃ onstration of αklotho deficiency in human chronic kidney disease with a novel synthetic antibody[J].Nephrol Dial Transplant,2015,30(2):223-233

    • [44] HU M C,SHI M,CHO H J,et al.Klotho and phosphate are modulators of pathologic uremic cardiac remodeling [J].J Am Soc Nephrol,2015,26(6):1290-1302

    • [45] XIE J,YOON J,AN S W,et al.Soluble klotho protects against uremic cardiomyopathy independently of fibro⁃ blast growth factor 23 and phosphate[J].J Am Soc Nephrol,2015,26(5):1150-1160

    • [46] MING CHANG H U,MINGJUN S H I,HAN JUN C H O,et al.Klotho and phosphate are modulators of pathologic uremic cardiac remodeling[J].J Am Soc Nephrol.2015,26(6):1290-1302

    • [47] YANG K,WANG C,NIE L,et al.Klotho protects against indoxyl sulphate ⁃ induced myocardial hypertrophy[J].J Am Soc Nephrol,2015,26(10):2434-2446

    • [48] XIE J,CHA S K,AN S W,et al.Cardioprotection by klotho through downregulation of TRPC6 channels in the mouse heart[J].Nat Commun,2012,3:1238

  • 参考文献

    • [1] RADHAKRISHNAN A,PICKUP L C,PRICE A M,et al.Coronary microvascular dysfunction:a key step in the de⁃ velopment of uraemic cardiomyopathy?[J].Heart,2019,105(17):1302-1309

    • [2] LAW J P,PRICE A M,PICKUP L,et al.Clinical poten⁃ tial of targeting fibroblast growth factor⁃23 and αklotho in the treatment of uremic cardiomyopathy[J].J Am Heart Assoc,2020,9(7):e016041

    • [3] WANNER C,AMANN K,SHOJI T.The heart and vascu⁃ lar system in dialysis[J].Lancet,2016,388(10041):276-284

    • [4] AOKI J,IKATI Y,NAKAJIMA H,et al.Clinical and pathologic characteristics of dilated cardiomyopathy in he⁃ modialysis patients[J].Kidney Int,2005,67(1):333-340

    • [5] ZOCCALI C,MOISSL U,CHAZOT C,et al.Chronic fluid overload and mortality in esrd[J].J Am Soc Nephrol,2017,28(8):2491-2497

    • [6] WANG X,SHAPIRO J I.Evolving concepts in the patho⁃ genesis of uraemic cardiomyopathy[J].Nat Rev Nephrol,2019,15(3):159-175

    • [7] FERNANDEZ⁃RUIZ I.Pharmacotherapy:angiotensin ii ⁃ a new tool in vasodilatory shock[J].Nat Rev Cardiol,2017,14(7):384

    • [8] PARK J.Cardiovascular risk in chronic kidney disease:Role of the sympathetic nervous system[J].Cardiol Res Pract,2012:319432

    • [9] ANDERSSON P,RYDBERG E,WILLENHEIMER R.Pri⁃mary hyperparathyroidism and heart disease ⁃ ⁃ a review [J].Eur Heart J,2004,25(20):1776-1787

    • [10] 郁娃林,白剑,王彦涵,等.25⁃羟维生素D、血清甲状旁腺激素与射血分数减低心力衰竭的相关性分析[J].南京医科大学学报(自然科学版),2018,38(8):1124-1130

    • [11] SLININ Y,FOLEY R N,COLLINS A J,et al.Calcium,phosphorus,parathyroid hormone,and cardiovascular dis⁃ ease in hemodialysis patients:the usrds waves 1,3,and 4 study[J].J Am Soc Nephrol,2005,16(6):1788-1793

    • [12] NITSA A,TOUTOUZA M,MACHAIRAS N,et al.Vita⁃ min d in cardiovascular disease[J].In Vivo,2018,2(5):977-981

    • [13] LEIFHEIT⁃NESTLERM,GRABNER A,HERMANN L,et al.Vitamin D treatment attenuates cardiac fgf23/fgfr4 sig⁃ naling and hypertrophy in uremic rats[J].Nephrol Dial Transplant,2017,32(9):1493-1503

