en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。

中图分类号:R738.1

文献标识码:A

文章编号:1007-4368(2022)05-638-06

DOI:10.7655/NYDXBNS20220506

参考文献 1
PRUDOWSKY Z D,YUSTEIN J T.Recent insights into therapy resistance in osteosarcoma[J].Cancers(Basel),2020,13(1):83
参考文献 2
GREENFIELD E M,COLLIER C D,Getty P J.Receptor tyrosine kinases in osteosarcoma:2019 update[J].Adv Exp Med Biol,2020,1258:141-155
参考文献 3
SMRKE A,ANFERSON P M,GULIA A,et al.Future di⁃ rections in the treatment of osteosarcoma[J].Cells,2021,10(1):172
参考文献 4
LILIENTHAL I,HEROLD N.Targeting molecular mecha⁃ nisms underlying treatment efficacy and resistance in os⁃ teosarcoma:a review of current and future strategies[J].Int J Mol Sci,2020,21(18):6885
参考文献 5
ZHENG D,WU W,DONG N,et al.Mxd1 mediates hypox⁃ ia ⁃ induced cisplatin resistance in osteosarcoma cells by repression of the PTEN tumor suppressor gene[J].Mol Carcinog,2017,56(10):2234-2244
参考文献 6
ZHAO W,XIA S Q,ZHUANG J P,et al.Hypoxia ⁃ in⁃ duced resistance to cisplatin⁃mediated apoptosis in osteo⁃ sarcomacells is reversed by gambogic acid independently of HIF⁃1alpha[J].Mol Cell Biochem,2016,420(1⁃2):1-8
参考文献 7
LI C,GUO D,TANG B,et al.Notch1 is associated with the multidrug resistance of hypoxic osteosarcoma by regu⁃ lating MRP1 gene expression[J].Neoplasma,2016,63(5):734-742
参考文献 8
YANG C,WU K,WANG S,et al.Long non⁃coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR ⁃ 195 ⁃ 5p[J].J Cell Biochem,2018,119(7):5646-5656
参考文献 9
GUAN H,SHANG G,CUI Y,et al.Long noncoding RNA APTR contributes to osteosarcoma progression through re⁃ pression of miR⁃132⁃3p and upregulation of yes⁃associat⁃ ed protein 1[J].J Cell Physiol,2019,234(6):8998-9007
参考文献 10
ZHANG J,MA X,ZHOU R,et al.TRPS1 and YAP1 regu⁃ late cell proliferation and drug resistance of osteosarcoma via competitively binding to the target of circTADA2A ⁃ miR⁃129⁃5p[J].Cancer Cell Int,2020,20:223
参考文献 11
WANG D Y,WU Y N,HUANG J Q,et al.Hippo/YAP sig⁃ naling pathway is involved in osteosarcoma chemoresista ⁃ nce[J].Chin J Cancer,2016,35:47
参考文献 12
GREENHOUGH A,BAGLEY C,HEESOM KJ,et al.Can⁃ cer cell adaptation to hypoxia involves a HIF ⁃ GPRC5A ⁃ YAP axis[J].EMBO Mol Med,2018,10(11):e8699
参考文献 13
SCHOLTEN D J,TIMMER C M,PEACOCK J D,et al.Down regulation of Wnt signaling mitigates hypoxia ⁃ in⁃ duced chemoresistance in human osteosarcoma cells[J].PLoS One,2014,9(10):e111431
参考文献 14
RONCUZZI L,PANCOTT F,BALDINI N.Involvement of HIF⁃1α activation in the doxorubicin resistance of human osteosarcoma cells[J].Oncol Rep,2014,32(1):389-394
参考文献 15
ZHANG L,SHI H,CHEN H,et al.Dedifferentiation pro⁃ cess driven by radiotherapy⁃induced HMGB1/TLR2/YAP/HIF ⁃ 1alpha signaling enhances pancreatic cancer stem⁃ ness[J].Cell Death Dis,2019,10(10):724
参考文献 16
ZHANG X,LI Y,MA Y,et al.Yes ⁃ associated protein(YAP)binds to HIF⁃1alpha and sustains HIF⁃1alpha pro⁃ tein stability to promote hepatocellular carcinoma cell gly⁃ colysis under hypoxic stress[J].J Exp Clin Cancer Res,2018,37(1):216
参考文献 17
ZHU B,PAN S,LIU J,et al.HIF⁃1alpha forms regulatory loop with YAP to coordinate hypoxia⁃induced adriamycin resistance in acute myeloid leukemia cells[J].Cell Biol Int,2020,44(2):456-466
参考文献 18
BEN Q,AN W,SUN Y,et al.A nicotine⁃induced positive feedback loop between HIF1A and YAP1 contributes to epithelial⁃to⁃mesenchymal transition in pancreatic ductal adenocarcinoma[J].J Exp Clin Cancer Res,2020,39(1):181
参考文献 19
TOLOMEO M,CASCIO A.the multifaced role of stat3 in cancer and its implication for anticancer therapy[J].Int J Mol Sci,2021,22(2):603
参考文献 20
LEE H,JEONG A J,YE S K.Highlighted STAT3 as a po⁃ tential drug target for cancer therapy[J].BMB Rep,2019,52(7):415-423
参考文献 21
LIU Y,LIAO S,BENNETT S,et al.STAT3 and its target⁃ ing inhibitors in osteosarcoma[J].Cell Prolif,2020,31:e12974
参考文献 22
WANG Z,WANG C,ZUO D,et al.Attenuation of STAT3 phosphorylation promotes apoptosis and chemo⁃ sensitivity in human osteosarcoma induced by raddeanin A[J].Int J Biol Sci,2019,15(3):668-679
参考文献 23
LIU Q,WANG K.The induction of ferroptosis by impair⁃ ing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J].Cell Biol Int,2019,43(11):1245-1256
参考文献 24
WANG Z D,WANG R Z,XIA Y Z,et al.Reversal of mul⁃ tidrug resistance by icaritin in doxorubicin ⁃ resistant hu⁃ man osteosarcoma cells[J].Chin J Nat Med,2018,16(1):20-28
参考文献 25
XUE H,YUAN G,GUO X,et al.A novel tumor ⁃promot⁃ ing mechanism of IL6 and the therapeutic efficacy of to⁃ cilizumab:hypoxia⁃induced IL6 is a potent autophagy ini⁃ tiator in glioblastoma via the p⁃STAT3⁃MIR155⁃3p⁃CRE⁃ BRF pathway[J].Autophagy,2016,12(7):1129-1152
参考文献 26
SOLEYMANI ABYANEH H,GUPTA N,ALSHAREEF A,et al.Hypoxia induces the acquisition of cancer stem ⁃ like phenotype via upregulation and activation of signal transducer and activator of transcription ⁃ 3(STAT3)in MDA ⁃ MB ⁃ 231,a triple negative breast cancer cell line [J].Cancer Microenviron,2018,11(2⁃3):141-152
参考文献 27
CODONY ⁃ SERVAT J,CODONY ⁃ SERVAT C,CARDO⁃ NA A F,et al.Cancer stem cell biomarkers in egfr⁃muta⁃ tion ⁃ positive non ⁃ small ⁃ cell lung cancer[J].Clin Lung Cancer,2019,20(3):167-177
参考文献 28
SHIBATA M,OOKI A,INOKAWA Y,et al.Concurrent targeting of potential cancer stem cells regulating path⁃ ways sensitizes lung adenocarcinoma to standard chemo⁃ therapy[J].Mol Cancer Ther,2020,19(10):2175-2185
目录contents

