基于多序列MRI影像组学与深度迁移学习特征的脑胶质瘤分级预测研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R739.41

基金项目:

泰州市第五期“311工程”第二层次培养对象资助科研项目(RCPY202129);浦东新区科技发展基金事业单位民生科研专项(PKJ2021-Y09);泰州市中医药科技发展项目(TZ202301);南京医科大学附属泰州人民医院培育项目 (TZKY20220104);南京医科大学泰州临床医学院博士后科研资助项目(TZBSHKY202204)


Prediction of glioma grading based on multi ⁃ sequence MRI radiomics and deep transfer learning features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:探讨基于多序列磁共振成像(magnetic resonance imaging,MRI)手工影像组学(hand-crafted radiomic,HCR)和深度迁移学习(deep transfer learning,DTL)特征的机器学习(machine learning,ML)模型在术前预测脑胶质瘤分级的效能。方法:选取BraTS2019数据集中332例患者的影像数据[高级别胶质瘤(high-grade glioma,HGG)258例,低级别胶质瘤(low-grade glioma,LGG)74例],随机抽取30例HGG和8例LGG作为测试数据集,其余294例作为训练集和验证集。从T1、T2 、T1c和Flair 序列中提取病灶的HCR特征和DTL特征,并筛选出影响力前10的特征子集,基于HCR特征、DTL特征和两者组合的深度学习影像组学(deep learning radiomics,DLR)特征,分别建立7种ML模型,评估模型预测HGG和LGG的效能。选择最佳模型后,使用SHAP法对模型特征重要性进行量化及归因分析。结果:基于HCR和DTL组合的DLR特征构建的ML模型预测效能最高,当使用支持向量机的递归特征消除(support vector machine-recursive feature elimination,SVM-RFE)筛选特征后,使用T2+T1c+ Flair序列组合的支持向量机(support vector machine,SVM)分类器的预测模型效果最佳。在验证集上,受试者工作特征曲线下面积达到0.996(95% CI:0.991~1.000),约登指数、准确度、灵敏度和特异度分别为 0.920、0.976、0.988和0.932,在测试集上同样具有较高的分级预测效能。SHAP特征权重分析显示Flair序列的特征贡献较大,其次为T2及T1c序列,HCR和DTL特征均有重要贡献。结论:基于多序列MRI的DLR特征构建的ML模型可有效预测脑胶质瘤的肿瘤分级,其中经过SVM-RFE筛选后的 T2+T1c+Flair序列组合的SVM分类器模型效能最佳。

    Abstract:

    Objective:To explore the efficacy of a machine learning(ML)model utilizing multi-sequence MRI hand-crafted radiomics(HCR)and deep transfer learning(DTL)features to predict preoperative glioma grading. Methods:Image data were selected from 332 patients[258 cases of high-grade glioma(HGG),74 cases of low-grade glioma(LGG)]in the BraTS2019 dataset. A subset of 30 HGG and 8 LGG cases were randomly selected as test data set,while data from the remaining 294 cases were used as training and validation sets. HCR and DTL features of the lesion were extracted from T1,T2,T1c and Flair sequences,and the top 10 features were selected. Seven ML models were then constructed based on HCR features,DTL features,and a combination of both features of deep learning radiomics(DLR),to evaluate the efficiency of the models in predicting HGG and LGG. The SHAP method was subsequently employed to quantify and attribute the importance of features though analysis after selecting the best model. Results:The ML model constructed by DLR features based on combination of HCR and DTL exhibited the most superior predictive performance. Specifically, when features were filtered using the support vector machine-recursive feature elimination(SVM -RFE)method,the support vector machine(SVM)classifier model integrating T2,T1c and Flair sequences emerged as the best,achieving an area under receiver operating characteristic curve(AUC)of 0.996(95% CI:0.991-1.000)on the validation set,with a Youden index,accuracy,sensitivity and specificity of 0.920,0.976,0.988 and 0.932,respectively. On the test set,the model also displayed a great predictive capacity. SHAP analysis highlighted that the Flair sequence had the greatest feature contribution,followed by the T2 and T1c sequences. Both HCR and DTL teatures make significant contributions. Conclusion:The ML model,based on DLR features of multi-sequence MRI,is effective in glioma grade prediction. The optimal model is the SVM classifier using T2,T1c and Flair sequences after SVM-RFE selection.

    参考文献
    相似文献
    引证文献
引用本文

刘志鹏,降建新,吴琪炜,周炎,卞雪峰,朱银杏.基于多序列MRI影像组学与深度迁移学习特征的脑胶质瘤分级预测研究[J].南京医科大学学报(自然科学版),2024,(3):372-379

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-07
  • 出版日期:
通知关闭
郑重声明