en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

胡柳青,E-mail:hu_liuqing@126.com

中图分类号:R654.2

文献标识码:A

文章编号:1007-4368(2022)03-340-06

DOI:10.7655/NYDXBNS20220305

参考文献 1
SKVARC D R,BERK M,BYRNE L K,et al.Post⁃operative cognitive dysfunction:an exploration of the inflammatory hypothesis and novel therapies[J].Neurosci Biobehav Rev,2018,84:116-133
参考文献 2
BISHAWI M,HATTLER B,ALMASSI G H,et al.Preop⁃ erative factors associated with worsening in health⁃related quality of life following coronary artery bypass grafting in the randomized on/off bypass(ROOBY)trial[J].Am Heart J,2018,198:33-38
参考文献 3
NEEDHAM M J,WEBB C E,BRYDEN D C.Postopera⁃ tive cognitive dysfunction and dementia:what we need to know and do[J].Br J Anaesth,2017,119(suppl_1):i115-i125
参考文献 4
SILVA F P,SCHMIDT A P,VALENTIN L S,et al.S100B protein and neuron⁃specifc enolase as predictors of cognitive dysfunction after coronary artery bypass graft surgery:a prospective observational study[J].Eur J Anaesthesiol,2016,33:681-689
参考文献 5
CHEN C,CHENG X,LI J,et al.Extracellular RNAs as a chemical initiator for postoperative cognitive dysfunction [J].Med Hypotheses,2016,94:47-50
参考文献 6
HU L,SI L,DAI X,et al.Exosomal miR⁃409⁃3p secreted from activated mast cells promotes microglial migration,activation and neuroinflammation by targeting Nr4a2 to activate the NF ⁃ κB pathway[J].J Neuroinflammation,2021,18(1):68
参考文献 7
ZHANG Y,LIU Y X,XIAO Q X,et al.Microarray expres⁃ sion profiles of lncRNAs and mRNAs in postoperative cognitive dysfunction[J].Front Neurosci,2018,12:694
参考文献 8
GAO R,CHEN C,ZHAO Q,et al.Identification of the potential key circular RNAs in elderly patients with post⁃ operative cognitive dysfunction[J].Front Aging Neurosci,2020,12:165
参考文献 9
ZHANG S,DONG H,ZHANG X,et al.Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption[J].Behav Brain Res,2016,298(pt b):158-166
参考文献 10
XU J,DONG H,QIAN Q,et al.Astrocyte⁃derived CCL2 participates in surgery⁃induced cognitive dysfunction and neuroinflammation via evoking microglia activation[J].Behav Brain Res,2017,332:145-153
参考文献 11
ZHOU H,LI F,YE W,et al.Correlation between plasma CircRNA⁃089763 and postoperative cognitive dysfunction in elderly patients undergoing non ⁃ cardiac surgery[J].Front Behav Neurosci,2020,14:587715
参考文献 12
XIA Y,WEI K,HU L Q,et al.Exosome⁃mediated transfer of miR ⁃ 1260b promotes cell invasion through Wnt/β ⁃ catenin signaling pathway in lung adenocarcinoma[J].J Cell Physiol,2020,235:6843-6853
参考文献 13
NIJS K,VANDENBRANDE J,VAQUERIZA F,et al.Neurological outcome after minimal invasive coronary artery surgery(NOMICS):protocol for an observational prospective cohort study[J].BMJ Open,2017,7(10):e017823
参考文献 14
JI M H,YUAN H M,ZHANG G F,et al.Changes in plas⁃ ma and cerebrospinal fluid biomarkers in aged patients with early postoperative cognitive dysfunction following total hip-replacement surgery[J].J Anesth,2013,27(2):236-242
参考文献 15
MEN Y,YELICK J,JIN S,et al.Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS[J].Nat Commun,2019,10(1):4136
参考文献 16
GAO G,LI C,ZHU J,et al.Glutaminase 1 regulates neu⁃ roinflammation after cerebral ischemia through enhancing microglial activation and pro ⁃ inflammatory exosome release[J].Front Immunol,2020,11:161
参考文献 17
CHEN X,JIANG M,LI H,et al.CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA ⁃ 124 from neuron to microglia after subarachnoid hemorrhage[J].J Neuroinflammation,2020,17(1):209
参考文献 18
胡柳婷.MicroRNA⁃23b对大鼠脑出血后神经炎症调控作用的机制研究[D].沈阳:中国医科大学,2020
参考文献 19
邓威,孟颖,王晨星,等.miR⁃182在口腔鳞癌血清外泌体中的表达及其临床意义[J].南京医科大学学报(自然科学版),2021,41(4):509-515
参考文献 20
LAI N,WU D,LIANG T,et al.Systemic exosomal miR⁃ 193b ⁃ 3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice[J].J Neuroinflammation,2020,17(1):74
参考文献 21
WANG J,CHEN S,ZHANG W,et al.Exosomes from miRNA⁃126⁃modified endothelial progenitor cells allevi⁃ ate brain injury and promote functional recovery after stroke[J].CNS Neurosci Ther,2020,26(12):1255-1265
参考文献 22
GRIEBE M,AMANN M,HIRSCH J G,et al.Reduced functional reserve in patients with age ⁃ related white matter changes:a preliminary FMRI study of working memory[J].PLoS One,2014,9(8):e103359
目录contents

