Page 149 - 南京医科大学学报自然科学版
P. 149

第43卷第8期      冯泽华,郑    凯,徐 艳. 聚己内酯静电纺丝纳米纤维基复合材料在口腔医学中的应用研究进展[J].
                  2023年8月                     南京医科大学学报(自然科学版),2023,43(8):1180-1184                      ·1183 ·


                                        表1 PCL静电纺丝纳米纤维基复合材料在口腔医学中的应用
                                Table 1 Application of PCL electrospun nanofiber wiki composite in stomatology
                纤维有机组分          无机组分        组合方法                               应用                       参考文献
                PCL          CeO2 NPs       共混电纺            促进人牙周膜干细胞的成骨向分化牙周骨再生                         [22]
                PCL⁃PEG⁃PCL  沸石             共混电纺            人牙髓干细胞(hDPSC)成骨分化                            [29]
                PCL          nHA和ZnHA       共混电纺            引导性组织再生(GTR)膜                                [30]
                PCL/明胶       MgO            同轴电纺            增强了人牙周膜干细胞(hPDLSC)成骨能力及抗菌能力                  [31]
                PCL/Ⅰ型胶原     nHA            浸渍法             诱导牙周膜干细胞的成骨向分化                               [32]
                PCL          CaSO4          壳聚糖粘接           模拟和促进牙槽骨和牙周膜的再生                              [33]
                PLGA/PCL     AgNPs          聚多巴胺涂层,Ⅰ        促进MC3T3细胞成骨,更强的抑菌能力,对牙周炎导致                   [34]
                                            型胶原蛋白包覆         的牙槽骨缺损有明显的再生效果
                PCL          ZnO            共混电纺            控制土霉素药物释放,牙周抑菌                               [25]
                PCL/PVB      ZIF⁃8 NP       共混电纺            抑菌,修复牙槽骨损伤                                   [35]
                PCL/CS       HA NPs和AgNPs   共混电纺            抑菌,GTR屏障膜                                    [21]
                PCL          MTA/HA         浸渍法             盖髓材料                                          [7]
                PCL          TiO2           共混电纺            纯Ti种植体进行表面改性                                 [27]
                PCL/明胶       AgNPs          共混电纺            传统正畸胶黏剂添加物,抗菌、防止正畸治疗导致的牙                     [28]
                                                            釉质脱矿


                与无机材料间的化学结合及合成纳米纤维 3D 支架                               bioactive glass/nano hydroxyapatite reinforced electros⁃
                可能是未来的研究方向。                                            pun poly(ε⁃caprolactone)composite membranes for guid⁃
                                                                       ed tissue regeneration[J]. Bioengineering(Basel),2018,
               [参考文献]
                                                                       5(3):54
               [1] BASU B,GOWTHAM N H,XIAO Y,et al. Biomaterialo⁃  [9] BUSCHMANN J,ANDREOLI S,JANG J H,et al. Hybrid
                    mics:data science⁃driven pathways to develop fourth⁃gen⁃  nanocomposite as a chest wall graft with improved vascu⁃
                    eration biomaterials[J]. Acta Biomaterialia,2022,143:  larization by copper oxide nanoparticles[J]. J Biomater
                    1-25                                               Appl,2022,36(10):1826-1837
               [2] JUNG K,CORRIGAN N,WONG E H H,et al. Bioactive  [10] JU Q,ZENJI T,MAÇON A L B,et al. Silver⁃doped calci⁃
                    synthetic polymers[J]. Advanced Materials,2022,34  um silicate sol⁃gel glasses with a cotton⁃wool⁃like struc⁃
                    (2):2105063                                        ture for wound healing[J]. Biomater Adv,2022,134:
               [3] XUE J,WU T,DAI Y,et al. Electrospinning and electros⁃  112561
                    pun nanofibers:methods,materials,and applications[J].  [11] JI W,SUN Y,YANG F,et al. Bioactive electrospun scaf⁃
                    Chem Rev,2019,119(8):5298-5415                     folds delivering growth factors and genes for tissue engi⁃
               [4] DASH T K,KONKIMALLA V B. Poly ⁃  ⁃ caprolactone   neering applications[J]. Pharm Res,2011,28(6):1259-
                    based formulations for drug delivery and tissue engineer⁃  1272
                    ing:a review[J]. J Control Release,2012,158(1):15-33  [12] BIGHAM A,SALEHI A O M,RAFIENIA M,et al. Zn⁃
               [5] XU X,ZHOU Y,ZHENG K,et al. 3D Polycaprolactone/     substituted Mg2SiO4 nanoparticles⁃incorporated PCL⁃silk
                    gelatin⁃oriented electrospun scaffolds promote periodontal  fibroin composite scaffold:a multifunctional platform to⁃
                    regeneration[J]. ACS Appl Materi Interfaces,2022,14  wards bone tissue regeneration[J]. Mater Sci Eng C Ma⁃
                    (41):46145-46160                                   ter Biol Appl,2021,127:112242
               [6] LIU X,CHEN M,LUO J,et al. Immunopolarization⁃regu⁃  [13] KING W E,BOWLIN G L. Near⁃field electrospinning and
                    lated 3D printed⁃electrospun fibrous scaffolds for bone re⁃  melt electrowriting of biomedical polymers—progress and
                    generation[J]. Biomaterials,2021,276:121037        limitations[J]. Polymers,2021,13(7):1097
               [7] SHEELA S,ALGHALBAN F M,KHALIL K A,et al. Syn⁃  [14] ABBASI N,LEE R S B,IVANOVSKI S,et al. In vivo bone
                    thesis and biocompatibility evaluation of PCL electrospun  regeneration assessment of offset and gradient melt elec⁃
                    membranes coated with MTA/HA for potential application  trowritten(MEW)PCL scaffolds[J]. Biomater Res,2020,
                    in dental pulp capping[J]. Polymers,2022,14(22):4862  24:17
               [8] SUNANDHAKUMARI V J,VIDHYADHARAN A K,AL⁃       [15] BRENNAN C M,EICHHOLZ K F,HOEY D A. The effect
                    IM A,et al. Fabrication and in vitro characterization of  of pore size within fibrous scaffolds fabricated using melt
   144   145   146   147   148   149   150   151   152