en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

邱憬,E-mail:qiujing@njmu.edu.cn

中图分类号:R783.6

文献标识码:A

文章编号:1007-4368(2022)06-821-09

DOI:10.7655/NYDXBNS20220609

参考文献 1
BASSIR S H,EL KHOLY K,CHEN C Y,et al.Outcome of early dental implant placement versus other dental im⁃ plant placement protocols:a systematic review and meta ⁃ analysis[J].J Periodontol,2019,90(5):493-506
参考文献 2
BUSER D,CHAPPUIS V,BELSER U,et al.Implant placement post extraction in esthetic single tooth sites:when immediate,when early,when late?[J].Periodontolo⁃ gy 2000,2017,73(1):84-102
参考文献 3
BUSER D,SENNERBY L,DE BRUYN H.Modern im⁃ plant dentistry based on osseointegration:50 years of progress,current trends and open questions[J].Periodon⁃ tology 2000,2017,73(1):7-21
参考文献 4
WU W L,ZENG X,LIU X Q,et al.Esthetic proportions of maxillary anterior teeth of 120 Chinese adults[J].J Pe⁃ king Univ.(Health Sci),2020,52(6):1130-1134
参考文献 5
ZHANG X,LI Y,GE Z,et al.The dimension and morpho⁃ logy of alveolar bone at maxillary anterior teeth in peri⁃ odontitis:a retrospective analysis ⁃ using CBCT[J].Int J Oral Sci,2020,12(1):4
参考文献 6
CANELLAS J,MEDEIROS P,FIGUEREDO C,et al.Which is the best choice after tooth extraction,immediate implant placement or delayed placement with alveolar ridge preservation?A systematic review and meta⁃analysis [J].J Craniomaxillofac Surg,2019,47(11):1793-1802
参考文献 7
TONETTI M S,CORTELLINI P,GRAZIANI F,et al.Im⁃ mediate versus delayed implant placement after anterior single tooth extraction:the timing randomized controlled clinical trial[J].J Clin Periodontol,2017,44(2):215-224
参考文献 8
ZHANG H,LIU K,LU M,et al.Micro/nanostructured cal⁃ cium phytate coating on titanium fabricated by chemical conversion deposition for biomedical application[J].Ma⁃ ter Sci Eng C Mater Biol Appl,2021,118:111402
参考文献 9
HIROTA M,SHIMA T,SATO I,et al.Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold[J].Bio⁃ materials,2016,75:223-236
参考文献 10
虞颖娟,明盼盼,邱憬.兔下颌前牙即刻种植后种植体周围炎动物模型的构建[J].南京医科大学学报(自然科学版),2017,37(11):1515-1518
参考文献 11
CHRCANOVIC B R,ALBREKTSSON T,WENNERBERG A.Bone quality and quantity and dental implant failure:a systematic review and meta ⁃ analysis[J].Int J Prostho⁃ dont,2017,30(3):219-237
参考文献 12
CHO Y,PARK S.Measurement of pulp blood flow rates in maxillary anterior teeth using ultrasound Doppler flow⁃ metry[J].Int Endod J,2015,48(12):1175-1180
参考文献 13
LOMBARDI T,BERNARDELLO F,BERTON F,et al.Efficacy of alveolar ridge preservation after maxillary mo⁃ lar extraction in reducing crestal bone resorption and si⁃ nus pneumatization:a multicenter prospective case ⁃ con⁃ trol study[J].Biomed Res Int,2018,2018:9352130
参考文献 14
YU Y J,ZHU W Q,XU L N,et al.Osseointegration of tita⁃ nium dental implant under fluoride exposure in rabbits:Micro ⁃CT and histomorphometry study[J].Clin Oral Im⁃ plants Res,2019,30(10):1038-1048
参考文献 15
EL CHAAR E,PUISYS A,SABBAG I,et al.A novel fully tapered,self ⁃cutting tissue ⁃level implant:non ⁃inferiority study in minipigs[J].Clin Oral Investig,2021,25(11):6127-6137
参考文献 16
SCHULTE W,KLEINEIKENSCHEIDT H,LINDNER K,et al.The Tübingen immediate implant in clinical studies [J].Dtsch Zahnarztl Z,1978,33(5):348-359
参考文献 17
BLANC ⁃ SYLVESTRE N,BOUCHARD P,CHAUSSAIN C,et al.Pre ⁃ clinical models in implant dentistry:past,present,future[J].Biomedicines,2021,9(11):1538
参考文献 18
SUN J,EBERHARD J,GLAGE S,et al.Development of a peri ⁃implantitis model in the rat[J].Clin Oral Implants Res,2020,31(3):203-214
参考文献 19
DONG W,MA W,ZHAO S,et al.The surface modifica⁃ tion of long carbon fiber reinforced polyether ether ketone with bioactive composite hydrogel for effective osteogenic⁃ ity[J].Mater Sci Eng C Mater Biol Appl,2021,130:112451
参考文献 20
XIAO T,FAN L,LIU R,et al.Fabrication of dexametha⁃ sone ⁃ loaded dual ⁃ metal ⁃ organic frameworks on poly⁃ etheretherketone implants with bacteriostasis and angio⁃ genesis properties for promoting bone regeneration[J].ACS Appl Mater Interfaces,2021,13(43):50836-50850
参考文献 21
STÜBINGER S,DARD M.The rabbit as experimental model for research in implant dentistry and related tissue regeneration[J].J Invest Surg,2013,26(5):266-282
参考文献 22
BERTONNIER ⁃ BROUTY L,VIRIOT L,JOLY T,et al.Morphological features of tooth development and replace⁃ ment in the rabbit oryctolagus cuniculus[J].Arch Oral Bi⁃ ol,2020,109:104576
参考文献 23
RIVARA F,MACALUSO G M,TOFFOLI A,et al.The ef⁃ fect of a 2 ⁃ mm inter ⁃ implant distance on esthetic out⁃ comes in immediately non ⁃ occlusally loaded platform shifted implants in healed ridges:12 ⁃ month results of a randomized clinical trial[J].Clin Implant Dent Relat Res,2020,22(4):486-496
参考文献 24
ABOUSHELIB M,ARNAOUT M A,ELSAFI M H,et al.Two ⁃ stage implant placement technique for the manage⁃ ment of irradiated jaws:an animal study[J].J Prosthet Dent,2017,118(4):546-550
参考文献 25
黄硕,郭芳,刘宁,等.3D 打印个性化根形钛合金种植体在下颌磨牙区即刻种植的临床研究[J].口腔医学研究,2021,37(7):602-606
参考文献 26
陈杨.黄骨髓对骨质疏松生物力学特性影响的仿真研究[D].哈尔滨:哈尔滨工业大学,2015
参考文献 27
RODRÍGUEZ J,MANDALUNIS P M.Effect of cadmium on bone tissue in growing animals[J].Exp Toxicol Pathol,2016,68(7):391-397
目录contents