    摘要

    目的:研究Yes相关蛋白1(yes⁃associated protein 1,YAP1)对缺氧条件下骨肉瘤细胞顺铂(cisplatin,CDDP)敏感性的影响及潜在机制。方法:采用流式细胞术和CCK⁃8检测骨肉瘤MG⁃63细胞对CDDP的敏感性。Western blot方法检测MG⁃63 细胞在常氧和缺氧条件下、转染HIF⁃1α⁃siRNA、YAP1⁃siRNA、STAT3⁃siRNA后,细胞内缺氧诱导因子1α(hypoxia inducible fac⁃ tor⁃1α,HIF⁃1α)、YAP1、信号转导和转录激活因子3(signal transducer and activator of transcription 3,STAT3)和磷酸化STAT3表达水平。结果:YAP1在缺氧后的人骨肉瘤细胞MG⁃63中呈显著高表达(P < 0.05)。缺氧条件下过表达YAP1,MG⁃63细胞对 CDDP 的敏感性显著下降(P < 0.01)。缺氧条件下采用 siRNA 抑制 YAP1 表达,MG⁃63 细胞对 CDDP 的敏感性显著提高(P < 0.01);细胞中 p⁃STAT3 表达显著下调(P < 0.01)。沉默 STAT3 可显著提高缺氧条件下 MG⁃63 细胞对 CDDP 的敏感性(P < 0.01)。沉默 HIF⁃1α可显著抑制缺氧诱导的 YAP1 表达上调(P < 0.01),提高缺氧条件下 MG⁃63 细胞对 CDDP 的敏感性(P < 0.01)。结论:缺氧通过HIF⁃1α依赖的方式上调骨肉瘤细胞内YAP1,YAP1可能通过激活STAT3降低骨肉瘤细胞对CDDP的敏感性。

