en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。

中图分类号:R445.1

文献标识码:A

文章编号:1007-4368(2022)05-708-07

DOI:10.7655/NYDXBNS20220517

参考文献 1
LIN X,YANG P,REECE E A,et al.Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the mu⁃ rine embryo through cardiac remodeling and fibrosis[J].Am J Obstet Gynecol,2017,217(2):216.e1-216.e13
参考文献 2
PEIXOTO A B,BRAVO ⁃ VALENZUELA N J M,MAR⁃ TINS W P,et al.Impact of type I and type II maternal dia⁃ betes mellitus on fetal cardiac function assessment param⁃ eters using spectral and tissue Doppler[J].Int J Cardio⁃ vasc Imaging,2020,36(7):1237-1247
参考文献 3
SHEN S Y,ZHANG L F,HE J R,et al.Association be⁃ tween maternal hyperglycemia and composite maternal ⁃ birth outcomes[J].Front Endocrinol(Lausanne),2018,9:755
参考文献 4
KRAMER C K,CAMPBELL S,RETNAKARAN R.Gesta⁃ tional diabetes and the risk of cardiovascular disease in women:a systematic review and meta⁃analysis[J].Diabe⁃ tologia,2019,62(6):905-914
参考文献 5
宋爱萍,徐心纯,许红,等.斑点追踪技术评价蒽环类药物对乳腺癌患者左室心肌的早期损害[J].南京医科大学学报(自然科学版),2020,40(10):1497-1503
参考文献 6
AWADALLA H,SALEH M A,ABDEL KADER M,et al.Left ventricular torsion assessed by two⁃dimensional echo⁃ cardiography speckle tracking as a predictor of left ven⁃ tricular remodeling and short⁃term outcome following pri⁃ mary percutaneous coronary intervention for acute myo⁃ cardial infarction:a single⁃center experience[J].Echocar⁃ diography,2017,34(8):1159-1169
参考文献 7
VAN OOSTRUM N H M,DE VET C M,VAN DER WOUDE D A A,et al.Fetal strain and strain rate during pregnancy measured with speckle tracking echocardiogra⁃ phy:a systematic review[J].Eur J Obstet Gynecol Re⁃ prod Biol,2020,250:178-187
参考文献 8
谢幸,孔北华,段涛,等.妇产科学[M].北京:人民卫生出版社,2018:126-129
参考文献 9
RUSSELL N E,FOLEY M,KINSLEY B T,et al.Effect of pregestational diabetes mellitus on fetal cardiac function and structure[J].Am J Obstet Gynecol,2008,199(3):312.e1-7
参考文献 10
陈超,施莉英,龚明霞.妊娠期糖尿病患者胎盘PGC⁃ 1α和PDX1表达水平及甲基化状态与胎儿血糖水平的相关性[J].南京医科大学学报(自然科学版),2020,40(1):72-76
参考文献 11
GORDON E E,REINKING B E,HU S,et al.Maternal hy⁃ perglycemia directly and rapidly induces cardiac septal overgrowth in fetal rats[J].J Diabetes Res,2015,2015:479565
参考文献 12
GHANDI Y,HABIBI D,NASRI K,et al.Effect of well ⁃ controlled gestational diabetes on left ventricular diastolic dysfunction in neonates[J].J Matern Fetal Neonatal Med,2019,32(13):2101-2106
参考文献 13
ASOGLU M R,GABBAY⁃BENZIV R,TURAN O M,et al.Exposure of the developing heart to diabetic environment and early cardiac assessment:a review[J].Echocardiogra⁃ phy,2018,35(2):244-257
参考文献 14
LEE⁃TANNOCK A,HAY K,GOOI A,et al.Longitudinal assessment of ventricular strain,tricuspid and mitral an⁃ nular plane systolic excursion(TAPSE and MAPSE)in fe⁃ tuses from pregnancies complicated by diabetes mellitus [J].Eur J Obstet Gynecol Reprod Biol,2021,256:364-371
参考文献 15
PATEY O,CARVALHO J S,THILAGANATHAN B.Peri⁃ natal changes in fetal cardiac geometry and function in di⁃ abetic pregnancy at term[J].Ultrasound Obstet Gynecol,2019,54(5):634-642
参考文献 16
MIRANDA J O,CERQUEIRA R J,RAMALHO C,et al.Fetal cardiac function in maternal diabetes:a convention⁃ al and speckle ⁃ tracking echocardiographic study[J].J Am Soc Echocardiogr,2018,31(3):333-341
参考文献 17
DEVORE G R,KLAS B,SATOU G,et al.Longitudinal an⁃ nular systolic displacement compared to global strain in normal fetal hearts and those with cardiac abnormalities [J].J Ultrasound Med,2018,37(5):1159-1171
参考文献 18
林深.二维斑点追踪技术对正常及妊娠期糖尿病胎儿左室纵向收缩功能的研究[D].广州:广州医科大学,2018
参考文献 19
ABDULJALIL K,PAN X,CLAYTON R,et al.Fetal phys⁃ iologically based pharmacokinetic models:systems infor⁃ mation on fetal cardiac output and its distribution to dif⁃ ferent organs during development[J].Clin Pharmacoki⁃ net,2021,60(6):741-757
参考文献 20
FOSTER E,LEASE K E.New untwist on diastole:what goes around comes back[J].Circulation,2006,113(21):2477-2479
参考文献 21
BUCKBERG G D,HOFFMAN J I,COGHLAN H C,et al.Ventricular structure⁃function relations in health and dis⁃ ease:part Ⅱ.Clinical considerations[J].Eur J Cardiotho⁃ rac Surg,2015,47(5):778-787
参考文献 22
SABEN J L,BOUDOURES A L,ASGHAR Z,et al.Mater⁃ nal metabolic syndrome programs mitochondrial dysfunc⁃ tion via germline changes across three generations[J].Cell Rep,2016,16(1):1-8
目录contents

