en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张永杰,E-mail:zhangyongjie@njmu.edu.cn

中图分类号:R651.2

文献标识码:A

文章编号:1007-4368(2022)06-780-10

DOI:10.7655/NYDXBNS20220603

参考文献 1
BADHIWALA J H,WILSON J R,FEHLINGS M G.Global burden of traumatic brain and spinal cord injury[J].Lan⁃ cet Neurol,2019,18(1):24-25
参考文献 2
HATCH B B,WOOD⁃WENTZ C M,THERNEAU T M,et al.Factors predictive of survival and estimated years of life lost in the decade following nontraumatic and traumatic spinal cord injury[J].Spinal Cord,2017,55(6):540-544
参考文献 3
AHUJA C S,NORI S,TETREAULT L,et al.Traumatic spinal cord injury ⁃ repair and regeneration[J].Neurosur⁃ gery,2017,80(3S):S9-S22
参考文献 4
COURTINE G,SOFRONIEW M V.Spinal cord repair:ad⁃ vances in biology and technology[J].Nat Med,2019,25(6):898-908
参考文献 5
SHAH M,PETERSON C,YILMAZ E,et al.Current ad⁃ vancements in the management of spinal cord injury:a comprehensive review of literature[J].Surg Neurol Int,2020,11:2
参考文献 6
SOBRINO V,ANNESE V,PARDAL R.Progenitor cell heterogeneity in the adult carotid body germinal niche [J].Adv Exp Med Biol,2019,1123:19-38
参考文献 7
JIN J,TAO J,GU X,et al.P16 INK4a deletion ameliorat⁃ ed renal tubulointerstitial injury in a stress ⁃induced pre⁃ mature senescence model of Bmi ⁃ 1 deficiency[J].Sci Rep,2017,7(1):7502
参考文献 8
SIDDIQUE H R,SALEEM M.Role of BMI1,a stem cell factor,in cancer recurrence and chemoresistance:preclini⁃ cal and clinical evidences[J].Stem Cells,2012,30(3):372-378
参考文献 9
JIA K Z,JIN S L,YAO C,et al.Absence of PTHrP nuclear localization and C ⁃terminus sequences leads to abnormal development of T cells[J].Biochimie,2017,138:13-19
参考文献 10
KUEHNER J N,YAO B.The dynamic partnership of poly⁃ comb and trithorax in brain development and diseases [J].Epigenomes,2019,3(3):17-24
参考文献 11
PIUNTI A,SHILATIFARD A.The roles of polycomb re⁃ pressive complexes in mammalian development and can⁃ cer[J].Nat Rev Mol Cell Biol,2021,22(5):326-345
参考文献 12
WANG R,XUE X,WANG Y,et al.BMI1 deficiency re⁃ sults in female infertility by activating p16/p19 signaling and increasing oxidative stress[J].Int J Biol Sci,2019,15(4):870-881
参考文献 13
WU X,ZHANG Y P,QU W,et al.A tissue displacement⁃ based contusive spinal cord injury model in mice[J].J Vis Exp,2017,(124):54988
参考文献 14
MOLOFSKY A V,HE S,BYDON M,et al.Bmi ⁃ 1 pro⁃ motes neural stem cell self ⁃ renewal and neural develop⁃ ment but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways[J].Genes Dev,2005,19(12):1432-1437
参考文献 15
CAO G,GU M,ZHU M,et al.Bmi⁃1 absence causes pre⁃mature brain degeneration[J].PLoS One,2012,7(2):e32015
参考文献 16
崔敏,刘轶宁,庄旻羽,等.Chk2敲除可通过增强抗氧化能力改善由 Bmi⁃1 缺失所致的小鼠脑衰老表型 [J].南京医科大学学报(自然科学版),2021,41(7):963-969
参考文献 17
GU M,SHEN L,BAI L,et al.Heterozygous knockout of the Bmi⁃1 gene causes an early onset of phenotypes asso⁃ ciated with brain aging[J].Age(Dordr),2014,36(1):129-39
参考文献 18
HACHEM L D,FEHLINGS M G.Pathophysiology of spi⁃ nal cord injury[J].Neurosurg Clin N Am,2021,32(3):305-313
参考文献 19
KUMAR H,ROPPER A E,LEE S H,et al.Propitious therapeutic modulators to prevent blood⁃spinal cord barrier disruption in spinal cord injury[J].Mol Neurobiol,2017,54(5):3578-3590
参考文献 20
WU X,ZHANG Y P,QU W,et al.A tissue displacement⁃ based contusive spinal cord injury model in mice[J].J Vis Exp,2017,124:54988
参考文献 21
WANG Y,LIN Y H,WU Y,et al.Expression and cellular localization of IFITM1 in normal and injured rat spinal cords[J].J Histochem Cytochem,2018,66(3):175-187
参考文献 22
LIN Y H,WU Y,WANG Y,et al.Spatio⁃temporal expres⁃ sion of hexokinase⁃3 in the injured female rat spinal cords [J].Neurochem Int,2018,113:23-33
参考文献 23
MILIOR G,MORIN⁃BRUREAU M,CHALI F,et al.Dis⁃ tinct P2Y receptors mediate extension and retraction of microglial processes in epileptic and peritumoral human tissue[J].J Neurosci,2020,40(7):1373-1388
参考文献 24
KOPP F,MENDELL J T.Functional classification and ex⁃ perimental dissection of long noncoding RNAs[J].Cell,2018,172(3):393-407
参考文献 25
CHENG X,WANG Y,HE Q,et al.Bone morphogenetic protein signaling and olig1/2 interactto regulatethe differen⁃ tiation and maturation of adult oligodendrocyte precursor cells[J].Stem Cells,2007,25(12):3204-14
参考文献 26
ATTWELL C L,VAN ZWIETEN M,VERHAAGEN J,et al.The dorsal column lesion model of spinal cord injury and its use in deciphering the neuron ⁃intrinsic injury response[J].Dev Neurobiol,2018,78(10):926-951
参考文献 27
RODRÍGUEZ ⁃ BARRERA R,RIVAS ⁃ GONZÁLEZ M,GARCÍA ⁃ SÁNCHEZ J,et al.Neurogenesis after spinal cord injury:state of the art[J].Cells,2021,10(6):1499
参考文献 28
CHEN X,LI H.Neuronal reprogramming in treating spi⁃ nal cord injury[J].Neural Regen Res,2022,17(7):1440-1445
参考文献 29
JIANG Y Q,ARMADA K,MARTIN J H.Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion[J].Exp Neurol,2019,321:113015
参考文献 30
YU S,YAO S,WEN Y,et al.Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats[J].Sci Rep,2016,6:33428
参考文献 31
ZAWADZKA M,KWASNIEWSKA A,MIAZGA K,et al.Perspectives in the cell ⁃ based therapies of various as⁃ pects of the spinal cord injury⁃associated pathologies:les⁃ sons from the animal models[J].Cells,2021,10(11):2995
参考文献 32
OKADA S,HARA M,KOBAYAKAWA K,et al.Astro⁃ cyte reactivity and astrogliosis after spinal cord injury[J].Neurosci Res,2018,126:39-43
参考文献 33
FELIX L,STEPHAN J,ROSE C R.Astrocytes of the ear⁃ ly postnatal brain[J].Eur J Neurosci,2021,54(5):5649-5672
参考文献 34
KIM Y S,CHOI J,YOON B E.Neuron⁃glia interactions in neurodevelopmental disorders[J].Cells,2020,9(10):2176
目录contents