    摘要

    目的:分析血浆外泌体miR⁃409⁃3p与冠状动脉搭桥术围术期神经认知障碍(perioperative neurocognitive disorders, PND)的相关性。方法:共纳入76 例冠状动脉搭桥术患者,于术前1 d和术后7 d进行神经心理测试评估,并根据评估结果将患者分为PND组(n =24)和非PND组(n =52)。提取所有患者血浆外泌体,分别采用透射电镜、粒径分析、Western blot对其进行鉴定。采用qRT⁃PCR检测外泌体miR⁃409⁃3p的表达水平。Logistic 回归分析PND发生的危险因素。结果:两组在年龄、手术时间及教育年限方面差异有统计学意义。血浆外泌体miR⁃409⁃3p在PND组中的表达高于非PND组。年龄、手术时间及外泌体 miR⁃409⁃3p为PND 发生的独立危险因素。结论:高表达的血浆外泌体miR⁃409⁃3p可作为冠状动脉搭桥术PND的新型分子标志物。

    Abstract

    Objective:This study aims to analyze the correlation between plasma exosomal miR ⁃ 409 ⁃ 3p and perioperative neurocognitive disorders(PND)after coronary artery bypass grafting. Methods:A total of 76 patients undergoing coronary artery bypass graft surgery were enrolled in this study. Neuropsychological test assessments were performed 1 day before and 7 days after surgery,and the patients were divided into PND group(n =24)and non ⁃ PND group(n =52)according to the evaluation results. The plasma exosomes of all patients were extracted,and were identified by transmission electron microscopy,particle size analysis,and Western blot. The qRT⁃PCR was used to detect the expression level of exosomal miR⁃409⁃3p. Logistic regression analysis was used to evaluate the risk factors for PND. Results:There were statistical differences between the two groups in age,operation time and education years. The expression of plasma exosomal miR ⁃ 409⁃3p in PND patients was higher than that in non ⁃PND patients. Age, operation time,and plasma exosomal miR⁃409⁃3p were independent risk factors for PND. Conclusion:The highly expressed plasma exosomal miR⁃409⁃3p can be used as a new molecular marker for PND in patients undergoing coronary artery bypass graft surgery.