    摘要

    目的:运用24节段二维斑点追踪(2D⁃STI)技术评估妊娠期糖尿病(GDM)胎儿的心室收缩功能。方法:收集2020年 5月—2021年8月在南京医科大学附属常州第二人民医院就诊的孕晚期单胎妊娠孕妇111例,按口服葡萄糖耐量试验(OGTT) 结果分为GDM组与正常对照组。所有孕妇均行胎儿超声心动图检查,获取常规胎儿超声心动图评估指标,包括左室射血分数 (LVEF)、左室心输出量(LVCO)、面积变化分数(FAC)、心脏球形指数(GSI)、二尖瓣环平面收缩期位移(MAPSE)、三尖瓣环平面收缩期位移(TAPSE)。同时使用24节段2D⁃STI技术获取胎儿心室应变指标:左室整体纵向应变(LVGLS)、左室整体圆周应变(LVGCS)、右室整体纵向应变(RVGLS)、右室游离壁应变(RVFWSt)。结果:GDM组与正常对照组胎儿间常规超声心动图评估指标、LVGLS 比较差异无统计学意义(P >0.05);GDM 组胎儿 LVGCS、RVGLS、RVFWSt 明显低于正常对照组(P <0.05); LVGLS 与 LVEF、LVFAC 具有正相关性(r =0.544、0.714,P <0.05),LVGCS 与 LVEF、LVFAC、MAPSE 具有正相关性(r =0.837、 0.751、0.191,P <0.05),RVGLS、RVFWSt均与RVFAC具有正相关性(r =0.517、0.421,P <0.05);孕妇体重指数(BMI)是RVGLS 的独立预测因子(β=0.496,95%CI:0.147~0.846,P <0.05)。结论:GDM会引起胎儿心室收缩功能下降,24节段2D⁃STI技术可及时、准确地监测胎儿心室收缩功能,有利于临床妊娠监控。

    Abstract

    Objective:To evaluate the ventricular systolic function of fetuses with gestational diabetes mellitus(GDM)by using24⁃ segment two ⁃ dimensional speckle tracking imaging(2D ⁃ STI)technique. Methods:A total of 111 singleton pregnant women in Changzhou second people’s Hospital affiliated to Nanjing Medical University from May 2020 to August 2021 were collected and divided into GDM group and normal control group according to the results of oral glucose tolerance test(OGTT). All pregnant women underwent fetal echocardiography to obtain routine fetal echocardiographic evaluation indexes,including left ventricular ejection fraction(LVEF),left ventricular cardiac output(LVCO),area change fraction(FAC),cardiac globular sphericity index(GSI),mitral annulus plane systolic displacement(MAPSE),tricuspid annulus plane systolic displacement(TAPSE). At the same time,24⁃segment 2D ⁃ STI technique was used to obtain fetal ventricular strain indexes:left ventricular global longitudinal strain(LVGLS),left ventricular global circumferential strain(LVGCS),right ventricular global longitudinal strain(RVGLS),right ventricular free wall strain(RVFWSt). Results:There was no significant difference in traditional echocardiographic evaluation indexes and LVGLS between the GDM group and the normal control group,but the fetal LVGCS,RVGLS and RVFWSt in the GDM group were significantly lower than those in the normal control group(P <0.05). There were positive correlations between LVGLS and LVEF,LVFAC(r =0.544, 0.714,P <0.05),between LVGCS and LVEF,LVFAC,MAPSE(r =0.837,0.751,0.191,P <0.05),and between RVGLS,RVFWSt and RVFAC(r =0.517,0.421,P <0.05). Maternal body mass index(BMI)was an independent predictor of RVGLS(β =0.496,95% CI: 0.147~0.846,P <0.05). Conclusion:GDM can cause the decrease of fetal ventricular systolic function.24⁃segment 2D⁃STI technique can monitor fetal ventricular systolic function timely and accurately,which is beneficial to clinical pregnancy monitoring.