    摘要

    目的:检测小鼠脊髓损伤(spinal cord injury,SCI)后B淋巴瘤Mo⁃MLV插入区1(B cell⁃specific MLV integration site⁃ 1,Bmi⁃1)在脊髓中的表达变化。方法:取2月龄C57Bl/6小鼠,利用LISA脊髓损伤造模仪制作小鼠第9胸椎节段(T9)中度脊髓钝挫伤模型,通过免疫荧光染色与Western blot检测,初步观察SCI后1、3、7、14、28 d时Bmi⁃1在脊髓中的表达变化与细胞定位。结果:Bmi⁃1在脊髓中的表达,于损伤后1 d即上调并达峰值,至损伤后28 d仍保持较高水平,其表达变化与增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)的表达变化趋势一致。免疫荧光染色结果显示:SCI后,Bmi⁃1与离子钙接头蛋白分子1(ionized calcium binding adapter molecule 1,Iba⁃1)、髓鞘碱性蛋白(myelin basic protein,MBP)、神经元核心抗原(neuronal nu⁃ clei antigen,NeuN)及血小板内皮细胞黏附分子1(platelet and endothelial cell adhesion molecule⁃1,PECAM⁃1/CD31)共表达;Bmi⁃1 与神经胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)无共表达。结论:小鼠脊髓损伤后脊髓中Bmi⁃1表达上调,主要定位于小胶质细胞、髓鞘细胞、神经元与血管内皮细胞,且在小胶质细胞中的表达尤为显著。提示Bmi⁃1在脊髓损伤后的表达变化可能与小胶质细胞的增殖与活化、内源性髓鞘再生及血管内皮细胞的活化有关,可能在脊髓损伤后的病理过程中具有重要意义。

    Abstract

    Objective:This study aims to explore the expression of B cell ⁃specific MLV integration site ⁃ 1(Bmi ⁃1)in mice spinal cord after spinal cord injury(SCI). Methods:Two month ⁃ old C57Bl/6 mice received moderate contusion SCI at T9 using LISA impactor. The expression and cellular localization of Bmi⁃1 in spinal cord at the day of 1,3,7,14 and 28 post SCI were detected by Western blot and immunofluorescence staining. Results:The results of Western blot showed that the expression of Bmi ⁃ 1 was increased and achieved a peak value at day one post SCI,and which was higher than normal till to the day 28 post SCI. The tendency of the Bmi ⁃ 1 expression was consistent with the expression of proliferating cell nuclear antigen(PCNA). The results of the immunofluorescence staining showed that the Bmi⁃1 was increased and co⁃localized with ionized calcium binding adapter molecule 1 (Iba⁃1),myelin basic protein(MBP),neuronal nuclei antigen(NeuN),and platelet and endothelial cell adhesion molecule⁃1(PECAM⁃1/ yCD31),but which was not co⁃localized with glial fibrillary acidic protein(GFAP)after SCI. Conclusion:The expression of Bmi⁃1 was increased and mainly localized in microglia,myelin cells,neuron and endothelium,and especially in microglia after SCI. It suggests that the expression of Bmi⁃1 may relate with the proliferation and activation of microglia,the endogenous remyelination,and the activity of the endothelium. The Bmi⁃1 may involve in the pathological process after SCI.