    • [14] FAUL C.Fibroblast growth factor 23 and the heart[J].Curr Opin Nephrol Hypertens,2012,21(4):369-375

    • [15] PASTOR⁃ARROYO E M,GEHRING N,KRUDEWIG C,et al.The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascu⁃ lar disease risk[J].Kidney Int,2018,94(1):49-59

    • [16] DE ⁃ALBUQUERQUE P G,SANDERS ⁃ PINHEIRO H,De⁃ PAULA R B.Uremic cardiomyopathy:a new piece in the chronic kidney disease ⁃ mineral and bone disorder puzzle[J].Front Med(Lausanne),2018,5:206

    • [17] HALLER S T,YAN Y,DRUMMOND C A,et al.Rapamy⁃ cin attenuates cardiac fibrosis in experimental uremic car⁃ diomyopathy by reducing marinobufagenin levels and in⁃ hibiting downstream pro ⁃ fibrotic signaling[J].J Am Heart Assoc,2016,5(10):e004106

    • [18] SODHI K,WANG X L,CHAUDHRY M A,et al.Central role for adipocyte Na,K⁃atpase oxidant amplification loop in the pathogenesis of experimental uremic cardiomyopa⁃ thy[J].J Am Soc Nephrol,2020,31(8):1746-1760

    • [19] WINTERBERG P D,ROBERTSON J M,KELLEMAN M S,et al.T cells play a causal role in diastolic dysfunction during uremic cardiomyopathy[J].J Am Soc Nephrol,2019,30(3):407-420

    • [20] WANG B,WANG Z M,Ji J L,et al.Macrophage ⁃derived exosomal miR ⁃ 155 regulating cardiomyocyte pyroptosis and hypertrophy in uremic cardiomyopathy[J].JACC Ba⁃ sic Transl Sci,2020,5(2):148-166

    • [21] WANG B,ZHANG A Q,WANG H D,et al.miR⁃26a lim⁃ its muscle wasting and cardiac fibrosis through exosome ⁃ mediated microRNA transfer in chronic kidney disease [J].Theranostics,2019,9(7):1864-1877

    • [22] VANHOLDER R,SCHEPERS E,PLETINCK A,et al.The uremic toxicity of indoxyl sulfate and p⁃cresyl sulfate:a systematic review[J].J Am Soc Nephrol,2014,25(9):1897-1907

    • [23] FUJII H,GOTO S,FUKAGAWA M.Role of uremic tox⁃ ins for kidney,cardiovascular,and bone dysfunction[J].Toxins(Basel),2018,10(5):202

    • [24] KOPPE L,FOUQUE D.Microbiota and prebiotics modu⁃ lation of uremic toxin generation[J].Panminerva Med,2017,59(2):173-187

    • [25] CHEN T C,WANG C Y,HSU C Y,et al.Free p ⁃ cresol sulfate is associated with survival and function of vascular access in chronic hemodialysis patients[J].Kidney Blood Press Res,2012,35(6):583-588

    • [26] GRYP T,VANHOLDER R,VANEECHOUTTE M,et al.P⁃cresyl sulfate[J].Toxins(Basel),2017,9(2):52

    • [27] JING Y J,NI J W,DING F H,et al.P⁃cresyl sulfate is as⁃ sociated with carotid arteriosclerosis in hemodialysis pa⁃ tients and promotes atherogenesis in apoe ⁃/⁃ mice[J].Kidney Int,2016,89(2):439-449

    • [28] LI H Y,LIU F,GAO C,et al.Protective effect of simvas⁃ tatin on arterial plaque instability induced by p⁃cresyl sul⁃ fate[J].Eur Rev Med Pharmacol Sci,2018,22(18):6149-6155

    • [29] GROSS P,MASSY Z A,HENAUT L,et al.Para ⁃ cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling[J].J Cell Physiol,2015,230(12):2927-2935

    • [30] OPDEBEECK B,D’HAESE P C,VERHULST A.Molecu⁃ lar and cellular mechanisms that induce arterial calcifica⁃ tion by indoxyl sulfate and p⁃cresyl sulfate[J].Toxins(Ba⁃ sel),2020,12(1):58