  • 母体糖耐量异常是妊娠期常见疾病之一,可通过脐带⁃胎盘连接的循环途径,诱发宫内环境高糖改变。在这种影响下,胎儿心脏作为母体血糖改变的主要靶器官之一,可发生心肌细胞增生、肥大、纤维化等来适应母体代谢与循环稳态的失衡[1]。这种改变可造成胎儿心功能的异常[2] 及不良妊娠结局[3],并可能增加新生儿期甚至成人期心血管事件风险[4],因此对胎儿心功能的及时监测显得尤为重要。

  • 胎儿心脏较小、缺少心电门控,易受体位等因素的影响,使得胎儿心功能的评估面临着诸多挑战。二维斑点追踪技术(2D speckle tracking imag⁃ ing,2D⁃STI)作为一种新兴的、可重复性良好的定量评估心功能的超声技术,在成人心脏功能判断的应用趋于成熟后被引入胎儿心脏功能诊断[5],具有不受探头角度、胎儿体位影响等优点[6-7]。因此,本研究拟使用最新的24节段版本2D⁃STI软件定量评估妊娠期糖尿病(gestational diabetes mellitus,GDM)胎儿的心室收缩功能,以期更早期探究宫内高糖环境对胎儿心功能的影响。

  • 1 对象和方法

  • 1.1 对象

  • 选取2020年5月—2021年8月在本院就诊的血糖控制良好、孕周在28周以上单胎GDM孕妇53例,平均年龄为(28.68±3.91)岁,平均孕周为38周±2d; 同期纳入孕前、孕时检查及产后随访血糖均正常的孕晚期单胎妊娠孕妇58例作为对照组,平均年龄为 (28.91±4.18)岁,平均孕周为36周±6d。本研究已通过南京医科大学附属常州第二人民医院伦理审批委员会批准,并获得研究对象的知情同意。

  • GDM的诊断标准:参照第9版妇产科学[8],行75g口服葡萄糖耐量试验(oral glucose tolerance test, OGTT),空腹血糖≥5.1mmol/L、餐后1h≥10.0mmol/L、餐后2h≥8.5mmol/L,满足以上任意一条即确诊。血糖控制良好的标准为餐前≤5.3mmol/L及餐后2h≤ 6.7mmol/L。

  • 排除标准:①妊娠合并糖尿病;②孕前及孕中合并肥胖、高血压、先心病、严重心脏、肝、肾功能不全等;③产检发现胎儿有先心病、发育不全等;④多胎妊娠、经辅助生殖技术妊娠。

  • 1.2 方法

  • 使用美国GE Voluson E10彩色多普勒超声诊断仪,探头为C1⁃6,频率为2~5MHz,诊断仪装备最新24节段2D⁃STI分析软件fetal HQ。

  • 1.2.1 图像采集

  • 孕妇于24~28周行OGTT试验后进行胎儿超声心动图检查。确保胎儿心尖位于非12点钟方向,获取胎儿标准四腔心切面后,放大心脏局部图像,保持帧频>80帧/s,留存连续3s的动态图像。每个四腔心图像中包含大于5个连续的心动周期。同时留存M型超声于四腔心切面测量二尖瓣环平面收缩期位移(mitral annular plane systolic excursion, MAPSE)及三尖瓣环平面收缩期位移(tricuspid an⁃ nular plane systolic excursion,TAPSE)的图像。

  • 1.2.2 数据分析

  • 在采集的放大四腔心图像中,于舒张末期测量四腔心长径与横径,二者比值为心脏球形指数 (global sphericity index,GSI)。随机选取1个心动周期后确定该周期内收缩期与舒张期的二尖瓣、三尖瓣插入点和心尖位置,fetal HQ软件将会自动对该周期的心内膜边界进行追踪,计算左室整体纵向应变(left ventricle global longitudinal strain,LVGLS)、左室整体圆周应变(left ventricle global circumferen⁃ tial strain,LVGCS)、右室整体纵向应变(right ventri⁃ cle global longitudinal strain,RVGLS)、右室游离壁应变(right ventricle free wall strain,RVFWSt)、左室射血分数(left ventricle ejection fraction,LVEF)、左室心输出量(left ventricle cardiac output,LVCO)、左室面积变化分数(left ventriclefraction area change,LV⁃ FAC)、右室面积变化分数(right ventriclefraction ar⁃ ea change,RVFAC)等。