    Abstract

    Objective:This study aims to investigate the effect of yes associated protein 1(YAP1)on cisplatin(CDDP)sesitivity of osteosarcoma cells under hypoxia and its underlying mechanism. Methods:Flow cytometry and CCK⁃8 were used to detect the CDDP sensitivity of osteosarcoma cells. Western blot was used to detect the expression of hypoxia inducible factor⁃1α(HIF⁃1α),YAP1,signal transducer and activator of transcription 3(STAT3)and p⁃STAT3 protein in human osteosarcoma cell line MG⁃63 under normoxic and hypoxic conditions after transfection with HIF⁃1 α⁃siRNA,YAP1⁃siRNA and STAT3⁃siRNA. Results:YAP1 was highly expressed in MG ⁃63 cells after hypoxia(P < 0.05). Overexpression of YAP1 significantly reduced the sensitivity of MG ⁃63 cells to CDDP under hypoxic condition(P < 0.01). The apoptosis rate of osteosarcoma cells was significantly increased(P < 0.01)and the sensitivity of osteosarcoma cells to CDDP was increased(P < 0.01)under hypoxic condition after transfection with YAP1⁃siRNA. The expression of p ⁃STAT3 in MG⁃63 cells was significantly down⁃regulated after inhibiting YAP1 expression(P < 0.01). Silencing STAT3 significantly increased the sensitivity of MG⁃63 cells to CDDP under hypoxia(P < 0.01). Silencing HIF⁃1α significantly inhibited hypoxia⁃induced up⁃regulation of YAP1(P < 0.01),and incresed the sensitivity of MG⁃63 cells to CDDP. Conclusion:Hypoxia up⁃regulates YAP1 in osteosarcoma cells in a HIF⁃1α dependent manner. YAP1 may promote CDDP resistance of osteosarcoma cells by activating STAT3.

    关键词

    骨肉瘤YAP1STAT3缺氧耐药

    Keywords

    osteosarcomaYAP1STAT3hypoxiadrug resistance

  • 骨肉瘤是一种严重危害儿童和青少年健康的原发性骨肿瘤[1-4]。铂类药物化疗是骨肉瘤的重要治疗方式之一,但患者往往对化疗药物耐药,导致疗效和生存率均受到极大影响[1-4]。化疗药物耐药是目前骨肉瘤治疗的主要障碍,因此探索骨肉瘤耐药机制已成为近年来骨肉瘤治疗研究的重要内容。骨肉瘤作为实体肿瘤的一种,已被证实存在缺氧微环境,其与骨肉瘤化疗耐药密切相关,但缺氧诱导骨肉瘤产生耐药的机制目前尚未完全清楚[5-7]。Yes相关蛋白1(yes⁃associated protein 1,YAP1)是Hippo信号通路中的重要激酶,其过表达不仅与骨肉瘤的发生发展密切相关[8-9],也参与骨肉瘤化疗耐药的调控[10-11]。既往研究证实,缺氧可引起肿瘤细胞内YAP1表达上调[12]。然而,缺氧是否通过上调细胞内YAP1表达进而诱导骨肉瘤发生化疗耐药,目前尚未见相关报道。本研究拟在体外缺氧环境下培养骨肉瘤细胞系MG⁃63,观察在缺氧条件下MG⁃63细胞中YAP1的表达情况,探讨其对缺氧条件下骨肉瘤细胞顺铂敏感性的影响及潜在机制。

  • 1 材料和方法

  • 1.1 材料

  • MG⁃63细胞(中国科学院上海细胞生物学研究所);DMEM培养基、胎牛血清(Gibco公司,美国);脂质体LipofectamineTM 2000、增强型ECL试剂盒(Invitro⁃ gen公司,美国);抗⁃YAP1、抗⁃HIF⁃1α、抗⁃STAT3、抗⁃ 磷酸化STAT3、抗⁃GAPDH抗体(Cell Signaling Tech⁃ nology公司,美国);HRP标记山羊抗兔二抗(Santa Cruz公司,美国);CCK⁃8、Annexin V凋亡检测试剂盒(上海碧云天公司);HIF⁃1α⁃siRNA、YAP1⁃siRNA、 STAT3⁃siRNA及对应阴性对照siRNA(上海吉玛公司);顺铂(cisplatin,CDDP)(Sigma公司,美国),pcD⁃ NA⁃3.1⁃YAP1⁃HA质粒为本研究室保存。

  • 1.2 方法

  • 1.2.1 细胞缺氧处理与转染

  • MG⁃63细胞置于DMEM完全培养基(10%胎牛血清、100 μg/mL链霉素和100U/mL青霉素),37℃ 含5%CO2的湿润气氛中培养。细胞融合度达到70%后,分别置于正常和缺氧条件下培养,缺氧条件为:37℃、5%CO2、94%N2、1%O2。将处于生长对数期的MG⁃63细胞接种至6孔板,siRNA转染分为3组:空白对照组(不转染)、阴性对照组(转染阴性对照siRNA)和siRNA组(转染相应的siRNA)。质粒转染分为2组:空载体组(转染对照空载质粒)和过表达组(转染pcDNA ⁃3.1⁃YAP1⁃HA质粒)。按LipofectamineTM 2000说明书进行转染操作,转染48h后收集细胞, Western blot检验转染效率。

