Page 149 - 南京医科大学学报自然科学版
P. 149
第43卷第8期 冯泽华,郑 凯,徐 艳. 聚己内酯静电纺丝纳米纤维基复合材料在口腔医学中的应用研究进展[J].
2023年8月 南京医科大学学报(自然科学版),2023,43(8):1180-1184 ·1183 ·
表1 PCL静电纺丝纳米纤维基复合材料在口腔医学中的应用
Table 1 Application of PCL electrospun nanofiber wiki composite in stomatology
纤维有机组分 无机组分 组合方法 应用 参考文献
PCL CeO2 NPs 共混电纺 促进人牙周膜干细胞的成骨向分化牙周骨再生 [22]
PCL⁃PEG⁃PCL 沸石 共混电纺 人牙髓干细胞(hDPSC)成骨分化 [29]
PCL nHA和ZnHA 共混电纺 引导性组织再生(GTR)膜 [30]
PCL/明胶 MgO 同轴电纺 增强了人牙周膜干细胞(hPDLSC)成骨能力及抗菌能力 [31]
PCL/Ⅰ型胶原 nHA 浸渍法 诱导牙周膜干细胞的成骨向分化 [32]
PCL CaSO4 壳聚糖粘接 模拟和促进牙槽骨和牙周膜的再生 [33]
PLGA/PCL AgNPs 聚多巴胺涂层,Ⅰ 促进MC3T3细胞成骨,更强的抑菌能力,对牙周炎导致 [34]
型胶原蛋白包覆 的牙槽骨缺损有明显的再生效果
PCL ZnO 共混电纺 控制土霉素药物释放,牙周抑菌 [25]
PCL/PVB ZIF⁃8 NP 共混电纺 抑菌,修复牙槽骨损伤 [35]
PCL/CS HA NPs和AgNPs 共混电纺 抑菌,GTR屏障膜 [21]
PCL MTA/HA 浸渍法 盖髓材料 [7]
PCL TiO2 共混电纺 纯Ti种植体进行表面改性 [27]
PCL/明胶 AgNPs 共混电纺 传统正畸胶黏剂添加物,抗菌、防止正畸治疗导致的牙 [28]
釉质脱矿
与无机材料间的化学结合及合成纳米纤维 3D 支架 bioactive glass/nano hydroxyapatite reinforced electros⁃
可能是未来的研究方向。 pun poly(ε⁃caprolactone)composite membranes for guid⁃
ed tissue regeneration[J]. Bioengineering(Basel),2018,
[参考文献]
5(3):54
[1] BASU B,GOWTHAM N H,XIAO Y,et al. Biomaterialo⁃ [9] BUSCHMANN J,ANDREOLI S,JANG J H,et al. Hybrid
mics:data science⁃driven pathways to develop fourth⁃gen⁃ nanocomposite as a chest wall graft with improved vascu⁃
eration biomaterials[J]. Acta Biomaterialia,2022,143: larization by copper oxide nanoparticles[J]. J Biomater
1-25 Appl,2022,36(10):1826-1837
[2] JUNG K,CORRIGAN N,WONG E H H,et al. Bioactive [10] JU Q,ZENJI T,MAÇON A L B,et al. Silver⁃doped calci⁃
synthetic polymers[J]. Advanced Materials,2022,34 um silicate sol⁃gel glasses with a cotton⁃wool⁃like struc⁃
(2):2105063 ture for wound healing[J]. Biomater Adv,2022,134:
[3] XUE J,WU T,DAI Y,et al. Electrospinning and electros⁃ 112561
pun nanofibers:methods,materials,and applications[J]. [11] JI W,SUN Y,YANG F,et al. Bioactive electrospun scaf⁃
Chem Rev,2019,119(8):5298-5415 folds delivering growth factors and genes for tissue engi⁃
[4] DASH T K,KONKIMALLA V B. Poly ⁃ ⁃ caprolactone neering applications[J]. Pharm Res,2011,28(6):1259-
based formulations for drug delivery and tissue engineer⁃ 1272
ing:a review[J]. J Control Release,2012,158(1):15-33 [12] BIGHAM A,SALEHI A O M,RAFIENIA M,et al. Zn⁃
[5] XU X,ZHOU Y,ZHENG K,et al. 3D Polycaprolactone/ substituted Mg2SiO4 nanoparticles⁃incorporated PCL⁃silk
gelatin⁃oriented electrospun scaffolds promote periodontal fibroin composite scaffold:a multifunctional platform to⁃
regeneration[J]. ACS Appl Materi Interfaces,2022,14 wards bone tissue regeneration[J]. Mater Sci Eng C Ma⁃
(41):46145-46160 ter Biol Appl,2021,127:112242
[6] LIU X,CHEN M,LUO J,et al. Immunopolarization⁃regu⁃ [13] KING W E,BOWLIN G L. Near⁃field electrospinning and
lated 3D printed⁃electrospun fibrous scaffolds for bone re⁃ melt electrowriting of biomedical polymers—progress and
generation[J]. Biomaterials,2021,276:121037 limitations[J]. Polymers,2021,13(7):1097
[7] SHEELA S,ALGHALBAN F M,KHALIL K A,et al. Syn⁃ [14] ABBASI N,LEE R S B,IVANOVSKI S,et al. In vivo bone
thesis and biocompatibility evaluation of PCL electrospun regeneration assessment of offset and gradient melt elec⁃
membranes coated with MTA/HA for potential application trowritten(MEW)PCL scaffolds[J]. Biomater Res,2020,
in dental pulp capping[J]. Polymers,2022,14(22):4862 24:17
[8] SUNANDHAKUMARI V J,VIDHYADHARAN A K,AL⁃ [15] BRENNAN C M,EICHHOLZ K F,HOEY D A. The effect
IM A,et al. Fabrication and in vitro characterization of of pore size within fibrous scaffolds fabricated using melt