术前多区域多参数乳腺MRI影像组学对N2⁃3期腋窝淋巴结的预测价值
作者:
作者单位:

南京医科大学第一附属医院放射科,江苏 南京 210029

基金项目:

国家自然科学基金(NSFC61771249);南京医科大学临床提升项目(2022NMUS0203)


Predictive value of preoperative multiregional multiparametric breast MRI radiomics for N2⁃3 stage axillary lymph nodes
Author:
Affiliation:

Department of Radiology,the First Affiliated Hospital of Nanjing Medical University,Nanjing 210029 ,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    目的:基于瘤内及瘤周多参数磁共振成像(magnetic resonance imaging,MRI)影像组学构建术前预测浸润性乳腺癌 N2-3期腋窝淋巴结(axillary lymph node,ALN)的列线图并验证模型效能。方法:回顾性分析2018年1月—2019年12月接受规范治疗前乳腺MRI检查的320例(训练集224例,验证集96例)浸润性乳腺癌患者资料。根据病理报告中腋窝转移淋巴结数量将患者分为N0-1期组(转移<4枚)和N2-3期组(转移≥4枚)。从5个MRI序列的瘤内、瘤周及瘤内+瘤周3个感兴趣区(region of interest,ROI)中分别提取并筛选与ALN分期相关的影像组学特征,通过随机森林(random forest,RF)分类器构建3个影像组学模型(瘤内模型、瘤周模型及瘤内+瘤周模型),计算各自的影像组学评分。采用单因素、多因素Logistic回归分析筛选临床独立预测因子,构建临床模型。整合最优影像组学模型和临床模型中的特征构建联合模型,并可视化为列线图。通过受试者工作特征(receiver operating characteristic,ROC)曲线、校准曲线和决策曲线分析(decision curve analysis,DCA)评估并比较各模型的预测效能和临床实用价值。结果:在单纯影像组学模型中瘤内+瘤周模型的表现最优,训练集和验证集中的曲线下面积 (area under the curve,AUC)分别为0.911和 0.858。整合了瘤内+瘤周组学特征和临床特征(瘤周水肿和病灶强化形态)的列线图在所有模型中具有最佳的N2-3期ALN预测效能,训练集和验证集的AUC分别为0.923和0.892。校准曲线显示列线图的预测值与实际观测值一致性良好。DCA显示列线图临床效用较高。结论:联合多区域多参数MRI影像组学特征和临床特征构建的列线图对浸润癌乳腺癌N2-3期腋窝淋巴结的个性化预测有较高价值。

    Abstract:

    Objective:To develop and validate a radiomics nomogram based on intratumoral and peritumoral multiparametric magnetic resonance imaging(MRI)for preoperative prediction of N2 - 3 stage axillary lymph node(ALN)in invasive breast cancer. Methods:We retrospectively analyzed 320 invasive breast cancer patients(224 in the training set and 96 in the validation set)who underwent preoperative standardized breast MRI from January 2018 to December 2019. Based on the number of axillary metastatic lymph nodes in the pathological reports,patients were divided into N0-1 group(fewer than 4 metastatic nodes)and N2-3 group(4 or more metastatic nodes). Radiomics features associated with ALN stage were selected from three regions of interest(ROI)across five MRI sequences:intratumor,peritumor,and intratumor + peritumor. Three radiomics models(intratumoral model,peritumoral model, and intratumoral + peritumoral model)were constructed using a random forest(RF)classifier,and radiomics scores for each model were calculated. Univariate and multivariate logistic regression were performed to identify clinical parameters and then constructed a clinical model. Features from the optimal radiomics model and clinical model were integrated to build a combined model and visualized as a nomogram. The predictive performance and clinical utility of each model were evaluated and compared using receiver operating characteristic(ROC)curves,calibration curves,and decision curve analysis(DCA). Results:The intratumoral + peritumoral model performed best among the three radiomics models,with an area under the curve(AUC)of 0.911 and 0.858 in the training and validation sets,respectively. The nomogram integrating the intratumoral + peritumoral radiomics features and clinical features (peritumoral edema and lesion enhancement pattern)had the best predictive efficacy of N2-3 stage ALN among all models,with an AUC of 0.923 and 0.892 in the training and validation datasets,respectively. Calibration curves showed that the predicted values of the nomogram were in good agreement with the actual observed values. DCA demonstrated that the nomogram had high clinical utility. Conclusion:A nomogram constructed by multiregion multiparametric MRI radiomics features and clinical features has high value for personalized prediction of N2-3 stage ALN in invasive breast cancer.

    参考文献
    相似文献
    引证文献
引用本文

林佳璐,陈佳雪,娄鉴娟,邹启桂,王思奇,蒋燕妮.术前多区域多参数乳腺MRI影像组学对N2⁃3期腋窝淋巴结的预测价值[J].南京医科大学学报(自然科学版),2025,(2):185-195

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-23
  • 在线发布日期: 2025-02-19
关闭