  • 1.2.2 Western blot检测HIF⁃1α、YAP1、p⁃STAT3和总STAT3蛋白表达

  • 收集经处理的各组细胞,加入RIPA裂解液提取总蛋白,BCA法进行定量。取等量蛋白进行SDS⁃聚丙烯酰胺凝胶电泳、转膜、5%脱脂奶粉溶液封闭1h,分别加入一抗HIF⁃1α(1∶1 000)、YAP1(1∶1 000)、 p⁃STAT3(1∶1 000)、STAT3(1∶2 000)、GAPDH(1∶ 10 000),于4℃孵育过夜,清洗后加入HRP标记的兔二抗(1∶5 000)室温孵育2h,清洗后加入ECL发光剂于暗室中显影、曝光。采用Gel⁃Pro软件对蛋白灰度值进行定量分析,以GAPDH为内参。

  • 1.2.3 CCK⁃8法检测MG⁃63细胞耐药性的改变

  • 将各组经处理的MG⁃63细胞按1×104 个/孔接种于96孔板中,加入CDDP(10 μmol/L)继续培养24h后,每孔加入10 μL CCK⁃8试剂,37℃继续培养1.5h,酶标仪检测450nm处各孔光密度值。细胞相对活力为实验组与对照组的光密度比值。

  • 1.2.4 Annexin V流式细胞术检测MG⁃63细胞凋亡

  • 收集经处理的各组MG⁃63细胞(1×106 个),PBS洗涤后加入5 μL PI和5 μL AnnexinV试剂,混均后室温避光孵育15min,采用FACS流式细胞仪进行检测,用Cell Quest软件分析凋亡细胞的比例。

  • 1.3 统计学方法

  • 所有数据均采用SPSS 13.0软件进行分析,正态分布的检测数据采用均数±标准差(x-±s)表示,两组间比较采用独立样本t检验,多组间比较采用One⁃ Way ANOVA分析。P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 缺氧条件下MG⁃63细胞中YAP1的表达

  • MG ⁃63细胞分别在常氧和缺氧条件下培养24h,Western blot检测结果(图1)显示,缺氧组细胞中YAP1蛋白的表达水平较常氧组显著升高(P< 0.05)。

  • 2.2 沉默YAP1增加缺氧条件下骨肉瘤细胞对CDDP的敏感性

  • CCK⁃8检测结果(图2A)显示,CDDP(10 μmol/L) 处理24h后,常氧组和缺氧组细胞活力均显著下降 (P< 0.01),常氧组细胞活力显著低于缺氧组(P< 0.01)。在MG⁃63细胞中用siRNA抑制YAP1表达, Western blot检测结果(图2B)显示,缺氧条件下si⁃YAP1组细胞中YAP1蛋白的表达水平较阴性对照NC组显著降低(P< 0.01)。流式细胞检测结果(图2C)显示,CDDP处理后,缺氧条件下siYAP1组细胞凋亡率显著高于NC组(P< 0.01)。CCK⁃8检测结果 (图2D)显示,CDDP处理后,缺氧条件下siYAP1组细胞活力显著低于NC组(P< 0.01)。

  • 图1 缺氧条件下MG⁃63细胞中YAP1的表达

  • Fig.1 The expression of YAP1in MG ⁃63cells under hypoxic condition

  • 2.3 过表达YAP1 降低缺氧条件下骨肉瘤细胞对CDDP的敏感性

  • 在MG⁃63细胞中转染pcDNA⁃3.1⁃YAP1⁃HA质粒,Western blot检测结果(图3A)显示,YAP1过表达组细胞中YAP1蛋白的表达水平较空载体组显著升高。CCK⁃8检测结果(图3B)显示,CDDP处理后,缺氧条件下YAP1过表达组细胞活力显著高于空载体组(P< 0.01),而常氧条件下,两组细胞活力无显著差异(P> 0.05)。

  • 2.4 YAP1影响缺氧条件下STAT3磷酸化水平

  • Western blot检测结果显示(图4),在缺氧条件下,与NC组相比,siYAP1组MG⁃63细胞中p⁃STAT3蛋白的表达水平显著降低(P< 0.01),而总STAT3蛋白的表达水平没有显著变化(P> 0.05)。

  • 2.5 STAT3影响缺氧条件下骨肉瘤细胞对CDDP的敏感性

  • 图2 沉默YAP1增强缺氧条件下MG⁃63细胞对CDDP的敏感性

  • Fig.2 Silencing YAP1enhances the sensitivity of MG⁃63cells to CDDP under hypoxia

  • 图3 过表达YAP1降低缺氧条件下MG⁃63细胞对CDDP的敏感性

  • Fig.3 Overexpression of YAP1reduces the sensitivity of MG⁃63cells to CDDP under hypoxia

  • 在MG ⁃63细胞中用siRNA抑制STAT3表达, Western blot检测结果(图5A)显示,缺氧条件下siSTAT3组细胞中STAT3蛋白的表达水平较NC组显著降低(P< 0.01)。CCK⁃8检测结果(图5B)显示,CDDP处理后,缺氧条件下siSTAT3组细胞活力显著低于NC组(P< 0.01)。