  • 围术期神经认知障碍(perioperative neurocogni⁃ tive disorders,PND)是手术后中枢神经系统的并发症,表现为精神障碍、焦虑、性格改变和记忆障碍。许多风险因素与PND相关,包括年龄、术前认知和情绪状态[1]。冠状动脉搭桥术后,早期认知功能障碍发生率高,达30%~60%,PND严重影响患者术后的生活质量[2]。目前,PND的诊断主要基于患者症状的描述、精神状态的评估和临床行为的评估,这些评估过程复杂且时间周期长[3]。虽然已经发现一些生物标志物与PND相关,如S100钙结合蛋白B (S100B)和神经元特异性烯醇化酶(neuron specific enolase,NSE),但与这些生物标志物相关的机制和基因仍有待阐明[4]。在特定条件下释放的细胞外囊泡通过作用于外周和/或中枢受体,可能引发破坏性级联反应,导致PND的发展[5]。外泌体大小为40~150nm,是包含mRNA和非编码RNA的膜囊泡,从各种细胞中释放出来,参与细胞间通信[6]。Zhang等[7] 通过表达谱芯片发现了68个lncRNA和115个mRNA在PND和非PND患者中存在差异表达。随后,Gao等[8] 研究表明hsa_circRNA_001145、hsa_cir⁃ cRNA_101138和hsa_circRNA_061570在PND患者中呈高表达,可能参与了PND的发展。小RNA (microRNA,miRNA)是长度约为22个核苷酸的非编码单链RNA分子,通过转录后负调控基因表达来降低与生物学特性相关的蛋白质的表达,且许多研究已经证实miRNA参与神经炎症并影响神经系统疾病的发病机制[6]。多年来,本研究团队致力于PND领域的研究,并发表了多项研究成果[9]。前期,我们采用脂多糖(lipopolysaccharide,LPS)处理肥大细胞P815后通过miRNA表达谱芯片分析发现外泌体mmu⁃miR⁃409⁃3p上调,并已在体内和体外实验中证明高表达的外泌体miR⁃409⁃3p促进神经炎症[6]。大量研究证实神经炎症在PND的发生和发展中起关键作用[10],然而,外泌体miR ⁃409⁃3p与PND的关系尚无报道。因此,本研究延续之前的结果,回归临床,从人群样本的角度分析血浆外泌体miR⁃409⁃3p与冠状动脉搭桥术PND的相关性。

  • 1 对象和方法

  • 1.1 对象

  • 选取2020年4月—2021年6月在南京医科大学第一附属医院接受冠状动脉搭桥手术的患者,并收集所有患者的血浆样本。排除标准:先前存在神经系统疾病,包括简易智能量表(mini⁃mental state examination,MMSE)评分< 24分;服用抗抑郁药或抗焦虑药病史;神经心理学评估困难。本研究经南京医科大学第一附属医院医学伦理委员会批准,并获得了每位患者的书面知情同意书。

  • 1.2 方法

  • 1.2.1 神经心理学评估

  • 神经心理学测试主要用于评估注意力和执行能力、记忆和学习能力、视觉空间意识和语言流畅性。该系列量表包括MMSE、颜色轨迹测试(color trail test,CTT)、数字跨度测试(digital span test, DST)、时钟绘图测试(clock drawing test,CDT)和语言流利度测试(verbal fluency test,VFT)。这些测试均由1位经验丰富且对手术过程和血浆样本结果不知情的研究人员分别在手术前1d和手术后7d进行评估和记录。当至少有两个量表|Z|大于1.96时,则认为发生了PND。具体方法参照之前的报道[11]

  • 1.2.2 患者数据收集

  • 收集临床特征和围术期相关数据,包括患者的年龄、身高、体重、性别、体重指数(body mass index, BMI)、教育年限和手术时间。在麻醉前1d和手术后7d收集血液样本(10mL)。将所有样本收集在抗凝管中,在4℃ 条件下300 g 离心5min,然后1 200 g和4℃条件下离心20min,最后血浆保存在80℃冰箱中直到进一步检测分析。