    关键词

    脊髓损伤Bmi⁃1细胞定位小鼠

  • 脊髓损伤(spinal cord injury,SCI)可由跌落、交通事故、脊髓缺血或肿瘤等引起[1-2]。SCI患者常面临瘫痪、感觉障碍、神经性疼痛等系列问题,给个人、家庭和社会带来沉重负担[3]。研究者始终致力于探索药物、不同术式、干细胞与生物材料移植、电生理与功能锻炼、智能假肢等多种方法治疗SCI,但至今临床尚缺乏行之有效的治疗途径[4-5]。因此,进一步探索SCI后的病理生理改变及相关机制显得极为重要。

  • B淋巴瘤Mo ⁃MLV插入区1(B lymphoma Mo ⁃ MLV insertion region 1,Bmi⁃1)是多梳抑制蛋白复合物1(polycomb repressive complex 1,PRC1)的重要成员之一[6-7],可调节细胞增殖、生长、DNA修复、凋亡和衰老[8-9]。既往研究显示,自胚胎发育起至成年, Bmi⁃1在广泛脑区与脊髓中均有表达[10]。Bmi⁃1敲除小鼠(Bmi⁃1KO)可存活1~2个月,在2~4周时出现共济失调,小脑颗粒层与浦肯野氏细胞减少,海马神经元退行性变,胼胝体区星形胶质细胞增生等[11]。本课题组前期结果显示Bmi⁃1在脑发育、脑功能及脑衰老中均有重要作用[12]。但Bmi⁃1在脊髓损伤后病理进程中的表达变化及作用尚未见报道。

  • 因此,本研究利用LISA脊髓损伤造模仪制作T9脊髓中度钝挫伤模型小鼠,采用Western blot及免疫荧光染色观察Bmi⁃1在SCI后不同时间点的表达及细胞定位,初步探索Bmi⁃1在脊髓损伤后病理进程中的表达变化。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 动物及动物分组

  • 实验用8~10周龄雌性C57Bl/6小鼠共60只,动物随机分为两组:对照组(即假手术组,n=10)和手术组(n=50)。小鼠饲养、管理及使用均严格按照南京医科大学实验动物管理规范进行(IACUC: 1809007)。

  • 1.1.2 试剂和仪器

  • 单克隆兔抗神经元核心抗原(neuronal nuclei antigen,NeuN)抗体(Abcam公司,美国),单克隆大鼠抗髓鞘碱性蛋白(myelin basic protein,MBP)抗体 (Millipore公司,美国),多克隆兔抗神经胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)抗体 (Millipore公司,美国),多克隆兔抗离子钙接头蛋白分子1(ionized calcium binding adapter molecule1, Iba⁃1)抗体(Wako公司,日本),单克隆大鼠抗血小板内皮细胞黏附分子1(platelet and endothelial cell adhesion molecule ⁃ 1,PECAM ⁃ 1/yCD31)抗体(BD Pharmingen公司,美国),单克隆小鼠抗Bmi ⁃1抗体 (Abgent公司,美国)。Alex Fluor 594标记驴抗小鼠IgG、Alex Fluor 488标记驴抗大鼠IgG、Alex Fluor 488标记驴抗兔IgG(Jackson ImmunoResearch公司,美国),DAPI(sigma公司,美国),多克隆兔抗PCNA抗体(Proteintech公司,美国),HRP标记的单克隆小鼠抗GAPDH抗体(Proteintech公司,美国),羊抗小鼠IgG ⁃HRP、羊抗兔IgG ⁃HRP(KPL公司,美国)。 BCA蛋白检测试剂盒(Bio⁃Rad公司,加拿大),ECL免疫印迹检测试剂盒(Amersham Pharmacia公司,美国)。

  • LISA脊髓损伤造模仪(美国Norton神经科学研究中心Dr.Shields馈赠)、冰冻切片机(Thermo Fisher公司,美国)、正置荧光显微镜及图像采集系统(Leica公司,美国)、蛋白电泳仪及成像系统(Bio⁃Rad公司,美国)。

  • 1.2 方法

  • 1.2.1 动物手术

  • 小鼠采用1%戊巴比妥钠(50mg/kg,腹腔注射) 麻醉,固定于LISA小鼠固定支架,行T9椎板切除术。手术组采用LISA脊髓损伤造模仪制作T9脊髓中度钝性撞击模型,损伤深度0.6mm[13];假手术组只行T9椎板切除术。分层缝合肌肉与皮肤。术后动物置30℃加热垫苏醒恢复,每天两次膀胱护理,至膀胱排尿功能恢复后行术后常规护理与喂养。

  • 1.2.2 组织取材与切片

  • 动物手术后将手术组小鼠随机分为5组,每组10只。分别于术后1、3、7、14、28d采用1%戊巴比妥钠麻醉小鼠,其中每组6只小鼠经左心室4%多聚甲醛灌注后,取距损伤中心头尾侧各5mm范围内脊髓组织,继行4%多聚甲醛固定,梯度浓度蔗糖脱水,OTC包埋后行冠状位冰冻切片,片厚10 μm;4只经左心室生理盐水灌注后,取距损伤中心头尾侧各5mm范围内脊髓组织,用于提取蛋白行Western blot检测。假手术组10只,于椎板切除术后28d时,同上取6只行4%多聚甲醛灌注取材,4只行生理盐水灌注取材。

  • 1.2.3 免疫荧光染色

  • 冰冻切片经37℃ 30min烘干后,常规PBS洗涤,用含0.1%Triton X⁃100的10%驴血清和0.5%牛血清白蛋白(BSA)室温封闭1h。一抗为单克隆兔抗NeuN抗体(1∶1 000)、单克隆大鼠抗MBP抗体(1∶50)、多克隆兔抗GFAP抗体(1∶500)、多克隆兔抗Iba⁃1抗体(1∶100)、单克隆大鼠抗CD31抗体(1∶ 100)、单克隆小鼠抗Bmi⁃1抗体(1∶500),4℃孵育过夜;加相应二抗,Alex Fluor 594标记驴抗小鼠IgG、 Alex Fluor 488标记驴抗大鼠IgG、Alex Fluor 488标记驴抗兔IgG(1∶1 000),37℃孵育1h;DAPI(1∶1 000)孵育10min,甘油封片后于Leica正置荧光显微镜观察摄片。使用Image ⁃Pro Plus 5.0.1软件分析Bmi⁃1与Iba⁃1、CD31、NeuN与GFAP双阳性细胞百分率,Bmi⁃1与MBP双阳性细胞与纤维的面积百分比,每只小鼠脊髓的相应观察区至少计数3张切片,结果取平均值。