  • 2.6 HIF⁃1α影响缺氧条件下YAP1的表达和骨肉瘤细胞对CDDP的敏感性

  • 利用siRNA方法抑制MG⁃63细胞中HIF⁃1α表达后,给予细胞缺氧处理。Western blot检测结果 (图6A)显示,与NC组相比,siHIF⁃1α组细胞中HIF⁃ 1α、YAP1蛋白的表达水平均显著降低(均 P< 0.01)。CCK ⁃8检测结果(图6B)显示,CDDP处理后,缺氧条件下siHIF⁃1α组细胞活力显著低于NC组 (P< 0.01)。

  • 3 讨论

  • 以铂类药物为基础的化疗是骨肉瘤的重要治疗方式,其中最常用的是CDDP[1-4]。肿瘤细胞耐药是导致部分患者治疗效果降低,引起肿瘤复发与转移,甚至死亡的主要原因[1-4]。缺氧已被证实是引起骨肉瘤细胞化疗耐药的重要因素之一[5-7]。本研究发现,缺氧可使骨肉瘤细胞内YAP1表达上调,缺氧条件下用siRNA沉默YAP1后再给予CDDP处理, MG⁃63细胞活力下降,凋亡升高,这表明在缺氧条件下YAP1降低了骨肉瘤细胞对CDDP的敏感性。虽然本研究通过体外实验首次证实了YAP1影响缺氧条件下骨肉瘤细胞对CDDP的敏感性,但还需动物实验进一步验证其作用。

  • 既往研究证实HIF⁃1α是缺氧条件下调控耐药相关基因表达的关键因子[513-14]。本研究发现,缺氧条件下沉默HIF⁃1α可显著抑制YAP1表达的上调,提示缺氧条件下骨肉瘤细胞中HIF ⁃1α正向调节YAP1的表达,这一结果与前期在其他类型肿瘤细胞中的研究结果相一致。缺氧诱导HIF⁃1α的增加是肿瘤组织缺氧最为重要的特征,骨肉瘤细胞中HIF⁃1α和YAP1在缺氧条件下的表达同步增强与CDDP敏感性是否相关,二者的共同高表达能否成为临床上判断缺氧引起CDDP耐药的标志物,本课题组将在后期研究中进行深入研究。Zhang等[15] 研究结果表明,在胰腺癌放疗过程中,YAP1介导的HIF⁃1α表达可通过驱动去分化过程进而增强胰腺癌细胞的干性。这一结果说明YAP1亦可调节HIF⁃ 1α的表达。Zhang等[16] 发现在缺氧条件下,YAP1可与HIF⁃1α结合并维持其蛋白稳定性,从而促进肝癌细胞糖酵解。Zhu等[17] 的最新研究表明,在缺氧条件下,YAP1与HIF⁃1α形成反馈调节环路调控急性髓系白血病细胞对阿霉素的抗性。YAP1与HIF⁃1α 之间的正反馈调节环路亦被证明可以促进胰腺癌上皮间质转化(epithelial ⁃ mesenchymal transitions, EMT)的发生[18]。YAP1与HIF⁃1α在缺氧降低骨肉瘤细胞CDDP敏感性中是否存在反馈调节仍有待进一步研究。

  • 图4 YAP1影响缺氧条件下STAT3磷酸化水平

  • Fig.4 Effect of YAP1on STAT3phosphorylation under hypoxia

  • 图5 沉默STAT3增强缺氧条件下MG⁃63细胞对CDDP的敏感性

  • Fig.5 Silencing STAT3enhances the sensitivity of MG⁃63cells to CDDP under hypoxia

  • 图6 沉默HIF⁃1α抑制缺氧条件下YAP1的表达

  • Fig.6 Silencing HIF⁃1α inhibits YAP1expression under hypoxia

  • STAT3是STAT家族蛋白的重要成员,在多种实体瘤中过表达与激活,参与肿瘤细胞恶性生物学行为的调控,如增殖、凋亡、侵袭和转移等[19-21]。 STAT3在骨肉瘤中的过表达和激活已被证实与肿瘤细胞耐药的发生密切相关[22-24]。缺氧可上调和激活肿瘤细胞中的STAT3 [25-26]。研究表明,YAP1能够调节肿瘤细胞中STAT3的活化[27-28]。但在缺氧诱导的骨肉瘤细胞耐药过程中,YAP1是否调控STAT3的活化目前尚未见相关报道。本研究发现,在缺氧条件下,沉默YAP1可显著下调骨肉瘤细胞中STAT3的磷酸化水平,而沉默STAT3后再给予CDDP处理, MG⁃63细胞活力显著下降。这表明,在缺氧条件下, YAP1可能通过激活STAT3影响骨肉瘤细胞对CDDP的敏感性。