  • 1.2.3 外泌体的提取和鉴定

  • 按照之前已发表文章中的方法,提取所有患者血浆中的外泌体[12],随后PBS缓冲液(Biological Industries公司,以色列)洗涤沉淀,5%戊二醛固定,放入2%磷钨酸溶液覆盖的碳包铜网格中30s。透射电镜(transmission electron microscopy,TEM)观察外泌体的形态大小。粒径分析(nanoparticle tracking analysis,NTA)和ZetaView 8.04.02软件测量外泌体大小和浓度。在28.7℃ pH 7.0的条件下使用110nm聚苯乙烯颗粒对ZetaView系统进行校准。 Western blot检测CD63、TSG101及Calnexin水平。含有10 μg/mL磷酸酶抑制剂和100 μg/mL PMSF(上海Beyotime公司)的RIPA试剂(上海Beyotime公司)提取总蛋白,并用十二烷基硫酸钠⁃聚丙烯酰胺凝胶电泳(SDS⁃PAGE)进行分离,随后转移至聚偏二氟乙烯(PVDF)膜。1h后,分别用抗CD63(ab134045, Abcam公司,英国)、抗TSG101(ab30871,Abcam公司,英国)、抗Calnexin(2679S,Cell Signaling Technology公司,美国)在4℃冰箱卵鸟育过夜。次日,PBS洗涤3次,每次5min,分别与相应的二抗孵育2h。采用增强化学发光(ECL)进行样本检测分析。

  • 1.2.4 实时荧光定量PCR(quantitative real⁃time PCR, qRT⁃PCR)

  • 分别采用exoRNeasy Midi试剂盒(Qiagen公司,美国)和TRIzol试剂(Invitrogen公司,美国) 提取血浆RNA和血浆外泌体中的RNA,反转录为cDNA。ABI 7900快速实时PCR系统(ABI公司,美国)进行检测分析,引物序列为:miR⁃409⁃3p,上游5′⁃ TGGTACTCGGAGAGAGGTTACCC ⁃ 3′,下游5′ ⁃ ATGGACTATCATATGCTTACCGTA ⁃ 3′;GAPDH对照,上游5′⁃AACTTTGGCATTGTGGAAGG⁃3′,下游5′ ⁃GGATGCAGGGATGATGTTCT ⁃ 3′。PCR条件为95℃ 5min,94℃ 15s,55℃ 30s,40个循环。

  • 1.3 统计学方法

  • 所有统计数据均使用Stata15.0和Graphpad 8进行分析,正态分布的连续数据用均值±标准差 (x-±s)表示,行t检验。计数资料均以例表示,行卡方检验。Logistic回归分析PND的影响因素。P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 患者的临床特征

  • 本研究总共纳入了76例患者,均完成了认知功能测试(表1),其中24例在冠状动脉搭桥术患者围手术期出现了PND,52例未发生PND。患者围手术期的临床特征情况如表2所示。两组在性别和BMI方面差异均无统计学意义(P> 0.05);然而,在年龄、手术时间及教育年限方面差异均具有统计学意义(P< 0.05)。

  • 表1 认知功能测试评分

  • Table1 Cognitive function test scores

  • *:术后7d,非PND vs.PND。

  • 表2 患者临床特征

  • Table2 Clinical characteristics of patients

  • 2.2 外泌体的鉴定

  • 首先,通过TEM观察外泌体为直径40~150nm的囊泡,并具有均匀的茶托样形态(图1A),大小分布由NTA测量(图1B)。为了进一步确定收集的囊泡是否为外泌体,通过Western blot检测了外泌体标志物(CD63和TSG101)。如图1C所示,在分离的外泌体部分观察到CD63和TSG101表达水平升高,同时钙连接蛋白Calnexin表达水平降低。上述结果证明,从患者血浆中提取的囊泡样物质为外泌体。

  • 2.3 PND患者血浆外泌体miR⁃409⁃3p显著升高

  • 为了进一步揭示外泌体miR⁃409⁃3p与PND的关系,我们采用qRT⁃PCR检测血浆外泌体miR⁃409⁃ 3p的表达水平。PND患者血浆外泌体miR⁃409⁃3p较非PND患者血浆中显著升高,差异倍数约为3倍 (P< 0.001,图2)。随后,采用Logistic回归分析PND的影响因素,结果显示:患者的年龄、手术时间和外泌体miR ⁃409⁃3p水平与PND独立相关(表3)。上述结果表明高表达的血浆外泌体miR⁃409⁃3p与PND发展密切相关,且可作为PND的新型分子标志物。