  • 在采集MAPSE、TAPSE的图像中分别各测量3次取平均值。

  • 在二维超声的四腔心切面,测量舒张末期室间隔厚度,分别在3个不同心动周期测量3次后取平均值。以室间隔厚度×2/心室舒张末期内径来计算室间隔的相对厚度。

  • 从所有胎儿的四腔心动态图像中每组各抽取5幅,由2名不知晓受试者情况的具有丰富产科超声经验的高年资医师分别进行描记。并在4周后随机选择其中1位医师对这10幅图像再次描记。将所有描记结果进行重复性分析。

  • 1.3 统计方法

  • 使用SPSS 26.0统计学分析软件,符合正态分布的计量资料采用均数±标准差(x-±s)表示,组间比较使用独立样本t检验。相关性分析采用Pearson相关分析。采用多元线性回归分析应变指标的影响因素,应变指标间的观察者间及观察者内重复性由组内相关系数(intraclass correlation coefficient,ICC)表示。P <0.05为差异有统计学意义,ICC>0.75视为重复性良好。

  • 2 结果

  • 2.1 一般资料的比较

  • GDM组与对照组孕妇年龄、孕周、身高、收缩压、舒张压及超声估测胎儿体重(estimated fetal weight,EFW)对比均无明显统计学差异(P >0.05,表1)。GDM组孕妇体重、BMI则高于对照组(P < 0.05,表1)。

  • 2.2 常规胎儿超声心动图参数比较

  • 使用常规二维与多普勒超声采集到的数据显示,两组胎儿四腔心舒张末期长径、横径、全心GSI、 LVEF、LVCO、MAPSE、TAPSE对比差异均无统计学意义(P >0.05)。此外,fetal HQ软件(图1)获取的LVFAC、RVFAC对比亦无统计学差异(P >0.05,表2)。GDM组室间隔厚度大于对照组(P <0.01,表2),室间隔相对厚度亦显著大于对照组(P <0.01,表2)。

  • 2.3 左心室应变指标比较

  • 24节段2D⁃STI测量结果显示两组间LVGLS无显著性差异(P >0.05),GDM组LVGCS显著低于正常对照组(P <0.05,表3)。将左室应变指标与常规超声心动图指标分别进行相关性分析,发现LVGLS与LVEF、LVFAC具有正相关性(r=0.544、0.714,P < 0.05,表4,图2),与LVCO、MAPSE、全心GSI相关性无显著统计学意义(P >0.05);LVGCS与LVEF、LV⁃ FAC、MAPSE具有正相关性(r=0.837、0.751、0.191, P <0.05,表4,图3),与LVCO、全心GSI相关性无显著统计学意义(P >0.05)。

  • 2.4 右心室应变指标比较

  • 应变分析显示GDM组RVGLS与RVFWSt显著低于正常对照组(P <0.01,表3)。进一步行其与常规超声心动图指标的相关性分析,发现RVGLS、 RVFWSt均与RVFAC具有良好正相关性(r=0.517、 0.421,P <0.05,表5,图3),与TAPSE、全心GSI无显著相关性(P >0.05)。

  • 表1 一般资料比较

  • Table1 Comparison of baseline maternal and fetal characteristics

  • 图1 fetal HQ软件界面

  • Fig.1 The software interface of fetal HQ

  • 表2 两组常规超声心动图参数比较

  • Table2 Comparison of traditional fetal echocardiography

  • 表3 两组间左、右心室应变指标比较

  • Table3 Comparison of left and right ventricle deforma⁃ tion analysis

  • 2.5 多元线性回归分析

  • 将孕妇年龄等多个可能对胎儿心室应变指标产生影响的变量行多元线性回归分析,结果显示,孕妇BMI是RVGLS的独立预测因子(β=0.496,95%CI:0.147~0.846,P <0.05,表6),而心室应变指标与孕妇年龄、孕周及胎儿室间隔相对厚度、EFW无关 (P >0.05)。

  • 2.6 组内相关系数分析

  • 在不同检查者及同一检查者间隔4周后对同一受试者图像的描绘结果重复性分析中,ICC均>0.75(表7)。

  • 3 讨论

  • 在妊娠期间,胎儿心脏作为重要器官将经历广泛的重塑,本研究使用最新的24节段2D⁃STI技术对胎儿的心室收缩功能进行检测,发现与正常胎儿相比,GDM胎儿右室整体及左室圆周收缩功能显著下降,而左室纵向收缩功能未见明显异常。