  • 1.2.4 Western blot实验

  • 脊髓组织按1∶20质量/体积比加入RIPA,剪碎、匀浆,冰上静置30min,13 000r/min 4℃离心15min,提取蛋白,采用BCA法行蛋白定量。每组蛋白加样20 μg,蛋白经10%SDS⁃PAGE分离后湿转至甲醇处理的PVDF膜。含5%脱脂奶粉的PBST37℃封闭2h,加入一抗单克隆小鼠抗Bmi⁃1抗体(1∶1 000)、多克隆兔抗增殖细胞核抗原(proliferating cell nucle⁃ ar antigen,PCNA)抗体(1∶2 000)、HRP标记的小鼠抗GAPDH单克隆抗体(1∶5 000),4℃孵育过夜。 PBST洗涤后,加入相应二抗HRP⁃标记山羊抗兔IgG或HRP⁃标记山羊抗小鼠IgG(1∶2 000),室温孵育1h。按ECL免疫印迹检测试剂盒步骤加入发光混合液,自动成像仪曝光,保存图像。使用Image⁃Pro Plus 5.0.1软件分析发光强度。

  • 1.3 统计学方法

  • 使用GraphPad Prism 6.0软件进行分析。各组数据以均数±标准差(x-±s)表示。采用单因素方差分析(one⁃way ANOVA)进行多组间数据比较,采用SNK法对多组间数据进行两两比较,P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 SCI后小鼠脊髓组织病理学变化

  • 为观察脊髓钝挫伤后的组织缺损变化,首先观察SCI后1、3、7、14、28d时损伤灶周围的血肿改变,继而采用髓鞘标识物MBP免疫荧光染色分别观察上述时间点损伤灶及周围MBP的表达情况。结果显示,SCI术后1d和3d时,局部血肿显著;与术后1d或3d相比,术后7d起,血肿面积明显减小;至术后14d与28d时,损伤灶表面血肿已不明显(图1A、 B)。MBP免疫荧光染色结果显示:假手术对照组小鼠的脊髓中MBP阳性细胞与纤维分布规则,脊髓灰质与白质境界清晰;手术组(SCI后1、3、7d)小鼠,脊髓损伤灶中央主要为空洞及坏死区域、邻近区域MBP阳性细胞与纤维分布杂乱,灰白质境界不清。至损伤14d后,损伤区面积逐渐变小,损伤灶与周围组织之间的边界逐渐清晰。为进一步观察损伤后Bmi⁃1在不同损伤时间点的表达及细胞定位变化,取损伤边缘区观察Bmi⁃1在小胶质细胞、星形胶质细胞、少突胶质细胞、血管内皮细胞上的表达变化。取脊髓前角观察Bmi⁃1在神经元上的表达变化(图1C)。

  • 图1 小鼠SCI后1、3、7、14、28d的脊髓组织血肿与损伤灶变化

  • Fig.1 The changes of haematoma and contusitive area in spinal cord at the day of 1,3,7,14and 28post SCI

  • 2.2 Bmi⁃1在SCI后的表达与细胞定位变化

  • 为进一步观察Bmi⁃1在脊髓损伤后的表达与细胞定位,取脊髓损伤后不同时间点的脊髓冠状切片,分别行Bmi⁃1与Iba⁃1(小胶质细胞标志)、MBP (髓鞘细胞标志)、NeuN(神经元标志)、GFAP(星形胶质细胞标志)及CD31(血管内皮细胞标志)免疫荧光双染。结果显示:假手术对照组中可见部分Bmi⁃1与Iba⁃1双阳性细胞,SCI后1、3、7、14、28d时,Bmi⁃1与Iba⁃1双阳性细胞显著增加,Bmi⁃1在小胶质细胞中的表达持续增高(图2、图3A);与假手术对照组相比,Bmi⁃1与MBP双阳性细胞及纤维的面积百分比在SCI后3、7、14、28d时表达均增高(图4、图3B); Bmi⁃1与NeuN双阳性细胞在假手术对照组中极少,在SCI后1d、3d、7d时增加,在SCI后14d与28d时,与假手术对照组间的差异无统计学意义 (图5、图3C);与假手术对照组相比,Bmi⁃1与CD31双阳性细胞在SCI后3d、7d显著增加,SCI后1d、 14d、28d时与假手术对照组间差异无统计学意义 (图6、图3D);假手术对照组小鼠脊髓中,偶见Bmi⁃1与GFAP双阳性细胞,SCI后的小鼠脊髓中,未发现明显的Bmi⁃1与GFAP双阳性细胞或纤维(图7、图3E)。

  • 图2 小鼠SCI后1、3、7、14、28d脊髓损伤灶边缘Bmi⁃1与Iba⁃1双阳性细胞变化

  • Fig.2 The changes of Bmi⁃1and Iba⁃1double positive cells around of the contusitive margin in spinal cord at the day of 1,3,7,14and 28post SCI

  • 图3 小鼠SCI后1、3、7、14、28d脊髓损伤灶边缘处Iba⁃1/Bmi⁃1、NeuN/Bmi⁃1、CD31/Bmi⁃1、GFAP/Bmi⁃1双阳性细胞百分率,MBP/Bmi⁃1双阳性面积变化的统计结果

  • Fig.3 The statistical analysis of the ratio of the double positive cells as Iba ⁃ 1/Bmi ⁃1,NeuN/Bmi ⁃1,CD31/Bmi ⁃1and GFAP/Bmi ⁃1,and the ratio of the MBP/Bmi ⁃1double positive area around of the contusitive margin in spinal cord at the day of 1,3,7,14and 28post SCI