  • 3 讨论

  • PND是许多患者在外科手术后常见的并发症之一,尤其是心脏手术后,不仅使患者术后康复周期延长,而且还严重影响了患者的生活质量[13]。因此,寻找预防和治疗PND的方法就显得尤为重要。临床上,PND难以准确诊断,有效的治疗方法很少,这部分是因为PND的机制尚不清楚。目前,大量研究表明神经炎症是PND发展的关键因素。本课题组前期研究发现,肥大细胞通过介导神经炎症参与PND的发生发展,采用LPS处理肥大细胞P815后通过miRNA表达谱芯片分析发现外泌体mmu⁃miR⁃ 409⁃3p表达水平上调,并揭示了高表达的外泌体miR⁃409⁃3p可以促进神经炎症[6]。然而,之前的研究都是在体内和体外实验中论证的,尚无临床层面的证实。为了促进认知功能障碍的临床诊断,许多研究集中在脑脊液和外周血中发现的分子标志物[14]。然而,PND患者腰椎穿刺获取脑脊液较为困难。因此,用于常规检测认知功能障碍的血液生物标志物将更合适。本研究延续之前的结果,回归临床,从人群样本的角度分析了人和鼠同源的外泌体miR⁃ 409⁃3p与冠状动脉搭桥术PND的相关性,以寻找可作为PND生物标志物的血浆特异性miRNA。

  • 图1 外泌体的鉴定

  • Fig.1 Identification of exosome

  • 图2 外泌体miR⁃409⁃3p的表达水平

  • Fig.2 The expression levels of exosomal miR⁃409⁃3p

  • 表3 Logistic回归分析

  • Table3 Logistic regression analysis

  • 外泌体是40~100nm的膜囊泡,从全身的多种组织、细胞中释放出来,稳定存在于唾液、血液、乳汁等体液中。外泌体含有多种物质,包括miRNA、 lncRNA、circRNA、脂质和多种蛋白质等[6]。已有大量研究表明外泌体作为膜囊泡结构可以通过血脑屏障,进入大脑皮质、海马组织等,进而影响神经系统,如外泌体介导中枢神经系统中神经元与星形胶质细胞通信中的作用[15]。谷氨酰胺酶1通过增强小胶质细胞激活和促炎性外泌体释放来调节脑缺血后的神经炎症[16]。CX3CL1/CX3CR1轴通过促进蛛网膜下腔出血后外泌体miRNA⁃124从神经元向小胶质细胞的递送减轻早期脑损伤[17]。由于PND的病理生理机制较为复杂,药物的临床疗效较差,因此需要更全面综合的方法来预防、诊断和治疗PND。多年来,研究人员将工作重点放在蛋白质编码基因和由这些基因编码的蛋白质上[4]。随着大量研究的不断进展,发现只有一小部分遗传物质编码蛋白质,而大量的转录产物由功能多样的非编码RNA产生,包括miRNA、lncRNA和circRNA。近年来,越来越多的研究表明非编码RNA参与不同疾病的发生发展。如miR⁃23b可以改善脑出血后的神经炎症和发挥神经保护作用,促进神经功能恢复[18]。在口腔鳞状细胞癌患者中,高表达的外泌体miR⁃ 182与肿瘤浸润深度密切相关[19]。同时,外泌体miRNA参与神经系统疾病的调控过程,如系统性外泌体miR⁃193b⁃3p递送减轻小鼠蛛网膜下腔出血后早期脑损伤的神经炎症[20];来自miRNA⁃126修饰的内皮祖细胞的外泌体减轻脑损伤并促进中风后的功能恢复[21]。前期,我们从体外细胞实验和动物水平已证实高表达的外泌体miR⁃409⁃3p可以促进神经炎症[6];本研究进一步从临床样本中发现PND患者血浆外泌体miR-409⁃3p显著升高,提示外泌体miR⁃409⁃3p与冠状动脉搭桥术后PND过程有关,可能作为PND的分子标志物。然而,关于外泌体miR⁃ 409⁃3p是否与其他非心脏手术后PND有关,以及调控PND过程的具体分子机制仍需进一步探索。