  • 使用二维超声测量两组胎儿四腔心舒张末期长径、横径、全心GSI进行对比,差异无统计学意义,说明GDM组胎儿心脏形态并未发生显著改变。有研究表明,母体高血糖可以诱导胎儿氧化应激、高胰岛素血症和胰岛素受体表达增加[9-10],PI3k⁃Akt和MAP⁃激酶JNK、ERK和p38在内的生长/应激信号激酶的激活及胰岛素样生长因子⁃1的过度表达,可以引起胎儿心肌细胞的增殖和肥大,最明显的部位通常是室间隔[11-12],胎儿出生后这种改变甚至可以在短时间内消失[13]。本研究发现GDM组胎儿的室间隔显著增厚,与他人的研究结果一致[14-15],虽然如此,两组胎儿的室间隔厚度仍均在正常范围内。因此,进一步对比了室间隔相对厚度后,发现GDM组胎儿室间隔相对厚度亦显著高于正常组。本研究表明,对胎儿室间隔厚度的测量可作为评估胎儿心功能改变的一部分,但室间隔厚度的显著改变往往出现在晚期,很难对GDM带来的影响进行及时监测。

  • 表4 LVGLS、LVGCS与左室常规胎儿超声心动图评估指标相关性分析

  • Table4 Correlation analysis of LVGLS,LVGCS and left ventricular traditional fetal echocardiographic evaluation indexes

  • 图2 LVGLS、LVGCS与左室常规胎儿超声心动图评估指标相关性分析

  • Fig.2 Correlation analysis of LVGLS,LVGCS and left ventricular traditional fetal echocardio⁃ graphic evaluation indexes

  • 表5 RVGLS与RVFWSt与右室常规胎儿超声心动图评估指标相关性分析

  • Table5 Correlation analysis of RVGLS,RVFWSt and right ventricular traditional fetal echocardio⁃ graphic evaluation indexes

  • 图3 RVGLS与RVFWSt与右室常规胎儿超声心动图评估指标相关性分析

  • Fig.3 Correlation analysis of RVGLS,RVFWSt and right ventricular traditional fetal echocardio⁃ graphic evaluation indexes

  • 本研究对比了两组间常规胎儿超声心动图评估胎儿心室收缩功能的参数,结果与既往研究一致[15-16],差异均无统计学意义。这说明常规胎儿超声心动图的评估指标并不能发现GDM带来的胎儿心室收缩功能改变,易受多种因素影响,对胎儿心脏功能的监测具有一定滞后性。另一方面,当GDM的胎儿室间隔厚度开始出现变化时,常规胎儿超声心动图评估指标又不能像应变指标一样及时反映出可能存在的心室收缩功能下降。因此,本文认为,24节段2D⁃STI可以通过追踪心肌各个节段在整个心动周期中的运动轨迹,在心脏发生明显构型改变前提示心肌收缩功能的受损,这在一定程度上提高了心功能监测的敏感性。

  • 表6 多元线性回归分析结果

  • Table6 Multiple linear regression analysis results

  • 表7 LVGLS、LVGCS、RVGLS、RVFWSt重复性分析

  • Table7 The repeatability analysis of LVGLS,LVGCS, RVGLS and RVFWSt

  • 相关性分析结果显示,LVGLS与LVEF、LVFAC具有良好相关性,LVGCS与LVEF、LVFAC、MAPSE具有良好相关性,RVGLS、RVFWSt与RVFAC具有良好相关性,说明24节段2D⁃STI可以准确识别心内膜边界并对心动周期内心肌形变进行追踪,获得的应变参数与常规胎儿超声心动图评估心室收缩功能的参数间具有良好相关性,用于定量评估心室收缩功能是可行的。但左、右室应变参数与MAPSE、 TAPSE、全心GSI间相关性无显著统计学意义,这可能是因为使用M型成像测量瓣环位移时并未记录到心尖部的运动,对心室收缩功能的评估并不全面[17],应变参数可以克服这个缺陷且不受心脏大小及形态的影响。