  • 图4 小鼠SCI后1、3、7、14、28d脊髓损伤灶边缘Bmi⁃1与MBP双阳性细胞变化

  • Fig.4 The changes of Bmi⁃1and MBP double positive cells around of the contusitive margin in spinal cord at the day of 1,3,7,14and 28post SCI

  • 图5 小鼠SCI后1、3、7、14、28d脊髓前角的Bmi⁃1与NeuN双阳性细胞变化

  • Fig.5 The changes of Bmi⁃1and NeuN double positive cells in the anterior horn of spinal cord at the day of 1,3,7,14and 28post SCI

  • 2.3 SCI后脊髓组织中Bmi⁃1蛋白水平表达变化

  • 为检测SCI后不同时间点脊髓组织中Bmi⁃1的蛋白表达变化,通过蛋白印迹法检测假手术组和脊髓损伤后1、3、7、14、28d时小鼠脊髓损伤灶周围组织中Bmi⁃1蛋白的表达。结果显示:与假手术对照组相比,SCI小鼠脊髓损伤灶周围组织中Bmi⁃1的表达于损伤后1d时即显著增加并达峰值(P< 0.01),后逐渐下降,且在损伤后28d内始终保持较高的表达(与假手术对照组比较,SCI后3d,P< 0.01;与假手术对照组比较,SCI后7d、14d、28d,P< 0.05,图8A、B)。同时检测了增殖指标PCNA在脊髓损伤后的表达变化,结果显示与假手术对照组相比,SCI小鼠脊髓损伤灶周围组织中PCNA的表达在损伤后3d时显著增加并达峰值(P< 0.01),7d时表达仍上调 (P< 0.01),后逐渐下降,与假手术对照组间差异无统计学意义(图8A、C)。

  • 3 讨论

  • Bmi⁃1可影响多种细胞进程的基因表达,调节细胞增殖、生长、DNA修复、凋亡和衰老[9]。同时, Bmi⁃1可通过负调节细胞周期依赖性激酶抑制因子p16Ink4a和p19Arf的转录而促进干细胞自我更新[14]。本课题组既往研究显示Bmi⁃1缺失(Bmi⁃1KO)小鼠脑内氧化应激反应加剧、神经元突触丢失、轴突脱髓鞘、出现反应性胶质增生及线粒体损伤[15-16],小鼠出现早老性神经元退变[17]。上述研究提示Bmi⁃1在脑发育与功能维持及脑衰老中均具有重要作用,可能与抗氧化应激、抑制线粒体损伤、促细胞增殖相关。而氧化应激、线粒体损伤均为脊髓损伤后二次损伤中的重要病理过程[18],但Bmi⁃1在脊髓损伤后的表达变化及可能作用尚未见相关报道。

  • 图6 小鼠SCI后1、3、7、14、28d脊髓损伤灶边缘的Bmi⁃1与CD31双阳性细胞变化

  • Fig.6 The changes of Bmi⁃1and CD31double positive cells around of the contusitive margin in spinal cord at the day of 1,3,7,14and 28post SCI

  • 脊髓损伤是一种严重致残的神经系统损伤,尤其在二次损伤中伴发的一系列病理生理改变(如炎症、氧化应激、缺血缺氧和脱髓鞘病变等),可加剧损伤程度并抑制神经再生[19]。为初步探索Bmi⁃1在脊髓损伤后的变化及可能作用,本研究采用2月龄雌性C57Bl/6小鼠建立脊髓中度钝挫伤模型,在损伤后不同时间点观察Bmi⁃1的表达及细胞定位变化。首先,采用MBP染色观察脊髓钝挫伤后不同时间点损伤灶大小的变化,结果与先前采用LISA脊髓造模仪制作的脊髓中度钝挫伤小鼠的术后损伤灶变化趋势一致[20],说明本研究造模成功。

  • 继而采用蛋白印迹检测SCI后Bmi⁃1在脊髓中的表达变化,采用免疫荧光双染初步观察SCI后Bmi⁃1在脊髓中不同类型细胞中的表达变化。因损伤中心区主要为坏死组织,故取损伤边缘区观察Bmi⁃1在小胶质细胞、星形胶质细胞、少突胶质细胞、血管内皮细胞上的表达变化[21]。同时,由于损伤灶在术后面积变化较大,边缘区的神经元类型及分布不均一,不利于观察Bmi⁃1在神经元上的变化;且脊髓前角在该模型鼠中亦受影响[20],故取脊髓前角观察Bmi⁃1在神经元上的表达变化[22]。结果显示Bmi⁃1在脊髓损伤后1d表达即增加并达峰值,在损伤后28d时仍保持较高水平,且Bmi⁃1的表达变化趋势与增殖指标PCNA的表达变化趋势相对一致。免疫荧光染色结果显示,Bmi ⁃1与Iba ⁃1、MBP、NeuN、 CD31双阳性细胞在脊髓损伤后均有增加,且Bmi⁃1与Iba⁃1双阳性细胞的增加尤为显著。

  • 图7 小鼠SCI后1、3、7、14、28d脊髓损伤灶边缘的Bmi⁃1与GFAP表达变化

  • Fig.7 The expression of Bmi⁃1and GFAP around of the contusitive margin in spinal cord at the day of 1,3,7,14and 28post SCI

  • 图8 小鼠SCI后1、3、7、14、28d脊髓损伤局部Bmi⁃1与PCNA的表达变化

  • Fig.8 The expression of Bmi⁃1and PCNA in spinal cord at the day of 1,3,7,14and 28post SCI

  • 小胶质细胞是脊髓的固有免疫细胞[23],在维持脊髓微环境稳态、促进吞噬及释放ROS等方面起重要作用。本研究首次发现Bmi⁃1与Iba⁃1双阳性细胞在SCI后显著增加,Bmi⁃1在小胶质细胞中持续高表达。提示Bmi⁃1可能与SCI后小胶质细胞的活化密切相关,对SCI后的炎性反应具有重要作用。 MBP阳性的少突胶质细胞是脊髓中的成熟髓鞘细胞[24]。免疫荧光结果显示,Bmi⁃1与MBP双阳性细胞及纤维在SCI后3、7、14、28d时表达均增高。Bmi⁃1在髓鞘细胞中的表达变化可能与SCI后发生的内源性髓鞘再生、分化与成熟有关[25],提示Bmi⁃1可能参与SCI后髓鞘细胞的再生与成熟。因神经元为分化成熟的细胞,故Bmi⁃1在对照组小鼠的脊髓神经元中表达较低,而在SCI后1~7d表达上调,提示Bmi⁃1在SCI后在神经元上的表达上调,可能与SCI后神经元性损伤反应[26] 或与内源性胶质细胞转分化为功能性神经元[27-28] 相关。在神经组织重塑过程中,神经发生与血管新生密切相关[29-30]。先前研究表明,血管生成发生在脊髓损伤后3~4d,并持续长达1周[31]。本研究结果与此一致,且首次发现Bmi⁃1与CD31双阳性细胞在SCI后3~7d显著增加,提示Bmi⁃1可能与SCI后血管发生相关。SCI后,星形胶质细胞出现增生性反应,GFAP表达增加,并形成神经胶质瘢痕[32]。但本研究在SCI小鼠的脊髓中未观察到明显的Bmi⁃1与GFAP双阳性细胞。后续研究将进一步采用星形胶质细胞不同标志物,如谷氨酸转运体1 (glutamate transporter 1,GLT1)、谷氨酸/天门冬氨酸转运蛋白(glutamate/aspartic transporter,GLAST)[33-34] 等检测Bmi⁃1在SCI后星形胶质细胞不同发生阶段或不同亚型上的表达。

  • 不足的是,本研究为在体观察结果,尚不能明确SCI后,Bmi⁃1在上述细胞中的表达变化是由细胞自身变化所致还是由SCI后微环境改变间接引起,故后续研究将进一步行体外细胞培养实验,以明确上述细胞损伤后Bmi⁃1的表达变化。

  • 综上所述,本研究首次发现,Bmi⁃1在SCI后表达增加,在髓鞘细胞、神经元、血管内皮细胞上均有表达,且在小胶质细胞上的表达尤为显著。提示Bmi⁃1在脊髓损伤后的表达变化可能与小胶质细胞的增殖与活化、内源性髓鞘再生及血管内皮细胞的活化有关,可能在脊髓损伤后的病理过程中具有重要意义。

  • 参考文献

    • [1] BADHIWALA J H,WILSON J R,FEHLINGS M G.Global burden of traumatic brain and spinal cord injury[J].Lan⁃ cet Neurol,2019,18(1):24-25

    • [2] HATCH B B,WOOD⁃WENTZ C M,THERNEAU T M,et al.Factors predictive of survival and estimated years of life lost in the decade following nontraumatic and traumatic spinal cord injury[J].Spinal Cord,2017,55(6):540-544

    • [3] AHUJA C S,NORI S,TETREAULT L,et al.Traumatic spinal cord injury ⁃ repair and regeneration[J].Neurosur⁃ gery,2017,80(3S):S9-S22

    • [4] COURTINE G,SOFRONIEW M V.Spinal cord repair:ad⁃ vances in biology and technology[J].Nat Med,2019,25(6):898-908

    • [5] SHAH M,PETERSON C,YILMAZ E,et al.Current ad⁃ vancements in the management of spinal cord injury:a comprehensive review of literature[J].Surg Neurol Int,2020,11:2

    • [6] SOBRINO V,ANNESE V,PARDAL R.Progenitor cell heterogeneity in the adult carotid body germinal niche [J].Adv Exp Med Biol,2019,1123:19-38

    • [7] JIN J,TAO J,GU X,et al.P16 INK4a deletion ameliorat⁃ ed renal tubulointerstitial injury in a stress ⁃induced pre⁃ mature senescence model of Bmi ⁃ 1 deficiency[J].Sci Rep,2017,7(1):7502

    • [8] SIDDIQUE H R,SALEEM M.Role of BMI1,a stem cell factor,in cancer recurrence and chemoresistance:preclini⁃ cal and clinical evidences[J].Stem Cells,2012,30(3):372-378

    • [9] JIA K Z,JIN S L,YAO C,et al.Absence of PTHrP nuclear localization and C ⁃terminus sequences leads to abnormal development of T cells[J].Biochimie,2017,138:13-19

    • [10] KUEHNER J N,YAO B.The dynamic partnership of poly⁃ comb and trithorax in brain development and diseases [J].Epigenomes,2019,3(3):17-24

    • [11] PIUNTI A,SHILATIFARD A.The roles of polycomb re⁃ pressive complexes in mammalian development and can⁃ cer[J].Nat Rev Mol Cell Biol,2021,22(5):326-345

    • [12] WANG R,XUE X,WANG Y,et al.BMI1 deficiency re⁃ sults in female infertility by activating p16/p19 signaling and increasing oxidative stress[J].Int J Biol Sci,2019,15(4):870-881

    • [13] WU X,ZHANG Y P,QU W,et al.A tissue displacement⁃ based contusive spinal cord injury model in mice[J].J Vis Exp,2017,(124):54988