  • 由于PND涉及多方面的发生发展机制,未来的新型治疗策略应从分子水平考虑疾病内在的调控失衡,为寻找新的分子靶标提供突破口。本课题组延续之前的研究,完善了从细胞、动物和临床3个层面论证外泌体miR⁃409⁃3p通过调控神经炎症参与PND过程,从而为外泌体miR⁃409⁃3p作为PND诊断和治疗的新型分子标志物提供了强有力的理论支持。单因素分析发现,年龄、手术时间、教育年限以及血浆外泌体miR⁃409⁃3p的表达均与PND的发生有关。一些研究证实年龄是PND的一个独立危险因素[22]。另外,为了排除年龄、手术时间以及血浆外泌体miR⁃409⁃3p表达等因素的相互干扰,进一步采用Logistic回归模型分析PND独立的预测因素,结果发现年龄、手术时间和外泌体miR⁃409⁃3p表达均是PND的独立危险因素。

  • 本研究也存在一些不足之处:①冠状动脉搭桥手术患者临床样本数量较少,今后仍需要扩大样本量进一步探索外泌体miR⁃409⁃3p在PND乃至其他神经系统疾病中的作用;②外泌体miR⁃409⁃3p调控PND具体的分子机制尚未探究。

  • 综上所述,我们完善前期研究结果,从临床层面发现冠状动脉搭桥术PND患者血浆中外泌体miR⁃409⁃3p呈高表达状态,且与PND发生独立相关。外泌体miR⁃409⁃3p可能是一种新型生物标志物,因此,本研究不仅为今后进一步研究其调控机制奠定了的基础,也为PND领域的相关研究提供了新的思路。

  • 参考文献

    • [1] SKVARC D R,BERK M,BYRNE L K,et al.Post⁃operative cognitive dysfunction:an exploration of the inflammatory hypothesis and novel therapies[J].Neurosci Biobehav Rev,2018,84:116-133

    • [2] BISHAWI M,HATTLER B,ALMASSI G H,et al.Preop⁃ erative factors associated with worsening in health⁃related quality of life following coronary artery bypass grafting in the randomized on/off bypass(ROOBY)trial[J].Am Heart J,2018,198:33-38

    • [3] NEEDHAM M J,WEBB C E,BRYDEN D C.Postopera⁃ tive cognitive dysfunction and dementia:what we need to know and do[J].Br J Anaesth,2017,119(suppl_1):i115-i125

    • [4] SILVA F P,SCHMIDT A P,VALENTIN L S,et al.S100B protein and neuron⁃specifc enolase as predictors of cognitive dysfunction after coronary artery bypass graft surgery:a prospective observational study[J].Eur J Anaesthesiol,2016,33:681-689

    • [5] CHEN C,CHENG X,LI J,et al.Extracellular RNAs as a chemical initiator for postoperative cognitive dysfunction [J].Med Hypotheses,2016,94:47-50

    • [6] HU L,SI L,DAI X,et al.Exosomal miR⁃409⁃3p secreted from activated mast cells promotes microglial migration,activation and neuroinflammation by targeting Nr4a2 to activate the NF ⁃ κB pathway[J].J Neuroinflammation,2021,18(1):68

    • [7] ZHANG Y,LIU Y X,XIAO Q X,et al.Microarray expres⁃ sion profiles of lncRNAs and mRNAs in postoperative cognitive dysfunction[J].Front Neurosci,2018,12:694

    • [8] GAO R,CHEN C,ZHAO Q,et al.Identification of the potential key circular RNAs in elderly patients with post⁃ operative cognitive dysfunction[J].Front Aging Neurosci,2020,12:165

    • [9] ZHANG S,DONG H,ZHANG X,et al.Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption[J].Behav Brain Res,2016,298(pt b):158-166