    摘要

    目的:构建新西兰兔上颌前牙即刻种植的实验动物模型,观察不同时间点的种植体骨结合特征。方法:准备16只新西兰兔,随机分为2周、4周、8周、12周组,每组4只。拔除兔的上颌前牙,在其新鲜拔牙窝内即刻植入纯钛实验种植体。术后分别在2周、4周、8周、12周采集含种植体的上颌骨标本,再通过大体观察、Micro⁃CT扫描、组织切片染色研究即刻种植后不同时间点的种植体骨结合特征。结果:①大体观察:各组实验兔的术后状态正常,食欲无明显异常,创口愈合良好,种植体均未松动脱落。②Micro⁃CT分析:随着种植体植入后愈合时间的延长,种植体螺纹处的骨质密度和厚度不断增加。③ 组织学检测:随着种植体植入后时间的延长,硬组织切片染色测算所得的种植体⁃骨接触率(bone⁃implant contact ratio,BIC)稳步增长,而脱钙颌骨切片染色显示种植体周围的骨质结构呈散在⁃岛状⁃条索状⁃板层状骨演化,提示骨结合形成良好。2周和4周组中存在大量的破骨细胞和炎症细胞,8周和12周组中则几乎未见这类细胞,但存在更多的红细胞和黄骨髓。结论:兔上颌前牙拔除后即刻植入种植体可构建即刻种植动物模型,为即刻种植后骨结合过程的观察以及钛种植体的动物体内研究提供新的选择和途径。

    Abstract

    Objective:This study aims to establish an animal model of immediate implantation for maxillary anterior teeth of New Zealand rabbits and observe its osseointegration at different time points. Methods:A total of 16 New Zealand rabbits were randomly divided into 4 groups according to 2 week,4 week,8 week and 12 week,with 4 rabbits in each group. After surgery,maxillary specimens containing implants were collected at 2 week,4 week,8 week and 12 week,respectively. The characteristics of implant osseointegration at different time points after immediate implantation were studied by observation,Micro ⁃ CT scanning and tissue section staining. The maxillary anterior teeth of rabbits were extracted and pure titanium experimental implants were immediately implanted in the fresh extraction sockets. Maxillary specimens containing implants were collected at 2,4,8 and 12 weeks postoperatively,and the characteristics of implant osseointegration at different time points after immediate implantation were studied by general observation,Micro⁃CT scanning,and staining of tissue sections. Results:①General observation:the rabbits in each group had normal postoperative state,no obvious abnormality of appetite,good wound healing,and no loosening or falling off implants. ②Micro⁃ CT analysis:the bone density and thickness at the thread of implant increased continuously with the extension of healing time after implantation. ③Histological examination:according to the time after implantation,the bone ⁃implant contact ratio(BIC)measured by staining of hard tissue sections increased steadily,and the bone structure around the implant,as shown in the staining of decalcified maxilla sections,exhibited the evolution of scattered ⁃island ⁃ cord ⁃lamellar bone,indicating the formation of osseointegration. Many osteoclasts and inflammatory cells were observed in 2 week and 4 week groups,whereas almost no such cells in 8 week and 12 week groups,which had more red blood cells and yellow bone marrow. Conclusion:Performing implantation immediately after extraction of maxillary anterior teeth in rabbits can establish an animal model of immediate implantation,which provides a new way for observation of the osseointegration process after immediate implantation and in vivo study of titanium implants.