  • 尽管使用二维斑点追踪技术进行胎儿心功能评估的应用越来越广泛,但各种研究的结果并不一致。既往研究对左室应变的评估仅从纵向方向上进行,使得评估结果具有一定局限性。林深等[18] 研究结果表明,GDM胎儿左心室纵向应变参数较正常胎儿显著降低,且随孕周增加下降更明显。而Mi⁃ randa等[16] 则认为左室GLS受母体血糖异常的影响不大。本研究首次采用24节段二维斑点追踪技术将心肌划分为更加细致的24节段,对心肌运动进行更加全面的追踪,可同时评估左心室纵向和环向两个方向上的应变,且具有良好的可重复性,进一步提升了评估参数的准确性。本研究中两组间LVGLS差异无统计学意义,GDM组LVGCS、 RVGLS、RVFWSt显著降低。对此认为可能是由胎儿与成人间的血液循环差异引起的,在胎儿期卵圆孔的存在使得肺循环到体循环分流,右心室承担更多的负荷压力,到妊娠的中晚期,可达到总心输出量的60%[19]。同时,右心室的肌纤维结构、形态也与左心室不同,左心室具有更厚的室壁,由三层肌纤维构成,它们分别在纵向、圆周与径向3个方向同时收缩来完成左心室的整体收缩运动[20-21],而右心室的收缩则主要依赖纵向肌纤维的运动使其长轴缩短,同时右室游离壁向内侧运动,牵拉心肌完成。这赋予了左心室更强的收缩能力且使它更加耐受心室前、后负荷的增加。

  • 进一步对应变指标LVGLS、LVGCS、RVGLS、 RVFWSt多元回归线性分析发现,孕妇的BMI是RVGLS的独立预测因子,与孕妇年龄、胎儿室间隔厚度无关。既往研究表明,孕期BMI过度增加会导致子代卵母线粒体障碍,使至少3代子代的外周胰岛素信号受损,增加子代发生胰岛素抵抗的风险[22]。本研究中BMI的增加会带来心室应变的下降,这一结果提示合理控制GDM孕妇的孕期增长体重可能会减轻其血糖异常对胎儿心功能的损伤。

  • 本研究仍存在部分不足,将进一步扩大研究样本量,消除可能存在的选择偏倚,并对同一受试者的胎儿心功能进行持续到出生后的追踪,在接下来的研究中使用24节段2D⁃STI论证GDM对妊娠不良结局的影响。

  • 24节段2D⁃STI作为一种评估胎儿心功能的新技术,可反映胎儿时期心脏生长发育的生理变化过程。它能有效地、高敏感性地评估妊娠期母体血糖异常对胎儿心室收缩功能的影响,且与常规评估胎儿心功能的超声指标具有良好的相关性。同时,合理控制孕期母体体重可能成为GDM患者孕期管理的重点之一。

  • 参考文献

    • [1] LIN X,YANG P,REECE E A,et al.Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the mu⁃ rine embryo through cardiac remodeling and fibrosis[J].Am J Obstet Gynecol,2017,217(2):216.e1-216.e13

    • [2] PEIXOTO A B,BRAVO ⁃ VALENZUELA N J M,MAR⁃ TINS W P,et al.Impact of type I and type II maternal dia⁃ betes mellitus on fetal cardiac function assessment param⁃ eters using spectral and tissue Doppler[J].Int J Cardio⁃ vasc Imaging,2020,36(7):1237-1247

    • [3] SHEN S Y,ZHANG L F,HE J R,et al.Association be⁃ tween maternal hyperglycemia and composite maternal ⁃ birth outcomes[J].Front Endocrinol(Lausanne),2018,9:755

    • [4] KRAMER C K,CAMPBELL S,RETNAKARAN R.Gesta⁃ tional diabetes and the risk of cardiovascular disease in women:a systematic review and meta⁃analysis[J].Diabe⁃ tologia,2019,62(6):905-914

    • [5] 宋爱萍,徐心纯,许红,等.斑点追踪技术评价蒽环类药物对乳腺癌患者左室心肌的早期损害[J].南京医科大学学报(自然科学版),2020,40(10):1497-1503

    • [6] AWADALLA H,SALEH M A,ABDEL KADER M,et al.Left ventricular torsion assessed by two⁃dimensional echo⁃ cardiography speckle tracking as a predictor of left ven⁃ tricular remodeling and short⁃term outcome following pri⁃ mary percutaneous coronary intervention for acute myo⁃ cardial infarction:a single⁃center experience[J].Echocar⁃ diography,2017,34(8):1159-1169

    • [7] VAN OOSTRUM N H M,DE VET C M,VAN DER WOUDE D A A,et al.Fetal strain and strain rate during pregnancy measured with speckle tracking echocardiogra⁃ phy:a systematic review[J].Eur J Obstet Gynecol Re⁃ prod Biol,2020,250:178-187