    • [10] XU J,DONG H,QIAN Q,et al.Astrocyte⁃derived CCL2 participates in surgery⁃induced cognitive dysfunction and neuroinflammation via evoking microglia activation[J].Behav Brain Res,2017,332:145-153

    • [11] ZHOU H,LI F,YE W,et al.Correlation between plasma CircRNA⁃089763 and postoperative cognitive dysfunction in elderly patients undergoing non ⁃ cardiac surgery[J].Front Behav Neurosci,2020,14:587715

    • [12] XIA Y,WEI K,HU L Q,et al.Exosome⁃mediated transfer of miR ⁃ 1260b promotes cell invasion through Wnt/β ⁃ catenin signaling pathway in lung adenocarcinoma[J].J Cell Physiol,2020,235:6843-6853

    • [13] NIJS K,VANDENBRANDE J,VAQUERIZA F,et al.Neurological outcome after minimal invasive coronary artery surgery(NOMICS):protocol for an observational prospective cohort study[J].BMJ Open,2017,7(10):e017823

    • [14] JI M H,YUAN H M,ZHANG G F,et al.Changes in plas⁃ ma and cerebrospinal fluid biomarkers in aged patients with early postoperative cognitive dysfunction following total hip-replacement surgery[J].J Anesth,2013,27(2):236-242

    • [15] MEN Y,YELICK J,JIN S,et al.Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS[J].Nat Commun,2019,10(1):4136

    • [16] GAO G,LI C,ZHU J,et al.Glutaminase 1 regulates neu⁃ roinflammation after cerebral ischemia through enhancing microglial activation and pro ⁃ inflammatory exosome release[J].Front Immunol,2020,11:161

    • [17] CHEN X,JIANG M,LI H,et al.CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA ⁃ 124 from neuron to microglia after subarachnoid hemorrhage[J].J Neuroinflammation,2020,17(1):209

    • [18] 胡柳婷.MicroRNA⁃23b对大鼠脑出血后神经炎症调控作用的机制研究[D].沈阳:中国医科大学,2020

    • [19] 邓威,孟颖,王晨星,等.miR⁃182在口腔鳞癌血清外泌体中的表达及其临床意义[J].南京医科大学学报(自然科学版),2021,41(4):509-515

    • [20] LAI N,WU D,LIANG T,et al.Systemic exosomal miR⁃ 193b ⁃ 3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice[J].J Neuroinflammation,2020,17(1):74

    • [21] WANG J,CHEN S,ZHANG W,et al.Exosomes from miRNA⁃126⁃modified endothelial progenitor cells allevi⁃ ate brain injury and promote functional recovery after stroke[J].CNS Neurosci Ther,2020,26(12):1255-1265

    • [22] GRIEBE M,AMANN M,HIRSCH J G,et al.Reduced functional reserve in patients with age ⁃ related white matter changes:a preliminary FMRI study of working memory[J].PLoS One,2014,9(8):e103359

  • 参考文献

    • [1] SKVARC D R,BERK M,BYRNE L K,et al.Post⁃operative cognitive dysfunction:an exploration of the inflammatory hypothesis and novel therapies[J].Neurosci Biobehav Rev,2018,84:116-133

    • [2] BISHAWI M,HATTLER B,ALMASSI G H,et al.Preop⁃ erative factors associated with worsening in health⁃related quality of life following coronary artery bypass grafting in the randomized on/off bypass(ROOBY)trial[J].Am Heart J,2018,198:33-38

    • [3] NEEDHAM M J,WEBB C E,BRYDEN D C.Postopera⁃ tive cognitive dysfunction and dementia:what we need to know and do[J].Br J Anaesth,2017,119(suppl_1):i115-i125

    • [4] SILVA F P,SCHMIDT A P,VALENTIN L S,et al.S100B protein and neuron⁃specifc enolase as predictors of cognitive dysfunction after coronary artery bypass graft surgery:a prospective observational study[J].Eur J Anaesthesiol,2016,33:681-689