  • 综上所述,本研究通过体外实验发现,HIF⁃1α 上调的YAP1对缺氧条件下骨肉瘤细胞CDDP耐受有一定促进作用,且与STAT3蛋白的磷酸化水平有关。在本研究基础上,通过动物实验验证YAP1在缺氧诱导骨肉瘤细胞耐药中的作用并进一步研究其机制,可为骨肉瘤的耐药机制研究和临床治疗提供新思路。

  • 参考文献

    • [1] PRUDOWSKY Z D,YUSTEIN J T.Recent insights into therapy resistance in osteosarcoma[J].Cancers(Basel),2020,13(1):83

    • [2] GREENFIELD E M,COLLIER C D,Getty P J.Receptor tyrosine kinases in osteosarcoma:2019 update[J].Adv Exp Med Biol,2020,1258:141-155

    • [3] SMRKE A,ANFERSON P M,GULIA A,et al.Future di⁃ rections in the treatment of osteosarcoma[J].Cells,2021,10(1):172

    • [4] LILIENTHAL I,HEROLD N.Targeting molecular mecha⁃ nisms underlying treatment efficacy and resistance in os⁃ teosarcoma:a review of current and future strategies[J].Int J Mol Sci,2020,21(18):6885

    • [5] ZHENG D,WU W,DONG N,et al.Mxd1 mediates hypox⁃ ia ⁃ induced cisplatin resistance in osteosarcoma cells by repression of the PTEN tumor suppressor gene[J].Mol Carcinog,2017,56(10):2234-2244

    • [6] ZHAO W,XIA S Q,ZHUANG J P,et al.Hypoxia ⁃ in⁃ duced resistance to cisplatin⁃mediated apoptosis in osteo⁃ sarcomacells is reversed by gambogic acid independently of HIF⁃1alpha[J].Mol Cell Biochem,2016,420(1⁃2):1-8

    • [7] LI C,GUO D,TANG B,et al.Notch1 is associated with the multidrug resistance of hypoxic osteosarcoma by regu⁃ lating MRP1 gene expression[J].Neoplasma,2016,63(5):734-742

    • [8] YANG C,WU K,WANG S,et al.Long non⁃coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR ⁃ 195 ⁃ 5p[J].J Cell Biochem,2018,119(7):5646-5656

    • [9] GUAN H,SHANG G,CUI Y,et al.Long noncoding RNA APTR contributes to osteosarcoma progression through re⁃ pression of miR⁃132⁃3p and upregulation of yes⁃associat⁃ ed protein 1[J].J Cell Physiol,2019,234(6):8998-9007

    • [10] ZHANG J,MA X,ZHOU R,et al.TRPS1 and YAP1 regu⁃ late cell proliferation and drug resistance of osteosarcoma via competitively binding to the target of circTADA2A ⁃ miR⁃129⁃5p[J].Cancer Cell Int,2020,20:223

    • [11] WANG D Y,WU Y N,HUANG J Q,et al.Hippo/YAP sig⁃ naling pathway is involved in osteosarcoma chemoresista ⁃ nce[J].Chin J Cancer,2016,35:47

    • [12] GREENHOUGH A,BAGLEY C,HEESOM KJ,et al.Can⁃ cer cell adaptation to hypoxia involves a HIF ⁃ GPRC5A ⁃ YAP axis[J].EMBO Mol Med,2018,10(11):e8699

    • [13] SCHOLTEN D J,TIMMER C M,PEACOCK J D,et al.Down regulation of Wnt signaling mitigates hypoxia ⁃ in⁃ duced chemoresistance in human osteosarcoma cells[J].PLoS One,2014,9(10):e111431

    • [14] RONCUZZI L,PANCOTT F,BALDINI N.Involvement of HIF⁃1α activation in the doxorubicin resistance of human osteosarcoma cells[J].Oncol Rep,2014,32(1):389-394

    • [15] ZHANG L,SHI H,CHEN H,et al.Dedifferentiation pro⁃ cess driven by radiotherapy⁃induced HMGB1/TLR2/YAP/HIF ⁃ 1alpha signaling enhances pancreatic cancer stem⁃ ness[J].Cell Death Dis,2019,10(10):724

    • [16] ZHANG X,LI Y,MA Y,et al.Yes ⁃ associated protein(YAP)binds to HIF⁃1alpha and sustains HIF⁃1alpha pro⁃ tein stability to promote hepatocellular carcinoma cell gly⁃ colysis under hypoxic stress[J].J Exp Clin Cancer Res,2018,37(1):216

    • [17] ZHU B,PAN S,LIU J,et al.HIF⁃1alpha forms regulatory loop with YAP to coordinate hypoxia⁃induced adriamycin resistance in acute myeloid leukemia cells[J].Cell Biol Int,2020,44(2):456-466

    • [18] BEN Q,AN W,SUN Y,et al.A nicotine⁃induced positive feedback loop between HIF1A and YAP1 contributes to epithelial⁃to⁃mesenchymal transition in pancreatic ductal adenocarcinoma[J].J Exp Clin Cancer Res,2020,39(1):181

    • [19] TOLOMEO M,CASCIO A.the multifaced role of stat3 in cancer and its implication for anticancer therapy[J].Int J Mol Sci,2021,22(2):603

