中老年脑卒中患者康复期生活质量的影响因素及列线图预测
DOI:
CSTR:
作者:
作者单位:

1.南通大学附属建湖人民医院;2.南通大学公共卫生学院卫生统计学教研室;3.南通大学

作者简介:

通讯作者:

中图分类号:

R743.3

基金项目:

国家自然科学基金(82273715);江苏省研究生科研与实践创新计划项目(SJCX22_1640)


Analysis of the influencing factors for rehabilitation period of stroke patients affecting the quality of life and construction of prediction model
Author:
Affiliation:

Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University

Fund Project:

National Natural Science Foundation of China (82273715); Jiangsu Graduate Research and Practice Innovation Program (SJCX22_1640)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究通过对建湖县人民医院康复期脑卒中患者进行问卷调查,收集人口学资料和疾病健康指标,并采用logistic回归分析筛选影响因素,构建列线图模型预测患者生活质量。结果显示,家庭月收入≥3000元、有系统康复训练、社会支持得分越高、有兴趣爱好、亲属陪护、被探望次数≥2次、发病后救治时间<3h可提高3.65倍-9.95倍的中老年脑卒中患者康复期生活高质量(P均<0.001)。与完全残疾相比,重度、中度和轻度残疾分别提高患者获得高生活质量2.86倍、3.40倍和223.85倍(P均<0.05)。而有伴随疾病、心理患焦虑或抑郁症状、发病后救治时间≥3h可降低患者生活质量(P均<0.001)。本研究构建的列线图模型预测总分值高达280分。当这些影响因素预测的分值达到164分及以上,患者可获得高生活质量的发生率达90%及以上,列线图模型内部验证等结果显示其预测能力良好。因此,建议医院辅以预测模型早期识别和干预可控的影响因素,制定个性化的康复方案,以提高患者的生活质量。

    Abstract:

    Our study conducted a questionnaire survey on stroke patients during rehabilitation in Jianhu County people’s Hospital. Demographic data and health-related indicators were collected. Logistic regression analysis was employed to identify the influencing factors, and the nomogram model was constructed to predict the quality of life. The results showed that family monthly income ≥3000 yuan, having systematic rehabilitation training, higher social support score, having one’s own hobby, family care, visited times ≥2, treatment time ≥3h after the onset of stroke have increased 3.65-9.95 times of high quality of life in the rehabilitation period of middle-aged and elderly stroke (P<0.001). Compared with total disability, severe, moderate and mild disability increased quality of life by 2.86 times, 3.40 times, and 223.85 times, respectively (P<0.05). While the proportion of patients with other concomitant diseases, psychological symptoms of anxiety or depression, and treatment time ≥3h after onset decreased the quality of life (P<0.001). The nomogram model constructed in our study predicted the total score up to 280 points. When the predicted scores of these factors reached 164 or above, the incidence of patients with high quality of life reached 90% or above, and the verification results of the nomogram model suggesting that the accuracy and precision were good. Therefore, it is recommended that the medical sector identify and intervene early on controllable influencing factors supplemented by predictive models, and develop personalized rehabilitation programs to improve the quality of life of patients.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-17
  • 最后修改日期:2023-08-09
  • 录用日期:2023-08-11
  • 在线发布日期:
  • 出版日期:
文章二维码