    • [5] CHEN C,CHENG X,LI J,et al.Extracellular RNAs as a chemical initiator for postoperative cognitive dysfunction [J].Med Hypotheses,2016,94:47-50

    • [6] HU L,SI L,DAI X,et al.Exosomal miR⁃409⁃3p secreted from activated mast cells promotes microglial migration,activation and neuroinflammation by targeting Nr4a2 to activate the NF ⁃ κB pathway[J].J Neuroinflammation,2021,18(1):68

    • [7] ZHANG Y,LIU Y X,XIAO Q X,et al.Microarray expres⁃ sion profiles of lncRNAs and mRNAs in postoperative cognitive dysfunction[J].Front Neurosci,2018,12:694

    • [8] GAO R,CHEN C,ZHAO Q,et al.Identification of the potential key circular RNAs in elderly patients with post⁃ operative cognitive dysfunction[J].Front Aging Neurosci,2020,12:165

    • [9] ZHANG S,DONG H,ZHANG X,et al.Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption[J].Behav Brain Res,2016,298(pt b):158-166

    • [10] XU J,DONG H,QIAN Q,et al.Astrocyte⁃derived CCL2 participates in surgery⁃induced cognitive dysfunction and neuroinflammation via evoking microglia activation[J].Behav Brain Res,2017,332:145-153

    • [11] ZHOU H,LI F,YE W,et al.Correlation between plasma CircRNA⁃089763 and postoperative cognitive dysfunction in elderly patients undergoing non ⁃ cardiac surgery[J].Front Behav Neurosci,2020,14:587715

    • [12] XIA Y,WEI K,HU L Q,et al.Exosome⁃mediated transfer of miR ⁃ 1260b promotes cell invasion through Wnt/β ⁃ catenin signaling pathway in lung adenocarcinoma[J].J Cell Physiol,2020,235:6843-6853

    • [13] NIJS K,VANDENBRANDE J,VAQUERIZA F,et al.Neurological outcome after minimal invasive coronary artery surgery(NOMICS):protocol for an observational prospective cohort study[J].BMJ Open,2017,7(10):e017823

    • [14] JI M H,YUAN H M,ZHANG G F,et al.Changes in plas⁃ ma and cerebrospinal fluid biomarkers in aged patients with early postoperative cognitive dysfunction following total hip-replacement surgery[J].J Anesth,2013,27(2):236-242

    • [15] MEN Y,YELICK J,JIN S,et al.Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS[J].Nat Commun,2019,10(1):4136

    • [16] GAO G,LI C,ZHU J,et al.Glutaminase 1 regulates neu⁃ roinflammation after cerebral ischemia through enhancing microglial activation and pro ⁃ inflammatory exosome release[J].Front Immunol,2020,11:161

    • [17] CHEN X,JIANG M,LI H,et al.CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA ⁃ 124 from neuron to microglia after subarachnoid hemorrhage[J].J Neuroinflammation,2020,17(1):209

    • [18] 胡柳婷.MicroRNA⁃23b对大鼠脑出血后神经炎症调控作用的机制研究[D].沈阳:中国医科大学,2020

    • [19] 邓威,孟颖,王晨星,等.miR⁃182在口腔鳞癌血清外泌体中的表达及其临床意义[J].南京医科大学学报(自然科学版),2021,41(4):509-515

    • [20] LAI N,WU D,LIANG T,et al.Systemic exosomal miR⁃ 193b ⁃ 3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice[J].J Neuroinflammation,2020,17(1):74

    • [21] WANG J,CHEN S,ZHANG W,et al.Exosomes from miRNA⁃126⁃modified endothelial progenitor cells allevi⁃ ate brain injury and promote functional recovery after stroke[J].CNS Neurosci Ther,2020,26(12):1255-1265

    • [22] GRIEBE M,AMANN M,HIRSCH J G,et al.Reduced functional reserve in patients with age ⁃ related white matter changes:a preliminary FMRI study of working memory[J].PLoS One,2014,9(8):e103359