  • 随着我国经济水平的日益提高,人们口腔健康意识的逐渐增强,种植义齿作为牙列缺损和牙列缺失修复的新兴技术,因其功能恢复好、舒适度高、适应证广等优点,已被患者广泛接受。按照种植体的植入时机,种植手术方式可分为:即刻种植、早期种植、延期种植[1]。与临床上常见的延期种植相比,即刻种植的技术敏感性高,且适应证更为严格[2-3]。但延期种植常常伴随骨愈合后的过度吸收、治疗周期长、植入位点不佳等问题,那么对于前牙美学区的牙齿缺失,由于骨量不足、美观要求高以及患者期望缩短治疗周期等原因[4-5],即刻种植技术的应用显得尤为重要。大量临床研究表明,即刻种植与延期种植在种植体存活率方面没有显著差异[16-7]

  • 启用理想的实验动物模型是种植体骨生物学研究的基本途径,即刻种植的研究亦是如此。新西兰兔的组织结构与人体存在相似度,常用于动物模型的构建。兔下颌前牙牙根存在一段较直的区域,可容纳尺寸匹配的种植体,拔牙后即刻植入种植体能够获得较好的初期稳定性,因而可采用即刻种植方式实现兔的口内原位种植,更好地模拟人体口腔环境。已有的兔下颌前牙即刻种植模型多用于骨结合、即刻负重、种植体周围炎等方面[8-10] 的研究,本课题组在前期研究中也构建了兔下颌前牙即刻种植后种植体周围炎动物模型。临床研究发现,下颌种植体的存活率高于上颌,上下颌的骨质差异被认为是该现象的内在原因。一方面,上颌骨的皮质骨较薄,骨小梁较为疏松,颌骨分类偏向Ⅲ、Ⅳ类骨[11],难以为种植体获得良好的初期稳定性提供骨质条件,而另一方面,上颌骨的血运丰富[12],可用骨量更多,有利于血管化和植入位点的选择。因此,深入研究上颌即刻种植的骨生物学对其原理解析及临床应用十分必要。然而,目前针对兔上颌原位即刻种植动物模型的构建尚未见报道。

  • 对于上前牙美学区的缺牙患者,若采用延期种植手术,治疗周期较长,而且常面临牙槽骨生理性吸收造成的种植区骨量不足[13]。即刻种植是在拔牙后的牙槽窝内即刻植入种植体,不仅大大缩短了治疗周期,而且有利于种植体周围骨高度和骨宽度的保存,避免大范围植骨,并可保持牙龈组织的自然形态。即刻种植技术给患者带来良好修复效果和就诊体验的同时,由于新鲜拔牙窝未经过骨愈合和软组织愈合,种植体的即刻植入有较高的技术敏感性。如何最大限度地确保即刻种植的成功率,扩大手术适应证以造福更多患者,仍是亟待解决的问题。因而,基于上颌前牙区的美学区特性及其骨质特点,上颌前牙即刻种植方面的动物体内研究有待加强。本研究在新西兰兔的上颌前牙区构建即刻种植实验动物模型,观察不同时间点的种植体骨结合特征,研究即刻种植后种植体周围的骨改建与骨结合形成过程。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 实验动物

  • 雄性普通级成年新西兰兔17只(购自邳州市东方养殖有限公司),体重(2.5±0.2)kg。按照即刻种植后的时间,将16只新西兰兔随机分为4组:2周、4周、 8周、12周,每组4只。所有新西兰兔经过1周的适应性生长后用于实验,实验过程中均单笼饲养,可自由饮水进食。本研究经南京医科大学实验动物福利伦理委员会批准(批准号:IACUC⁃2104047)。实验时序设计见图1。

  • 1.1.2 实验材料与设备

  • 微创拔牙挺和上颌乳前牙牙钳(长沙天天齿科器材有限公司),陆眠宁(盐酸赛拉嗪,吉林省华牧动物保健品有限公司),必兰(复方盐酸阿替卡因注射液,碧兰公司,法国),葡萄糖(哈尔滨哈药集团三精制药有限公司),布洛芬胶囊(中美天津史克制药有限公司),青霉素钠(山东济宁鲁抗医药股份有限公司),超声清洗机(X025⁃12DT,南京先欧仪器制造有限公司),高压灭菌锅(TH⁃3560,TSAOSHIN公司,美国),Micro⁃CT(Sky scan 1176,Bruker公司,比利时),自动组织脱水机(HistoCore PEARL)、石蜡包埋机(Histocore Arcadia H)、全自动半薄轮转切片机 (RM2265)、硬组织自动切片机(RM2255)(Leica公司,德国),磨片机(400CS,EXAKT公司,德国),体视显微镜(SMZ1000,Nikon公司,日本),正置荧光显微镜(DM4000,Leica公司,德国)等。

  • 图1 实验时序设计示意图

  • Fig.1 Schematic diagram of experimental timing design

  • 1.2 方法

  • 1.2.1 种植体制备和即刻种植预实验

  • 委托中国宝鸡永铭泰金属材料有限公司参照本课题组前期研究中的锥柱状种植体设计图[10] 加工制作纯钛种植体。种植体使用前,按双蒸水— 75%医用酒精—双蒸水—75%医用酒精—双蒸水顺序超声清洗,独立封装,高温高压灭菌消毒,烘干后备用。过量麻醉处死1只实验兔,体外解剖兔上颌骨,熟悉兔上颌前牙区解剖特征,拔除上颌前牙并即刻植入纯钛种植体,分别在拔牙前后以及即刻种植后拍摄X线片,检测兔上颌前牙即刻种植后骨壁的完整性。

  • 1.2.2 新西兰兔的麻醉

  • 回顾既往研究和国内外文献[14],在预实验中对新西兰兔行陆眠宁肌肉注射麻醉,根据麻醉反应调整陆眠宁用药浓度和注射部位。

  • 1.2.3 手术操作

  • 新西兰兔术前24h禁食,陆眠宁(0.15mL/kg) 肌肉注射,全身肌肉松弛后,仰卧位固定于手术台。上颌前牙术区消毒,采用必兰行局部浸润麻醉,分离牙龈后,用微创牙挺以牙齿舌侧及近中为支点挺松上颌前牙,再用乳牙钳拔除。探查确定唇侧骨壁完整后,搔刮冲洗拔窝,使用血管钳和专用 “一”字型螺丝刀将种植体顺时针旋入拔牙窝,种植体上端与唇侧骨壁上缘平齐,生理盐水冲洗术区,减张缝合牙龈软组织瓣,关闭创口,缝线待其自行脱落。术后当天新西兰兔苏醒后,将10%葡萄糖+ 布洛芬胶囊混合液注入口腔,使其自行吞咽。术后3d肌注青霉素钠20×104 U/次,每天1次。每周调磨下前牙以免过度伸长导致咬合创伤。手术操作如图2所示。

  • 1.2.4 标本取材

  • 分别在术后第2、4、8、12周采用随机数字法选择实验动物处死,取含种植体的上颌骨标本,观察并记录标本中的种植体稳固与否以及种植体周围的骨质状况,再用4%多聚甲醛溶液浸泡固定标本,保存于4℃冰箱中备用。

  • 1.2.5 标本的观察、分析与检测

  • 一般观察:在标本取材前,对新西兰兔进行生命体征和牙龈颜色、形态、质地的总体观察,检查记录创口愈合情况。标本取材后,观察记录上颌骨内种植体有无松脱、种植体周围骨质包绕情况以及种植体⁃骨之间有无缝隙。

  • Micro⁃CT扫描与分析:使用南京医科大学江宁校区动物实验中心的Micro⁃CT扫描组织标本,扫描电压90kV,扫描电流278 μA,分辨率17.76 μm,曝光时间325ms,以0.6°旋转角度进行360°扫描,添加1mm的铜+铝过滤器以过滤扫描射线,后续采用CT Analyser(Version:1.15.4.0)和Dataviewer(Ver⁃ sion:1.5.4.0)软件对CT数据进行分析。

  • 组织学观察:利用上述标本制备硬组织切片及脱钙颌骨切片。硬组织切片制作:固定后的颌骨标本经流水冲洗12h、乙醇脱水、二甲苯透明、甲基丙烯酸甲酯浸泡、包埋、修整,固定于硬组织自动切片机上,沿种植体长轴近远中向切片(200 μm),再经磨片机磨至切片厚度为30~40 μm,粘于载玻片,表面抛光,行甲苯胺蓝染色,采用正置荧光显微镜观察种植体的骨结合情况,体视显微镜拍照后测算种植体⁃骨接触率(bone⁃implant contact ratio,BIC)。脱钙颌骨切片制作:固定后的颌骨标本经脱钙、种植体旋出、乙醇脱水、二甲苯透明、浸蜡、包埋及切片后行抗酒石酸磷酸酶染色和苏木精⁃伊红染色,正置荧光显微镜下观察种植体周围的破骨细胞分布、细胞形态和炎症反应状况。

  • 图2 新西兰兔上颌前牙即刻种植手术操作图

  • Fig.2 Operation images of immediate implantation for maxillary anterior teeth in New Zealand rabbits

  • 1.3 统计学方法

  • 采用SPSS 23.0对各组标本的BIC进行方差齐性检验,显示方差齐,进行单因素方差分析和SNK多重比较,P< 0.05为差异有统计学意义。

  • 2 结果

  • 2.1 动物术后情况

  • 16只实验兔均在术后1.5~2.5h内自然苏醒,术后当天可自行活动和正常饮食,术后2d可见创口红肿现象,术后5d创口肿胀逐渐消退、无液体渗出,术后1周伤口自然愈合(图2F),术后2周缝线均自行脱落。

  • 2.2 一般观察

  • 所有新西兰兔均存活至标本取材之前。在本实验周期内,所有新西兰兔的精神状态良好,各项生命体征平稳。口内观察显示,牙龈呈粉红色,质地坚韧。上颌骨标本内的种植体骨结合牢固、无松动,所有种植体均被骨组织包绕(图3)。

  • 2.3 影像学观察

  • 预实验中,新西兰兔上前牙拔除前后以及即刻种植后的X线片(图4)显示:在兔上颌前牙的拔牙位点即刻植入纯钛种植体后,拔牙窝周围的骨壁完整。

  • Micro⁃CT矢状截面图(图5)显示,各组种植体均被骨组织包绕,种植体与骨组织之间无放射性透射区,两者结合紧密。2周组和4周组可见种植体螺纹处的皮质骨生长不连续,主要为密度较低的编织骨。8周组和12周组可见种植体螺纹间的皮质骨完整、连续,结构与远离种植体⁃骨界面的皮质骨相比无明显差异,种植体顶部“一”字螺纹处可见有新骨生成,以密度较高的皮质骨为主。

  • 2.4 组织学观察

  • 2.4.1 硬组织切片甲苯胺蓝染色

  • 2周组和4周组种植体周围的骨组织较为稀疏、杂乱,骨密度较低,2周组骨组织呈散在分布,4周组可见岛状骨组织。8周组和12周组种植体周围的骨组织排列紧密、整齐,8周组可见少量种植体⁃骨界面骨小梁结构,12周组种植体与骨组织的连续接触面积明显增大,可见编织骨和板层骨,且直接接触部位的骨组织多染成深蓝色(图6),提示新生骨较多。各组种植体顶部、中部和底部螺纹处的骨接触面积无明显差异。

  • 图3 新西兰兔含即刻种植体的上颌骨标本实物图

  • Fig.3 Physical image of a maxillary specimen containing the immediate implant of a New Zealand rabbit

  • 图4 新西兰兔上颌骨X线片

  • Fig.4 Maxilla X⁃ray graphs of a New Zealand rabbit

  • 图5 各组新西兰兔含种植体上颌骨标本的Micro⁃CT矢状面截图

  • Fig.5 Micro⁃CT sagittal images of maxillary specimens containing implants of New Zealand rabbits in different groups

  • BIC的统计结果(图7)显示,随着种植体植入时间的延长,BIC逐步增加,8周组和12周组的BIC显著高于2周组和4周组(P< 0.05),而2周组和4周组BIC之间的差异无统计学意义(P> 0.05),8周组和12周组BIC之间的差异无统计学意义(P> 0.05)。

  • 图6 即刻种植后2、4、8、12周硬组织切片的甲苯胺蓝染色(×100)

  • Fig.6 Hard tissue sections stained with toluidine blue at 2,4,8and 12weeks post⁃implantation(×100)

  • 图7 即刻种植术后2、4、8、12周的BIC

  • Fig.7 BIC of peri⁃implant bone at 2,4,8and 12weeks post⁃implantation

  • 2.4.2 脱钙颌骨切片TRAP染色

  • 脱钙颌骨切片TRAP染色结果(图8)显示,2周组和4周组的脱钙骨组织中可见较多的破骨细胞,其中,2周组的破骨细胞数量明显多于4周组,而8周组和12周组几乎未见破骨细胞,且8周组和12周组种植体螺纹表面的骨组织厚度较2周组和4周组明显增加。此外,8周组和12周组新西兰兔的上颌骨中可见大量红细胞和黄骨髓。

  • 2.4.3 脱钙颌骨切片HE染色

  • 脱钙颌骨切片HE染色结果(图9)显示,2周组和4周组可见明显的炎症细胞浸润和骨吸收陷窝,2周组骨组织呈散在分布,4周组多见岛状骨。8周组和12周组的炎症细胞显著减少,但新生血管增多,可见大量成骨细胞分泌的骨基质,新生骨组织不规则排列,部分融合为条索状,存在骨小梁结构。12周组新生骨组织逐渐成熟,排列紧密,分布均匀,骨小梁逐渐钙化,形成板层状骨结构。

  • 3 讨论

  • 骨结合理论奠定了现代口腔种植学的基础[15],之后Schulte等[16] 学者尝试并完善了即刻种植术式,该技术因治疗周期短、手术次数少、保存骨量好等优势[7],成为了很多缺牙患者的首选种植方案,尤其是上前牙缺失。但由于即刻种植有严格的适应证和较高的技术敏感性,一直以来其临床应用受到一定程度的限制。这也使得即刻种植成为临床与基础研究的热点,而上颌前牙即刻种植动物模型的构建对于该方面基础研究的实施开展至关重要。

  • 图8 即刻种植术后2、4、8、12周的种植体周围骨组织TRAP染色(×100)

  • Fig.8 TRAP staining of peri⁃implant bone at 2,4,8and 12weeks post⁃implantation(×100)

  • 图9 即刻种植术后2、4、8、12周的种植体周围骨组织HE染色(×100)

  • Fig.9 HE staining of peri⁃implant bone at 2,4,8and 12weeks post⁃implantation(×100)

  • 构建动物模型的首要条件是选择合适的实验动物。目前,可用于口腔种植学研究的实验动物有猴、犬、猪、兔、大鼠、小鼠等[17-18]。猴、犬、猪等大动物具有手术视野清晰、颌骨骨量充足的优势,但同样存在技术敏感性高、价格昂贵、样本量小、难饲养等问题,而啮齿类动物虽能满足样本量的需求,但颌骨骨量有限,多采用异位种植方式开展研究[19-20],难以模拟真实的口腔环境。相比而言,兔体型中等,价格低廉,易于饲养,具有口内原位种植的解剖条件,兼具大动物和小动物的优点。研究表明,新西兰兔较灵长类动物有更快的骨生长和骨转化能力,更有利于骨改建及骨整合方面的研究[21]。因此,本研究采用新西兰兔构建动物模型,其颌骨条件能满足口腔内原位种植。新西兰兔有两对上颌前牙[22],第二对牙位于第一对牙的舌侧,体积小,对第一对上颌前牙的拔牙窝无影响。通过X线片的观察分析发现,第一对上颌前牙的牙根长而弯曲,总长度为22~23mm,其中接近牙冠部较平直段长8~10mm,直径3.4~3.6mm,唇舌向厚度6~9mm。基于该解剖特点,本研究采用直径3.5mm、长度8mm的锥柱状种植体。兔的双侧上颌为真性骨连接,两颗上颌前牙的牙根呈放射状偏向远中,两枚种植体即刻植入后的间距为5~10mm,满足相邻种植体之间安全距离的要求[23]。通过预实验发现,拔除兔上颌前牙时能够确保拔牙窝的骨壁完整,而且兔上颌骨血运丰富,有利于控制感染风险。

  • 以往关于即刻种植动物模型构建的文献中,最早采集标本的时间为种植术后4周[24⁃25],目前尚未见4周以内的相关报道。然而,种植术后早期骨结构的演变与发展对深刻认识即刻种植骨结合的形成具有重要意义。因此,本实验加入2周组以对术后早期的旧骨吸收、炎症浸润等情况进行直接观察和记录。本研究的影像学观察结果显示,8周组和12周组获得了更好的种植体骨结合,并在种植体顶部 “一”字螺丝孔处形成了高密度骨组织,而2周组和4周组种植体周围的骨密度较低,尤其是2周组,表明即刻种植后早期存在较活跃的骨吸收与骨改建。组织学观察结果表明:即刻种植后早期的2周组中存在大量破骨细胞和炎症细胞浸润,说明该时段正是种植体周围旧骨吸收的关键期。4周组中破骨细胞和炎症细胞数量明显减少,骨质由2周组的散在分布向岛状骨演变,而8周组和12周组仅有少量炎症细胞,骨质由条索状向板层状演变,靠近种植体螺纹处的骨质厚度以及BIC亦随之增加,这种时序变化符合种植体周围骨整合形成的演变过程。研究发现,骨质疏松患者的骨髓含量增多且伴有明显的骨髓脂肪化倾向,但增加的黄骨髓对骨小梁有增加体积强度、减轻形变、平衡应力集中等作用[26],可有效降低骨折风险。颌骨中黄骨髓比例的增加可部分弥补骨质疏松患者因骨量丢失而损失的骨强度,这可能与咀嚼力机械刺激的保护作用有关[27]。本研究中,8周组和12周组中可见大量红细胞和黄骨髓存在,说明随着即刻种植后时间的延长,兔上颌骨中黄骨髓增多,血运更加丰富,有利于骨代谢与骨改建,该现象与同时段中BIC以及骨质厚度的增加相对应,故对种植体骨结合的形成无不利影响。

  • 经典骨结合理论已由大量临床和科学实验证实,其中,骨质条件是影响骨结合形成的关键因素。1985年,Lekholm和Zarb将颌骨按照密质骨和松质骨含量的比分为:Ⅰ类、Ⅱ类、Ⅲ类和Ⅳ类骨。研究表明,Ⅱ类骨的种植成功率最高,种植医师多倾向于在Ⅱ类骨缺牙区开展种植手术[11],而缺牙区为Ⅲ、Ⅳ类骨时多不建议采用即刻种植,这主要是与骨密度、血供和初期稳定性等密切相关。骨密度是临床医师种植治疗前考量的重点,该因素直接影响扩孔顺序、骨愈合时间、上部修复时间等。虽然 Ⅲ、Ⅳ类骨血供充足,但常因骨质过于疏松、难以获得良好的初期稳定性而影响种植成功率。如图10所示,将新西兰兔种植后8周的上下颌骨影像进行对比可知,兔上颌骨较为疏松[21],骨质条件多偏向于Ⅲ类骨,上述实验结果也从侧面证实了该现象。因此,本研究在新西兰兔骨质相对疏松的上颌实施即刻种植并观察不同时间点的种植体骨结合特征,可为骨质偏向Ⅲ类骨的上颌前牙即刻种植提供参考依据。

  • 图10 新西兰兔含种植体上下颌骨标本的Micro⁃CT矢状面截图

  • Fig.10 Micro ⁃ CT sagittal images of maxillary and mandibular specimens containing implants of New Zealand rabbits

  • 综上所述,本研究在新西兰兔上颌前牙进行即刻种植动物模型的构建,结果表明,新西兰兔上颌前牙区的即刻种植是一项可行的选择,在确保拔牙窝骨壁完整的前提下,适配种植体良好的初期稳定性以及充足的血供有利于获得良好的骨结合。该模型能在一定程度上模拟上前牙缺失患者的即刻种植及其骨结合形成过程,为该方面的深入研究奠定实验基础。

  • 参考文献

    • [1] BASSIR S H,EL KHOLY K,CHEN C Y,et al.Outcome of early dental implant placement versus other dental im⁃ plant placement protocols:a systematic review and meta ⁃ analysis[J].J Periodontol,2019,90(5):493-506

    • [2] BUSER D,CHAPPUIS V,BELSER U,et al.Implant placement post extraction in esthetic single tooth sites:when immediate,when early,when late?[J].Periodontolo⁃ gy 2000,2017,73(1):84-102

    • [3] BUSER D,SENNERBY L,DE BRUYN H.Modern im⁃ plant dentistry based on osseointegration:50 years of progress,current trends and open questions[J].Periodon⁃ tology 2000,2017,73(1):7-21

    • [4] WU W L,ZENG X,LIU X Q,et al.Esthetic proportions of maxillary anterior teeth of 120 Chinese adults[J].J Pe⁃ king Univ.(Health Sci),2020,52(6):1130-1134

    • [5] ZHANG X,LI Y,GE Z,et al.The dimension and morpho⁃ logy of alveolar bone at maxillary anterior teeth in peri⁃ odontitis:a retrospective analysis ⁃ using CBCT[J].Int J Oral Sci,2020,12(1):4

    • [6] CANELLAS J,MEDEIROS P,FIGUEREDO C,et al.Which is the best choice after tooth extraction,immediate implant placement or delayed placement with alveolar ridge preservation?A systematic review and meta⁃analysis [J].J Craniomaxillofac Surg,2019,47(11):1793-1802

    • [7] TONETTI M S,CORTELLINI P,GRAZIANI F,et al.Im⁃ mediate versus delayed implant placement after anterior single tooth extraction:the timing randomized controlled clinical trial[J].J Clin Periodontol,2017,44(2):215-224

    • [8] ZHANG H,LIU K,LU M,et al.Micro/nanostructured cal⁃ cium phytate coating on titanium fabricated by chemical conversion deposition for biomedical application[J].Ma⁃ ter Sci Eng C Mater Biol Appl,2021,118:111402

    • [9] HIROTA M,SHIMA T,SATO I,et al.Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold[J].Bio⁃ materials,2016,75:223-236