    • [14] MOLOFSKY A V,HE S,BYDON M,et al.Bmi ⁃ 1 pro⁃ motes neural stem cell self ⁃ renewal and neural develop⁃ ment but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways[J].Genes Dev,2005,19(12):1432-1437

    • [15] CAO G,GU M,ZHU M,et al.Bmi⁃1 absence causes pre⁃mature brain degeneration[J].PLoS One,2012,7(2):e32015

    • [16] 崔敏,刘轶宁,庄旻羽,等.Chk2敲除可通过增强抗氧化能力改善由 Bmi⁃1 缺失所致的小鼠脑衰老表型 [J].南京医科大学学报(自然科学版),2021,41(7):963-969

    • [17] GU M,SHEN L,BAI L,et al.Heterozygous knockout of the Bmi⁃1 gene causes an early onset of phenotypes asso⁃ ciated with brain aging[J].Age(Dordr),2014,36(1):129-39

    • [18] HACHEM L D,FEHLINGS M G.Pathophysiology of spi⁃ nal cord injury[J].Neurosurg Clin N Am,2021,32(3):305-313

    • [19] KUMAR H,ROPPER A E,LEE S H,et al.Propitious therapeutic modulators to prevent blood⁃spinal cord barrier disruption in spinal cord injury[J].Mol Neurobiol,2017,54(5):3578-3590

    • [20] WU X,ZHANG Y P,QU W,et al.A tissue displacement⁃ based contusive spinal cord injury model in mice[J].J Vis Exp,2017,124:54988

    • [21] WANG Y,LIN Y H,WU Y,et al.Expression and cellular localization of IFITM1 in normal and injured rat spinal cords[J].J Histochem Cytochem,2018,66(3):175-187

    • [22] LIN Y H,WU Y,WANG Y,et al.Spatio⁃temporal expres⁃ sion of hexokinase⁃3 in the injured female rat spinal cords [J].Neurochem Int,2018,113:23-33

    • [23] MILIOR G,MORIN⁃BRUREAU M,CHALI F,et al.Dis⁃ tinct P2Y receptors mediate extension and retraction of microglial processes in epileptic and peritumoral human tissue[J].J Neurosci,2020,40(7):1373-1388

    • [24] KOPP F,MENDELL J T.Functional classification and ex⁃ perimental dissection of long noncoding RNAs[J].Cell,2018,172(3):393-407

    • [25] CHENG X,WANG Y,HE Q,et al.Bone morphogenetic protein signaling and olig1/2 interactto regulatethe differen⁃ tiation and maturation of adult oligodendrocyte precursor cells[J].Stem Cells,2007,25(12):3204-14

    • [26] ATTWELL C L,VAN ZWIETEN M,VERHAAGEN J,et al.The dorsal column lesion model of spinal cord injury and its use in deciphering the neuron ⁃intrinsic injury response[J].Dev Neurobiol,2018,78(10):926-951

    • [27] RODRÍGUEZ ⁃ BARRERA R,RIVAS ⁃ GONZÁLEZ M,GARCÍA ⁃ SÁNCHEZ J,et al.Neurogenesis after spinal cord injury:state of the art[J].Cells,2021,10(6):1499

    • [28] CHEN X,LI H.Neuronal reprogramming in treating spi⁃ nal cord injury[J].Neural Regen Res,2022,17(7):1440-1445

    • [29] JIANG Y Q,ARMADA K,MARTIN J H.Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion[J].Exp Neurol,2019,321:113015

    • [30] YU S,YAO S,WEN Y,et al.Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats[J].Sci Rep,2016,6:33428

    • [31] ZAWADZKA M,KWASNIEWSKA A,MIAZGA K,et al.Perspectives in the cell ⁃ based therapies of various as⁃ pects of the spinal cord injury⁃associated pathologies:les⁃ sons from the animal models[J].Cells,2021,10(11):2995

    • [32] OKADA S,HARA M,KOBAYAKAWA K,et al.Astro⁃ cyte reactivity and astrogliosis after spinal cord injury[J].Neurosci Res,2018,126:39-43

    • [33] FELIX L,STEPHAN J,ROSE C R.Astrocytes of the ear⁃ ly postnatal brain[J].Eur J Neurosci,2021,54(5):5649-5672

    • [34] KIM Y S,CHOI J,YOON B E.Neuron⁃glia interactions in neurodevelopmental disorders[J].Cells,2020,9(10):2176

  • 参考文献

    • [1] BADHIWALA J H,WILSON J R,FEHLINGS M G.Global burden of traumatic brain and spinal cord injury[J].Lan⁃ cet Neurol,2019,18(1):24-25

    • [2] HATCH B B,WOOD⁃WENTZ C M,THERNEAU T M,et al.Factors predictive of survival and estimated years of life lost in the decade following nontraumatic and traumatic spinal cord injury[J].Spinal Cord,2017,55(6):540-544

    • [3] AHUJA C S,NORI S,TETREAULT L,et al.Traumatic spinal cord injury ⁃ repair and regeneration[J].Neurosur⁃ gery,2017,80(3S):S9-S22

    • [4] COURTINE G,SOFRONIEW M V.Spinal cord repair:ad⁃ vances in biology and technology[J].Nat Med,2019,25(6):898-908

    • [5] SHAH M,PETERSON C,YILMAZ E,et al.Current ad⁃ vancements in the management of spinal cord injury:a comprehensive review of literature[J].Surg Neurol Int,2020,11:2

    • [6] SOBRINO V,ANNESE V,PARDAL R.Progenitor cell heterogeneity in the adult carotid body germinal niche [J].Adv Exp Med Biol,2019,1123:19-38

    • [7] JIN J,TAO J,GU X,et al.P16 INK4a deletion ameliorat⁃ ed renal tubulointerstitial injury in a stress ⁃induced pre⁃ mature senescence model of Bmi ⁃ 1 deficiency[J].Sci Rep,2017,7(1):7502

