ROAST软件定量分析tDCS治疗过程中电极位置误差影响
DOI:
作者:
作者单位:

1.宜春学院理工学院;2.北京大学电子学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Quantitative Analysis of the Change of Dose Caused by the Position Deviation of tDCS Electrodes with ROAST
Author:
Affiliation:

Yichun University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:本文第一次用计算机模型工具来研究讨论经颅直流电刺激(transcranial direct current stimulation,tDCS)临床治疗问题,将真实体积逼近模拟经颅电刺激法应用到tDCS临床治疗过程中电极位置误差影响,并从电极位置误差定量分析经颅直流电临床疗效性问题。方法:文章以F3、F4位置治疗抑郁为例,仿真计算颅内靶区所激励电场剂量,对比tDCS治疗电极位置误差对颅内治疗靶区电场剂量产生的影响,并给出施加2mA和4mA电流时电场剂量变化曲线。结果:仿真显示32种物理位置误差,矩形电极,圆形电极分别造成电场剂量变化是-10.3%至72.4%,-12.9%至11.3%,既有减少也有增加;此结果正是由于大脑皮质具有非均匀性。当电场剂量减少时,颅内靶区会出现小于有效电场剂量的情况,因此有可能出现tDCS临床治疗疗效不好。仿真还发现当tDCS施加4mA时,颅内靶区均会大于有效电场剂量,且32种误差位置在颅内靶区电场剂量变化规律和施加2mA时基本一致,电场剂量变化程度与施加电流大小大致没关系。结论:本研究结果和方法可为临床一线医生寻找经颅直流电刺激治疗的个体剂量和方案优化。

    Abstract:

    Objective: This article is the first time to use computer model tools to discuss transcranial direct current stimulation(tDCS)forclinical treatment problems, applying ROAST(Realistic volumetric-approach to simulate transcranial electric stimulation)to the analysis of the influence of electrode position errors in the tDCS clinical treatment, and quantitatively analyze effects from the position offsets. Methods: The article takes F3 and F4 as an example to treat depression, simulates and calculates the electric field dose excited in the intracranial target area, compares the influence of the electrode position errors on the intracranial treatment target electric field dose, and gives the electric field dose variation curve under application of 2 mA and 4 mA current. Results: The simulation shows among 32 kinds of physical position errors, the pad electrode and the disk electrode cause the electric field dose to vary from -10.3% to 72.4%, -12.9% to 11.3%, both decreasing and increasing; this result is due to the non-uniformity of the cerebral cortex. When the electric field dose is reduced, the electric field in intracranial target area will be low than the effective electric field dose, so it is possible that the clinical treatment effect of tDCS may not be good. The simulation also shows that when 4.0 mA is applied, the intracranial target area will produce an effective electric field dose. In addition, the variation of the electric field dose generated by 32 kinds of error positions in the intracranial target area is basically the same as that when 2mA is applied. The degree of electric field dose change is consistent with the magnitude of the applied current It's roughly okay. The degree of electric field dose change is roughly irrelevant to the magnitude of the applied current. Conclusions: The results and methods of this study can be used to find the individual dose optimization of tDCS for clinical doctors.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-22
  • 最后修改日期:2023-03-06
  • 录用日期:2023-07-09
  • 在线发布日期:
  • 出版日期: