基于配对检验的ARIMA模型在我国甲肝发病数预测中的应用
作者:
作者单位:

1.南京医科大学康达学院,江苏 连云港 222000 ; 2.南京医科大学生物医学工程与信息学院,江苏 南京 211166

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61901225);江苏省高校自然科学研究(19KJD330001);江苏高校哲学社会科学研究(2022SJYB1868);江苏省大学生创新创业训练计划(202213980011Y);南京医科大学康达学院第一期青年教师科研导师项目(KD2022KYDS020);南京医科大学康达学院第二期品牌专业建设工程(JX206000302);南京医科大学康达学院医学信息模拟及预测科研团队(KD2022KYCXTD003)


Application of ARIMA model based on paired test in the prediction of hepatitis A incidence in China
Author:
Affiliation:

1.Kangda College,Nanjing Medical University,Lianyungang 222000 ; 2.School of Biomedical Engineering andInformation,Nanjing Medical University,Nanjing 211166 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:探讨基于配对检验的求和自回归移动平均(autoregressive integrated moving average,ARIMA)模型在我国甲肝发病预测中的应用,提出时间序列模型预测效果评价的新思路与方法。方法:根据 2004 年 1 月—2021 年 12 月我国甲肝传染病月发病数建立 ARIMA 模型,对 2022 年 1—8 月的甲肝月发病数进行预测,通过配对 t 检验和误差分析评估该模型的预测效果。结果:配对t 检验结果显示,ARIMA(1,1,0)(0,1,1)12模型预测的甲肝月发病数与实际月发病数差异无统计学意义(P > 0.05),说明模型有较好的预测能力,预测结果的相对误差平均值为3.86%,标准差为3.25%。结论:ARIMA 乘积季节模型能够较准确地预测我国甲肝的发病趋势;配对检验为时间序列模型预测效果的评价提供了客观评价依据,较好地解决了时间序列模型预测效果的评价问题。

    Abstract:

    Objective:To explore the application of autoregressive integrated moving average(ARIMA)model based on paired test in predicting the incidence of hepatitis A in China,and put forward a new idea and method for evaluating the prediction effect of time series model. Methods:An ARIMA model was established for the monthly incidence of hepatitis A infectious diseases in China from January 2004 to December 2021,and the monthly incidence of hepatitis A infectious diseases from January to August 2022 was predicted. The prediction effect of the model was evaluated by paired t-test and error analysis. Results:The results of paired t-test showed that there was no significant difference between the monthly incidence of hepatitis A predicted by ARIMA(1,1, 0)(0,1,1)12 model and the actual monthly incidence of hepatitis A(P > 0.05),indicating that the model had good prediction ability,and the mean relative error and standard deviation of the prediction results were 3.86% and 3.25%. Conclusion:ARIMA product season model can accurately predict the incidence trend of hepatitis A in China. The paired test provides an objective basis for evaluating the prediction effect of time series model,and solves the problem of evaluating the prediction effect of time series model well.

    参考文献
    相似文献
    引证文献
引用本文

丁勇,张蓓蓓,吴静.基于配对检验的ARIMA模型在我国甲肝发病数预测中的应用[J].南京医科大学学报(自然科学版),2024,(10):1456-1461

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-15
  • 出版日期:
通知关闭
郑重声明