    • [8] SIDDIQUE H R,SALEEM M.Role of BMI1,a stem cell factor,in cancer recurrence and chemoresistance:preclini⁃ cal and clinical evidences[J].Stem Cells,2012,30(3):372-378

    • [9] JIA K Z,JIN S L,YAO C,et al.Absence of PTHrP nuclear localization and C ⁃terminus sequences leads to abnormal development of T cells[J].Biochimie,2017,138:13-19

    • [10] KUEHNER J N,YAO B.The dynamic partnership of poly⁃ comb and trithorax in brain development and diseases [J].Epigenomes,2019,3(3):17-24

    • [11] PIUNTI A,SHILATIFARD A.The roles of polycomb re⁃ pressive complexes in mammalian development and can⁃ cer[J].Nat Rev Mol Cell Biol,2021,22(5):326-345

    • [12] WANG R,XUE X,WANG Y,et al.BMI1 deficiency re⁃ sults in female infertility by activating p16/p19 signaling and increasing oxidative stress[J].Int J Biol Sci,2019,15(4):870-881

    • [13] WU X,ZHANG Y P,QU W,et al.A tissue displacement⁃ based contusive spinal cord injury model in mice[J].J Vis Exp,2017,(124):54988

    • [14] MOLOFSKY A V,HE S,BYDON M,et al.Bmi ⁃ 1 pro⁃ motes neural stem cell self ⁃ renewal and neural develop⁃ ment but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways[J].Genes Dev,2005,19(12):1432-1437

    • [15] CAO G,GU M,ZHU M,et al.Bmi⁃1 absence causes pre⁃mature brain degeneration[J].PLoS One,2012,7(2):e32015

    • [16] 崔敏,刘轶宁,庄旻羽,等.Chk2敲除可通过增强抗氧化能力改善由 Bmi⁃1 缺失所致的小鼠脑衰老表型 [J].南京医科大学学报(自然科学版),2021,41(7):963-969

    • [17] GU M,SHEN L,BAI L,et al.Heterozygous knockout of the Bmi⁃1 gene causes an early onset of phenotypes asso⁃ ciated with brain aging[J].Age(Dordr),2014,36(1):129-39

    • [18] HACHEM L D,FEHLINGS M G.Pathophysiology of spi⁃ nal cord injury[J].Neurosurg Clin N Am,2021,32(3):305-313

    • [19] KUMAR H,ROPPER A E,LEE S H,et al.Propitious therapeutic modulators to prevent blood⁃spinal cord barrier disruption in spinal cord injury[J].Mol Neurobiol,2017,54(5):3578-3590

    • [20] WU X,ZHANG Y P,QU W,et al.A tissue displacement⁃ based contusive spinal cord injury model in mice[J].J Vis Exp,2017,124:54988

    • [21] WANG Y,LIN Y H,WU Y,et al.Expression and cellular localization of IFITM1 in normal and injured rat spinal cords[J].J Histochem Cytochem,2018,66(3):175-187

    • [22] LIN Y H,WU Y,WANG Y,et al.Spatio⁃temporal expres⁃ sion of hexokinase⁃3 in the injured female rat spinal cords [J].Neurochem Int,2018,113:23-33

    • [23] MILIOR G,MORIN⁃BRUREAU M,CHALI F,et al.Dis⁃ tinct P2Y receptors mediate extension and retraction of microglial processes in epileptic and peritumoral human tissue[J].J Neurosci,2020,40(7):1373-1388

    • [24] KOPP F,MENDELL J T.Functional classification and ex⁃ perimental dissection of long noncoding RNAs[J].Cell,2018,172(3):393-407

    • [25] CHENG X,WANG Y,HE Q,et al.Bone morphogenetic protein signaling and olig1/2 interactto regulatethe differen⁃ tiation and maturation of adult oligodendrocyte precursor cells[J].Stem Cells,2007,25(12):3204-14

    • [26] ATTWELL C L,VAN ZWIETEN M,VERHAAGEN J,et al.The dorsal column lesion model of spinal cord injury and its use in deciphering the neuron ⁃intrinsic injury response[J].Dev Neurobiol,2018,78(10):926-951

    • [27] RODRÍGUEZ ⁃ BARRERA R,RIVAS ⁃ GONZÁLEZ M,GARCÍA ⁃ SÁNCHEZ J,et al.Neurogenesis after spinal cord injury:state of the art[J].Cells,2021,10(6):1499

    • [28] CHEN X,LI H.Neuronal reprogramming in treating spi⁃ nal cord injury[J].Neural Regen Res,2022,17(7):1440-1445

    • [29] JIANG Y Q,ARMADA K,MARTIN J H.Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion[J].Exp Neurol,2019,321:113015

    • [30] YU S,YAO S,WEN Y,et al.Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats[J].Sci Rep,2016,6:33428

    • [31] ZAWADZKA M,KWASNIEWSKA A,MIAZGA K,et al.Perspectives in the cell ⁃ based therapies of various as⁃ pects of the spinal cord injury⁃associated pathologies:les⁃ sons from the animal models[J].Cells,2021,10(11):2995

    • [32] OKADA S,HARA M,KOBAYAKAWA K,et al.Astro⁃ cyte reactivity and astrogliosis after spinal cord injury[J].Neurosci Res,2018,126:39-43

    • [33] FELIX L,STEPHAN J,ROSE C R.Astrocytes of the ear⁃ ly postnatal brain[J].Eur J Neurosci,2021,54(5):5649-5672

    • [34] KIM Y S,CHOI J,YOON B E.Neuron⁃glia interactions in neurodevelopmental disorders[J].Cells,2020,9(10):2176