    • [20] LEE H,JEONG A J,YE S K.Highlighted STAT3 as a po⁃ tential drug target for cancer therapy[J].BMB Rep,2019,52(7):415-423

    • [21] LIU Y,LIAO S,BENNETT S,et al.STAT3 and its target⁃ ing inhibitors in osteosarcoma[J].Cell Prolif,2020,31:e12974

    • [22] WANG Z,WANG C,ZUO D,et al.Attenuation of STAT3 phosphorylation promotes apoptosis and chemo⁃ sensitivity in human osteosarcoma induced by raddeanin A[J].Int J Biol Sci,2019,15(3):668-679

    • [23] LIU Q,WANG K.The induction of ferroptosis by impair⁃ ing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J].Cell Biol Int,2019,43(11):1245-1256

    • [24] WANG Z D,WANG R Z,XIA Y Z,et al.Reversal of mul⁃ tidrug resistance by icaritin in doxorubicin ⁃ resistant hu⁃ man osteosarcoma cells[J].Chin J Nat Med,2018,16(1):20-28

    • [25] XUE H,YUAN G,GUO X,et al.A novel tumor ⁃promot⁃ ing mechanism of IL6 and the therapeutic efficacy of to⁃ cilizumab:hypoxia⁃induced IL6 is a potent autophagy ini⁃ tiator in glioblastoma via the p⁃STAT3⁃MIR155⁃3p⁃CRE⁃ BRF pathway[J].Autophagy,2016,12(7):1129-1152

    • [26] SOLEYMANI ABYANEH H,GUPTA N,ALSHAREEF A,et al.Hypoxia induces the acquisition of cancer stem ⁃ like phenotype via upregulation and activation of signal transducer and activator of transcription ⁃ 3(STAT3)in MDA ⁃ MB ⁃ 231,a triple negative breast cancer cell line [J].Cancer Microenviron,2018,11(2⁃3):141-152

    • [27] CODONY ⁃ SERVAT J,CODONY ⁃ SERVAT C,CARDO⁃ NA A F,et al.Cancer stem cell biomarkers in egfr⁃muta⁃ tion ⁃ positive non ⁃ small ⁃ cell lung cancer[J].Clin Lung Cancer,2019,20(3):167-177

    • [28] SHIBATA M,OOKI A,INOKAWA Y,et al.Concurrent targeting of potential cancer stem cells regulating path⁃ ways sensitizes lung adenocarcinoma to standard chemo⁃ therapy[J].Mol Cancer Ther,2020,19(10):2175-2185

  • 参考文献

    • [1] PRUDOWSKY Z D,YUSTEIN J T.Recent insights into therapy resistance in osteosarcoma[J].Cancers(Basel),2020,13(1):83

    • [2] GREENFIELD E M,COLLIER C D,Getty P J.Receptor tyrosine kinases in osteosarcoma:2019 update[J].Adv Exp Med Biol,2020,1258:141-155

    • [3] SMRKE A,ANFERSON P M,GULIA A,et al.Future di⁃ rections in the treatment of osteosarcoma[J].Cells,2021,10(1):172

    • [4] LILIENTHAL I,HEROLD N.Targeting molecular mecha⁃ nisms underlying treatment efficacy and resistance in os⁃ teosarcoma:a review of current and future strategies[J].Int J Mol Sci,2020,21(18):6885

    • [5] ZHENG D,WU W,DONG N,et al.Mxd1 mediates hypox⁃ ia ⁃ induced cisplatin resistance in osteosarcoma cells by repression of the PTEN tumor suppressor gene[J].Mol Carcinog,2017,56(10):2234-2244

    • [6] ZHAO W,XIA S Q,ZHUANG J P,et al.Hypoxia ⁃ in⁃ duced resistance to cisplatin⁃mediated apoptosis in osteo⁃ sarcomacells is reversed by gambogic acid independently of HIF⁃1alpha[J].Mol Cell Biochem,2016,420(1⁃2):1-8

    • [7] LI C,GUO D,TANG B,et al.Notch1 is associated with the multidrug resistance of hypoxic osteosarcoma by regu⁃ lating MRP1 gene expression[J].Neoplasma,2016,63(5):734-742

    • [8] YANG C,WU K,WANG S,et al.Long non⁃coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR ⁃ 195 ⁃ 5p[J].J Cell Biochem,2018,119(7):5646-5656

    • [9] GUAN H,SHANG G,CUI Y,et al.Long noncoding RNA APTR contributes to osteosarcoma progression through re⁃ pression of miR⁃132⁃3p and upregulation of yes⁃associat⁃ ed protein 1[J].J Cell Physiol,2019,234(6):8998-9007

    • [10] ZHANG J,MA X,ZHOU R,et al.TRPS1 and YAP1 regu⁃ late cell proliferation and drug resistance of osteosarcoma via competitively binding to the target of circTADA2A ⁃ miR⁃129⁃5p[J].Cancer Cell Int,2020,20:223