    • [8] 谢幸,孔北华,段涛,等.妇产科学[M].北京:人民卫生出版社,2018:126-129

    • [9] RUSSELL N E,FOLEY M,KINSLEY B T,et al.Effect of pregestational diabetes mellitus on fetal cardiac function and structure[J].Am J Obstet Gynecol,2008,199(3):312.e1-7

    • [10] 陈超,施莉英,龚明霞.妊娠期糖尿病患者胎盘PGC⁃ 1α和PDX1表达水平及甲基化状态与胎儿血糖水平的相关性[J].南京医科大学学报(自然科学版),2020,40(1):72-76

    • [11] GORDON E E,REINKING B E,HU S,et al.Maternal hy⁃ perglycemia directly and rapidly induces cardiac septal overgrowth in fetal rats[J].J Diabetes Res,2015,2015:479565

    • [12] GHANDI Y,HABIBI D,NASRI K,et al.Effect of well ⁃ controlled gestational diabetes on left ventricular diastolic dysfunction in neonates[J].J Matern Fetal Neonatal Med,2019,32(13):2101-2106

    • [13] ASOGLU M R,GABBAY⁃BENZIV R,TURAN O M,et al.Exposure of the developing heart to diabetic environment and early cardiac assessment:a review[J].Echocardiogra⁃ phy,2018,35(2):244-257

    • [14] LEE⁃TANNOCK A,HAY K,GOOI A,et al.Longitudinal assessment of ventricular strain,tricuspid and mitral an⁃ nular plane systolic excursion(TAPSE and MAPSE)in fe⁃ tuses from pregnancies complicated by diabetes mellitus [J].Eur J Obstet Gynecol Reprod Biol,2021,256:364-371

    • [15] PATEY O,CARVALHO J S,THILAGANATHAN B.Peri⁃ natal changes in fetal cardiac geometry and function in di⁃ abetic pregnancy at term[J].Ultrasound Obstet Gynecol,2019,54(5):634-642

    • [16] MIRANDA J O,CERQUEIRA R J,RAMALHO C,et al.Fetal cardiac function in maternal diabetes:a convention⁃ al and speckle ⁃ tracking echocardiographic study[J].J Am Soc Echocardiogr,2018,31(3):333-341

    • [17] DEVORE G R,KLAS B,SATOU G,et al.Longitudinal an⁃ nular systolic displacement compared to global strain in normal fetal hearts and those with cardiac abnormalities [J].J Ultrasound Med,2018,37(5):1159-1171

    • [18] 林深.二维斑点追踪技术对正常及妊娠期糖尿病胎儿左室纵向收缩功能的研究[D].广州:广州医科大学,2018

    • [19] ABDULJALIL K,PAN X,CLAYTON R,et al.Fetal phys⁃ iologically based pharmacokinetic models:systems infor⁃ mation on fetal cardiac output and its distribution to dif⁃ ferent organs during development[J].Clin Pharmacoki⁃ net,2021,60(6):741-757

    • [20] FOSTER E,LEASE K E.New untwist on diastole:what goes around comes back[J].Circulation,2006,113(21):2477-2479

    • [21] BUCKBERG G D,HOFFMAN J I,COGHLAN H C,et al.Ventricular structure⁃function relations in health and dis⁃ ease:part Ⅱ.Clinical considerations[J].Eur J Cardiotho⁃ rac Surg,2015,47(5):778-787

    • [22] SABEN J L,BOUDOURES A L,ASGHAR Z,et al.Mater⁃ nal metabolic syndrome programs mitochondrial dysfunc⁃ tion via germline changes across three generations[J].Cell Rep,2016,16(1):1-8

  • 参考文献

    • [1] LIN X,YANG P,REECE E A,et al.Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the mu⁃ rine embryo through cardiac remodeling and fibrosis[J].Am J Obstet Gynecol,2017,217(2):216.e1-216.e13

    • [2] PEIXOTO A B,BRAVO ⁃ VALENZUELA N J M,MAR⁃ TINS W P,et al.Impact of type I and type II maternal dia⁃ betes mellitus on fetal cardiac function assessment param⁃ eters using spectral and tissue Doppler[J].Int J Cardio⁃ vasc Imaging,2020,36(7):1237-1247

    • [3] SHEN S Y,ZHANG L F,HE J R,et al.Association be⁃ tween maternal hyperglycemia and composite maternal ⁃ birth outcomes[J].Front Endocrinol(Lausanne),2018,9:755

    • [4] KRAMER C K,CAMPBELL S,RETNAKARAN R.Gesta⁃ tional diabetes and the risk of cardiovascular disease in women:a systematic review and meta⁃analysis[J].Diabe⁃ tologia,2019,62(6):905-914