    • [31] OPDEBEECK B,MAUDSLEY S,AZMI A,et al.Indoxyl sulfate and p⁃cresyl sulfate promote vascular calcification and associate with glucose intolerance[J].J Am Soc Nephrol,2019,30(5):751-766

    • [32] HAN H,ZHU J,ZHU Z,et al.P⁃cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney dis⁃ ease by enhancing apoptosis of cardiomyocytes[J].J Am Heart Assoc,2015,4(6):e001852

    • [33] YANG K,WANG C,NIE L,et al.Klotho protects against indoxyl sulphate ⁃ induced myocardial hypertrophy[J].J Am Soc Nephrol,2015,26(10):2434-2446

    • [34] HSU Y,HSU S,CHANG Y,et al.Indoxyl sulfate upregu⁃ lates the cannabinoid type 1 receptor gene via an ATF3/c⁃ Jun complex ⁃mediated signaling pathway in the model of uremic cardiomyopathy[J].Int J Cardiol,2018,252:128-135

    • [35] YISIREYILI M,SHIMIZU H,SAITO S,et al.Indoxyl sul⁃ fate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats[J].Life Sci,2013,92(24⁃26):1180-1185

    • [36] SATO B,YOSHIKAWA D,ISHII H,et al.Relation of⁃ plasma indoxyl sulfate levels and estimated glomerular fil⁃ tration rate to left ventricular diastolic dysfunction[J].Am J Cardiol,2013,111(5):712-716

    • [37] TANG W H,WANG C P,CHUNG F M,et al.Uremic re⁃ tention solute indoxyl sulfate level is associated with pro⁃ longed QT cinterval in early CKD patients[J].PLoS One,2015,10(4):e0119545

    • [38] CHEN WT,CHEN Y C,HSIEH M H,et al.The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis[J].J Cardiovasc Electrophysiol,2015,26(2):203-210

    • [39] DUQUE E J,Elias R M,Moysés R M.Parathyroid hor⁃ mone:a uremic toxin[J].Toxins(Basel),2020,12(3):189

    • [40] LEKAWANVIJIT S.Cardiotoxicity of uremic toxins:a driver of cardiorenal syndrome[J].Toxins(Basel).2018,10(9):352

    • [41] KURO⁃O M,MATSUMURA Y,AIZAWA H,et al.Muta⁃ tion of the mouse Klotho gene leads to a syndrome resem⁃ bling ageing[J].Nature,1997,390(6655):45-51

    • [42] 梁艳,陈波,位云艳,等.KLl 在人非小细胞肺癌A549细胞中的作用及其相关机制研究[J].南京医科大学学报(自然科学版),2016,36(9):1031-1045

    • [43] BARKER S L,PASTOR J,CARRANZA D,et al.The dem⁃ onstration of αklotho deficiency in human chronic kidney disease with a novel synthetic antibody[J].Nephrol Dial Transplant,2015,30(2):223-233

    • [44] HU M C,SHI M,CHO H J,et al.Klotho and phosphate are modulators of pathologic uremic cardiac remodeling [J].J Am Soc Nephrol,2015,26(6):1290-1302

    • [45] XIE J,YOON J,AN S W,et al.Soluble klotho protects against uremic cardiomyopathy independently of fibro⁃ blast growth factor 23 and phosphate[J].J Am Soc Nephrol,2015,26(5):1150-1160

    • [46] MING CHANG H U,MINGJUN S H I,HAN JUN C H O,et al.Klotho and phosphate are modulators of pathologic uremic cardiac remodeling[J].J Am Soc Nephrol.2015,26(6):1290-1302

    • [47] YANG K,WANG C,NIE L,et al.Klotho protects against indoxyl sulphate ⁃ induced myocardial hypertrophy[J].J Am Soc Nephrol,2015,26(10):2434-2446

    • [48] XIE J,CHA S K,AN S W,et al.Cardioprotection by klotho through downregulation of TRPC6 channels in the mouse heart[J].Nat Commun,2012,3:1238