    • [11] WANG D Y,WU Y N,HUANG J Q,et al.Hippo/YAP sig⁃ naling pathway is involved in osteosarcoma chemoresista ⁃ nce[J].Chin J Cancer,2016,35:47

    • [12] GREENHOUGH A,BAGLEY C,HEESOM KJ,et al.Can⁃ cer cell adaptation to hypoxia involves a HIF ⁃ GPRC5A ⁃ YAP axis[J].EMBO Mol Med,2018,10(11):e8699

    • [13] SCHOLTEN D J,TIMMER C M,PEACOCK J D,et al.Down regulation of Wnt signaling mitigates hypoxia ⁃ in⁃ duced chemoresistance in human osteosarcoma cells[J].PLoS One,2014,9(10):e111431

    • [14] RONCUZZI L,PANCOTT F,BALDINI N.Involvement of HIF⁃1α activation in the doxorubicin resistance of human osteosarcoma cells[J].Oncol Rep,2014,32(1):389-394

    • [15] ZHANG L,SHI H,CHEN H,et al.Dedifferentiation pro⁃ cess driven by radiotherapy⁃induced HMGB1/TLR2/YAP/HIF ⁃ 1alpha signaling enhances pancreatic cancer stem⁃ ness[J].Cell Death Dis,2019,10(10):724

    • [16] ZHANG X,LI Y,MA Y,et al.Yes ⁃ associated protein(YAP)binds to HIF⁃1alpha and sustains HIF⁃1alpha pro⁃ tein stability to promote hepatocellular carcinoma cell gly⁃ colysis under hypoxic stress[J].J Exp Clin Cancer Res,2018,37(1):216

    • [17] ZHU B,PAN S,LIU J,et al.HIF⁃1alpha forms regulatory loop with YAP to coordinate hypoxia⁃induced adriamycin resistance in acute myeloid leukemia cells[J].Cell Biol Int,2020,44(2):456-466

    • [18] BEN Q,AN W,SUN Y,et al.A nicotine⁃induced positive feedback loop between HIF1A and YAP1 contributes to epithelial⁃to⁃mesenchymal transition in pancreatic ductal adenocarcinoma[J].J Exp Clin Cancer Res,2020,39(1):181

    • [19] TOLOMEO M,CASCIO A.the multifaced role of stat3 in cancer and its implication for anticancer therapy[J].Int J Mol Sci,2021,22(2):603

    • [20] LEE H,JEONG A J,YE S K.Highlighted STAT3 as a po⁃ tential drug target for cancer therapy[J].BMB Rep,2019,52(7):415-423

    • [21] LIU Y,LIAO S,BENNETT S,et al.STAT3 and its target⁃ ing inhibitors in osteosarcoma[J].Cell Prolif,2020,31:e12974

    • [22] WANG Z,WANG C,ZUO D,et al.Attenuation of STAT3 phosphorylation promotes apoptosis and chemo⁃ sensitivity in human osteosarcoma induced by raddeanin A[J].Int J Biol Sci,2019,15(3):668-679

    • [23] LIU Q,WANG K.The induction of ferroptosis by impair⁃ ing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J].Cell Biol Int,2019,43(11):1245-1256

    • [24] WANG Z D,WANG R Z,XIA Y Z,et al.Reversal of mul⁃ tidrug resistance by icaritin in doxorubicin ⁃ resistant hu⁃ man osteosarcoma cells[J].Chin J Nat Med,2018,16(1):20-28

    • [25] XUE H,YUAN G,GUO X,et al.A novel tumor ⁃promot⁃ ing mechanism of IL6 and the therapeutic efficacy of to⁃ cilizumab:hypoxia⁃induced IL6 is a potent autophagy ini⁃ tiator in glioblastoma via the p⁃STAT3⁃MIR155⁃3p⁃CRE⁃ BRF pathway[J].Autophagy,2016,12(7):1129-1152

    • [26] SOLEYMANI ABYANEH H,GUPTA N,ALSHAREEF A,et al.Hypoxia induces the acquisition of cancer stem ⁃ like phenotype via upregulation and activation of signal transducer and activator of transcription ⁃ 3(STAT3)in MDA ⁃ MB ⁃ 231,a triple negative breast cancer cell line [J].Cancer Microenviron,2018,11(2⁃3):141-152

    • [27] CODONY ⁃ SERVAT J,CODONY ⁃ SERVAT C,CARDO⁃ NA A F,et al.Cancer stem cell biomarkers in egfr⁃muta⁃ tion ⁃ positive non ⁃ small ⁃ cell lung cancer[J].Clin Lung Cancer,2019,20(3):167-177

    • [28] SHIBATA M,OOKI A,INOKAWA Y,et al.Concurrent targeting of potential cancer stem cells regulating path⁃ ways sensitizes lung adenocarcinoma to standard chemo⁃ therapy[J].Mol Cancer Ther,2020,19(10):2175-2185