    • [10] 虞颖娟,明盼盼,邱憬.兔下颌前牙即刻种植后种植体周围炎动物模型的构建[J].南京医科大学学报(自然科学版),2017,37(11):1515-1518

    • [11] CHRCANOVIC B R,ALBREKTSSON T,WENNERBERG A.Bone quality and quantity and dental implant failure:a systematic review and meta ⁃ analysis[J].Int J Prostho⁃ dont,2017,30(3):219-237

    • [12] CHO Y,PARK S.Measurement of pulp blood flow rates in maxillary anterior teeth using ultrasound Doppler flow⁃ metry[J].Int Endod J,2015,48(12):1175-1180

    • [13] LOMBARDI T,BERNARDELLO F,BERTON F,et al.Efficacy of alveolar ridge preservation after maxillary mo⁃ lar extraction in reducing crestal bone resorption and si⁃ nus pneumatization:a multicenter prospective case ⁃ con⁃ trol study[J].Biomed Res Int,2018,2018:9352130

    • [14] YU Y J,ZHU W Q,XU L N,et al.Osseointegration of tita⁃ nium dental implant under fluoride exposure in rabbits:Micro ⁃CT and histomorphometry study[J].Clin Oral Im⁃ plants Res,2019,30(10):1038-1048

    • [15] EL CHAAR E,PUISYS A,SABBAG I,et al.A novel fully tapered,self ⁃cutting tissue ⁃level implant:non ⁃inferiority study in minipigs[J].Clin Oral Investig,2021,25(11):6127-6137

    • [16] SCHULTE W,KLEINEIKENSCHEIDT H,LINDNER K,et al.The Tübingen immediate implant in clinical studies [J].Dtsch Zahnarztl Z,1978,33(5):348-359

    • [17] BLANC ⁃ SYLVESTRE N,BOUCHARD P,CHAUSSAIN C,et al.Pre ⁃ clinical models in implant dentistry:past,present,future[J].Biomedicines,2021,9(11):1538

    • [18] SUN J,EBERHARD J,GLAGE S,et al.Development of a peri ⁃implantitis model in the rat[J].Clin Oral Implants Res,2020,31(3):203-214

    • [19] DONG W,MA W,ZHAO S,et al.The surface modifica⁃ tion of long carbon fiber reinforced polyether ether ketone with bioactive composite hydrogel for effective osteogenic⁃ ity[J].Mater Sci Eng C Mater Biol Appl,2021,130:112451

    • [20] XIAO T,FAN L,LIU R,et al.Fabrication of dexametha⁃ sone ⁃ loaded dual ⁃ metal ⁃ organic frameworks on poly⁃ etheretherketone implants with bacteriostasis and angio⁃ genesis properties for promoting bone regeneration[J].ACS Appl Mater Interfaces,2021,13(43):50836-50850

    • [21] STÜBINGER S,DARD M.The rabbit as experimental model for research in implant dentistry and related tissue regeneration[J].J Invest Surg,2013,26(5):266-282

    • [22] BERTONNIER ⁃ BROUTY L,VIRIOT L,JOLY T,et al.Morphological features of tooth development and replace⁃ ment in the rabbit oryctolagus cuniculus[J].Arch Oral Bi⁃ ol,2020,109:104576

    • [23] RIVARA F,MACALUSO G M,TOFFOLI A,et al.The ef⁃ fect of a 2 ⁃ mm inter ⁃ implant distance on esthetic out⁃ comes in immediately non ⁃ occlusally loaded platform shifted implants in healed ridges:12 ⁃ month results of a randomized clinical trial[J].Clin Implant Dent Relat Res,2020,22(4):486-496

    • [24] ABOUSHELIB M,ARNAOUT M A,ELSAFI M H,et al.Two ⁃ stage implant placement technique for the manage⁃ ment of irradiated jaws:an animal study[J].J Prosthet Dent,2017,118(4):546-550

    • [25] 黄硕,郭芳,刘宁,等.3D 打印个性化根形钛合金种植体在下颌磨牙区即刻种植的临床研究[J].口腔医学研究,2021,37(7):602-606

    • [26] 陈杨.黄骨髓对骨质疏松生物力学特性影响的仿真研究[D].哈尔滨:哈尔滨工业大学,2015

    • [27] RODRÍGUEZ J,MANDALUNIS P M.Effect of cadmium on bone tissue in growing animals[J].Exp Toxicol Pathol,2016,68(7):391-397

  • 参考文献

    • [1] BASSIR S H,EL KHOLY K,CHEN C Y,et al.Outcome of early dental implant placement versus other dental im⁃ plant placement protocols:a systematic review and meta ⁃ analysis[J].J Periodontol,2019,90(5):493-506

    • [2] BUSER D,CHAPPUIS V,BELSER U,et al.Implant placement post extraction in esthetic single tooth sites:when immediate,when early,when late?[J].Periodontolo⁃ gy 2000,2017,73(1):84-102

    • [3] BUSER D,SENNERBY L,DE BRUYN H.Modern im⁃ plant dentistry based on osseointegration:50 years of progress,current trends and open questions[J].Periodon⁃ tology 2000,2017,73(1):7-21

    • [4] WU W L,ZENG X,LIU X Q,et al.Esthetic proportions of maxillary anterior teeth of 120 Chinese adults[J].J Pe⁃ king Univ.(Health Sci),2020,52(6):1130-1134

