aCHANGE模型:NAFLD人群显著肝纤维化风险的预测模型
作者:
作者单位:

南京医科大学第一附属医院感染科,江苏 南京 211166

作者简介:

通讯作者:

中图分类号:

R575.2

基金项目:

国家自然科学基金(81871242)


aCHANGE model:a predictive model for the risk of significant liver fibrosis in NAFLD
Author:
Affiliation:

Department of Infectious Diseases,the First Affiliated Hospital of Nanjing Medical University,Nanjing 211166 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:针对非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)人群开发一个基于血清学标志物预测显著肝纤维化的模型。方法:选择来自美国国家健康与营养调查(National Health and Nutrition Examination Survey,NHANES)数据库的2 543例NAFLD患者,以7∶3的比例将人群随机分为训练集和内部验证集,采用SPSS 26.0对训练集和验证集的各项指标进行卡方检验、单因素分析以及二元Logistic回归分析(逐步分析),得到预测模型,再在R 4.3.1中进行模型的评价及验证。 结果:年龄、性别、臀围、铁蛋白、天门冬氨酸氨基转移酶(aspartate aminotransferase,AST)、γ-谷氨酰转移酶(gamma-glutamyl transferase,GGT)、心脏代谢指数(cardiometabolic index,CMI)是 NAFLD 患者发生显著肝纤维化的独立危险因素;预测模型 aCHANGE在训练集和验证集都有良好的表现,其在训练集的受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under curve,AUC)为0.775,在验证集的AUC为0.775,校准曲线、决策曲线分析(decision curve analysis,DCA)结果均良好。结论:aCHANGE模型有助于预测NAFLD患者出现肝脏显著纤维化的风险。

    Abstract:

    Objective:To develop a predictive model for significant liver fibrosis based on serological markers in the population with non - alcoholic fatty liver disease(NAFLD). Methods:A total of 2 543 NAFLD patients from the he National Health and Nutrition Examination Survey(NHANES)database in the United States were selected. These patients were randomly divided into a training set and an internal validation set in a 7∶3 ratio. Chi-square tests,univariate analysis,and binary logistic regression analysis(stepwise)were performed on both sets using SPSS 26.0,followed by model evaluation and validation in R 4.3.1. Results:Age,gender,hip circumference,ferritin,aspartate aminotransferase(AST),gamma-glutamyl transferase(GGT),and cardiometabolic index(CMI)were identified as independent risk factor for significant liver fibrosis in NAFLD patients,respectively the predictive model aCHANGE demonstrated good performance in both the training and validation sets,with an area under the curve(AUC)of the receiver operating characteristic(ROC)curve of 0.775 in both sets. The calibration curves and decision curve analysis(DCA)also showed good results. Conclusion:The aCHANGE model is useful for predicting the risk of significant liver fibrosis in NAFLD patients.

    参考文献
    相似文献
    引证文献
引用本文

方泽桂,董莉,史陆宸,姜楠,蒋龙凤,朱传龙,李军. aCHANGE模型:NAFLD人群显著肝纤维化风险的预测模型[J].南京医科大学学报(自然科学版),2024,(8):1092-1099

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
通知关闭
郑重声明