    • [5] 宋爱萍,徐心纯,许红,等.斑点追踪技术评价蒽环类药物对乳腺癌患者左室心肌的早期损害[J].南京医科大学学报(自然科学版),2020,40(10):1497-1503

    • [6] AWADALLA H,SALEH M A,ABDEL KADER M,et al.Left ventricular torsion assessed by two⁃dimensional echo⁃ cardiography speckle tracking as a predictor of left ven⁃ tricular remodeling and short⁃term outcome following pri⁃ mary percutaneous coronary intervention for acute myo⁃ cardial infarction:a single⁃center experience[J].Echocar⁃ diography,2017,34(8):1159-1169

    • [7] VAN OOSTRUM N H M,DE VET C M,VAN DER WOUDE D A A,et al.Fetal strain and strain rate during pregnancy measured with speckle tracking echocardiogra⁃ phy:a systematic review[J].Eur J Obstet Gynecol Re⁃ prod Biol,2020,250:178-187

    • [8] 谢幸,孔北华,段涛,等.妇产科学[M].北京:人民卫生出版社,2018:126-129

    • [9] RUSSELL N E,FOLEY M,KINSLEY B T,et al.Effect of pregestational diabetes mellitus on fetal cardiac function and structure[J].Am J Obstet Gynecol,2008,199(3):312.e1-7

    • [10] 陈超,施莉英,龚明霞.妊娠期糖尿病患者胎盘PGC⁃ 1α和PDX1表达水平及甲基化状态与胎儿血糖水平的相关性[J].南京医科大学学报(自然科学版),2020,40(1):72-76

    • [11] GORDON E E,REINKING B E,HU S,et al.Maternal hy⁃ perglycemia directly and rapidly induces cardiac septal overgrowth in fetal rats[J].J Diabetes Res,2015,2015:479565

    • [12] GHANDI Y,HABIBI D,NASRI K,et al.Effect of well ⁃ controlled gestational diabetes on left ventricular diastolic dysfunction in neonates[J].J Matern Fetal Neonatal Med,2019,32(13):2101-2106

    • [13] ASOGLU M R,GABBAY⁃BENZIV R,TURAN O M,et al.Exposure of the developing heart to diabetic environment and early cardiac assessment:a review[J].Echocardiogra⁃ phy,2018,35(2):244-257

    • [14] LEE⁃TANNOCK A,HAY K,GOOI A,et al.Longitudinal assessment of ventricular strain,tricuspid and mitral an⁃ nular plane systolic excursion(TAPSE and MAPSE)in fe⁃ tuses from pregnancies complicated by diabetes mellitus [J].Eur J Obstet Gynecol Reprod Biol,2021,256:364-371

    • [15] PATEY O,CARVALHO J S,THILAGANATHAN B.Peri⁃ natal changes in fetal cardiac geometry and function in di⁃ abetic pregnancy at term[J].Ultrasound Obstet Gynecol,2019,54(5):634-642

    • [16] MIRANDA J O,CERQUEIRA R J,RAMALHO C,et al.Fetal cardiac function in maternal diabetes:a convention⁃ al and speckle ⁃ tracking echocardiographic study[J].J Am Soc Echocardiogr,2018,31(3):333-341

    • [17] DEVORE G R,KLAS B,SATOU G,et al.Longitudinal an⁃ nular systolic displacement compared to global strain in normal fetal hearts and those with cardiac abnormalities [J].J Ultrasound Med,2018,37(5):1159-1171

    • [18] 林深.二维斑点追踪技术对正常及妊娠期糖尿病胎儿左室纵向收缩功能的研究[D].广州:广州医科大学,2018

    • [19] ABDULJALIL K,PAN X,CLAYTON R,et al.Fetal phys⁃ iologically based pharmacokinetic models:systems infor⁃ mation on fetal cardiac output and its distribution to dif⁃ ferent organs during development[J].Clin Pharmacoki⁃ net,2021,60(6):741-757

    • [20] FOSTER E,LEASE K E.New untwist on diastole:what goes around comes back[J].Circulation,2006,113(21):2477-2479

    • [21] BUCKBERG G D,HOFFMAN J I,COGHLAN H C,et al.Ventricular structure⁃function relations in health and dis⁃ ease:part Ⅱ.Clinical considerations[J].Eur J Cardiotho⁃ rac Surg,2015,47(5):778-787

    • [22] SABEN J L,BOUDOURES A L,ASGHAR Z,et al.Mater⁃ nal metabolic syndrome programs mitochondrial dysfunc⁃ tion via germline changes across three generations[J].Cell Rep,2016,16(1):1-8