    • [5] ZHANG X,LI Y,GE Z,et al.The dimension and morpho⁃ logy of alveolar bone at maxillary anterior teeth in peri⁃ odontitis:a retrospective analysis ⁃ using CBCT[J].Int J Oral Sci,2020,12(1):4

    • [6] CANELLAS J,MEDEIROS P,FIGUEREDO C,et al.Which is the best choice after tooth extraction,immediate implant placement or delayed placement with alveolar ridge preservation?A systematic review and meta⁃analysis [J].J Craniomaxillofac Surg,2019,47(11):1793-1802

    • [7] TONETTI M S,CORTELLINI P,GRAZIANI F,et al.Im⁃ mediate versus delayed implant placement after anterior single tooth extraction:the timing randomized controlled clinical trial[J].J Clin Periodontol,2017,44(2):215-224

    • [8] ZHANG H,LIU K,LU M,et al.Micro/nanostructured cal⁃ cium phytate coating on titanium fabricated by chemical conversion deposition for biomedical application[J].Ma⁃ ter Sci Eng C Mater Biol Appl,2021,118:111402

    • [9] HIROTA M,SHIMA T,SATO I,et al.Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold[J].Bio⁃ materials,2016,75:223-236

    • [10] 虞颖娟,明盼盼,邱憬.兔下颌前牙即刻种植后种植体周围炎动物模型的构建[J].南京医科大学学报(自然科学版),2017,37(11):1515-1518

    • [11] CHRCANOVIC B R,ALBREKTSSON T,WENNERBERG A.Bone quality and quantity and dental implant failure:a systematic review and meta ⁃ analysis[J].Int J Prostho⁃ dont,2017,30(3):219-237

    • [12] CHO Y,PARK S.Measurement of pulp blood flow rates in maxillary anterior teeth using ultrasound Doppler flow⁃ metry[J].Int Endod J,2015,48(12):1175-1180

    • [13] LOMBARDI T,BERNARDELLO F,BERTON F,et al.Efficacy of alveolar ridge preservation after maxillary mo⁃ lar extraction in reducing crestal bone resorption and si⁃ nus pneumatization:a multicenter prospective case ⁃ con⁃ trol study[J].Biomed Res Int,2018,2018:9352130

    • [14] YU Y J,ZHU W Q,XU L N,et al.Osseointegration of tita⁃ nium dental implant under fluoride exposure in rabbits:Micro ⁃CT and histomorphometry study[J].Clin Oral Im⁃ plants Res,2019,30(10):1038-1048

    • [15] EL CHAAR E,PUISYS A,SABBAG I,et al.A novel fully tapered,self ⁃cutting tissue ⁃level implant:non ⁃inferiority study in minipigs[J].Clin Oral Investig,2021,25(11):6127-6137

    • [16] SCHULTE W,KLEINEIKENSCHEIDT H,LINDNER K,et al.The Tübingen immediate implant in clinical studies [J].Dtsch Zahnarztl Z,1978,33(5):348-359

    • [17] BLANC ⁃ SYLVESTRE N,BOUCHARD P,CHAUSSAIN C,et al.Pre ⁃ clinical models in implant dentistry:past,present,future[J].Biomedicines,2021,9(11):1538

    • [18] SUN J,EBERHARD J,GLAGE S,et al.Development of a peri ⁃implantitis model in the rat[J].Clin Oral Implants Res,2020,31(3):203-214

    • [19] DONG W,MA W,ZHAO S,et al.The surface modifica⁃ tion of long carbon fiber reinforced polyether ether ketone with bioactive composite hydrogel for effective osteogenic⁃ ity[J].Mater Sci Eng C Mater Biol Appl,2021,130:112451

    • [20] XIAO T,FAN L,LIU R,et al.Fabrication of dexametha⁃ sone ⁃ loaded dual ⁃ metal ⁃ organic frameworks on poly⁃ etheretherketone implants with bacteriostasis and angio⁃ genesis properties for promoting bone regeneration[J].ACS Appl Mater Interfaces,2021,13(43):50836-50850

    • [21] STÜBINGER S,DARD M.The rabbit as experimental model for research in implant dentistry and related tissue regeneration[J].J Invest Surg,2013,26(5):266-282

    • [22] BERTONNIER ⁃ BROUTY L,VIRIOT L,JOLY T,et al.Morphological features of tooth development and replace⁃ ment in the rabbit oryctolagus cuniculus[J].Arch Oral Bi⁃ ol,2020,109:104576

    • [23] RIVARA F,MACALUSO G M,TOFFOLI A,et al.The ef⁃ fect of a 2 ⁃ mm inter ⁃ implant distance on esthetic out⁃ comes in immediately non ⁃ occlusally loaded platform shifted implants in healed ridges:12 ⁃ month results of a randomized clinical trial[J].Clin Implant Dent Relat Res,2020,22(4):486-496

    • [24] ABOUSHELIB M,ARNAOUT M A,ELSAFI M H,et al.Two ⁃ stage implant placement technique for the manage⁃ ment of irradiated jaws:an animal study[J].J Prosthet Dent,2017,118(4):546-550

    • [25] 黄硕,郭芳,刘宁,等.3D 打印个性化根形钛合金种植体在下颌磨牙区即刻种植的临床研究[J].口腔医学研究,2021,37(7):602-606

    • [26] 陈杨.黄骨髓对骨质疏松生物力学特性影响的仿真研究[D].哈尔滨:哈尔滨工业大学,2015

    • [27] RODRÍGUEZ J,MANDALUNIS P M.Effect of cadmium on bone tissue in growing animals[J].Exp Toxicol Pathol,2016,68(7):391-397