负载仙茅苷的3D打印复合支架用于促进血管化和成骨效应研究
DOI:
作者:
作者单位:

1.蚌埠医学院研究生院;2.常州市第二人民医院骨科,南京医科大学常州医学中心

作者简介:

通讯作者:

中图分类号:

基金项目:

基金项目:常州市科技计划资助(CE20215020);南京医科大学常州医学中心科研项目(CMCC202217)


Curculigoside-loaded 3D printed composite scaffolds are used to study the effects of promoting vascularization and osteogenesis
Author:
Affiliation:

The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University

Fund Project:

Changzhou Science and Technology Project Support (CE20215020); Project of Changzhou Medical Center, Nanjing Medical University (CMCC202217)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘 要: 目的:本研究旨在研究负载仙茅苷的三维复合支架的理化特性,并评估其对人脐带静脉内皮细胞(HUVECs)和小鼠骨髓间充质干细胞(BMSCs)促进血管化和骨诱导方面的潜在作用。方法:①采用乳液/溶剂蒸发技术制备负载仙茅苷(Curculigoside,CUR)的聚己内酯微球(CUR-PMs),在借助3D生物打印技术成功构建了羟基磷灰石(Hydroxyapatite, HA)/明胶(gelatin, GEL)/海藻酸钠(Sodium alginate, SA)三维复合支架(HGS)的基础上,制备了负载仙茅苷的聚己内酯微球支架(HGSC)。通过扫描电镜、红外光谱、流变学、力学性能、药物释放和降解性等实验对支架进行了表征。②通过CCK-8法、EdU荧光染色、碱性磷酸酶染色(ALP)和 HUVECs细胞管形成等实验以验证支架的生物安全性以及对血管化和成骨调控的潜能进行测定。结果:①微球复合支架内部具有大小均匀的网格状结构,与未载微球的单纯支架(HGS)相比,具有适当的力学性能和降解性。②CCK-8和EdU荧光染色结果表明,HGSC支架具有良好的生物相容性。③HUVECs细胞管形成实验和BMSCs的碱性磷酸酶染色结果表明,HGSC支架表现出促进骨形成和血管化的潜能。结论:HGSC复合支架表现出良好的生物相容性,并且对BMSCs的骨诱导潜能和HUVECs的血管化具有明显的促进作用,这一结论可为传统中草药与骨组织工程相结合提供新范例,从而为骨缺损修复提供具有前景的治疗策略。

    Abstract:

    Abstract: Objective: This study aimed to investigate the physicochemical properties of a three-dimensional composite scaffold loaded with curculigoside (CUR) and assess its potential impact on promoting angiogenesis and osteogenic induction in human umbilical vein endothelial cells (HUVECs) and mouse bone marrow mesenchymal stem cells (BMSCs). Methods: ①polycaprolactone microspheres loaded with Curculigoside (CUR-PMs) were prepared using an emulsion/solvent evaporation technique. Subsequently, we successfully engineered a three-dimensional composite scaffold comprising Hydroxyapatite (HA), gelatin (GEL), and Sodium alginate (SA) with the assistance of 3D bioprinting technology, denoted as HGS. Furthermore, we established a polycaprolactone-based microsphere scaffold, referred to as HGSC, for the purpose of Curculigoside loading. The scaffolds underwent thorough characterization through scanning electron microscopy, infrared spectroscopy, rheological analysis, mechanical property assessments, drug release studies, and degradation assessments. ②To confirm the biocompatibility and assess the potential for vascularization and osteogenic regulation of the scaffold, a series of experiments were conducted. These included the CCK-8 assay, EdU fluorescent staining, alkaline phosphatase (ALP) staining, and HUVECs cell tube formation assay. Results: ①Inside the microsphere composite scaffold, there was a consistent grid-like structure of uniform size. When compared to the scaffold without loaded microspheres (HGS), it demonstrated suitable mechanical performance and degradation properties.②The findings from CCK-8 and EdU fluorescence staining demonstrated the excellent biocompatibility of the HGSC scaffold.③The outcomes of HUVECs tube formation experiments and ALP staining of BMSCs provided evidence that the HGSC scaffold exhibited the capability to enhance both bone formation and angiogenesis. Conclusion: The HGSC composite scaffold has shown excellent biocompatibility and has a clear promoting effect on the osteogenic potential in BMSCs and angiogenesis in HUVECs. This conclusion can provide a new example of combining traditional herbal medicine with bone tissue engineering, offering a promising treatment strategy for the repair of bone defects.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-17
  • 最后修改日期:2023-11-06
  • 录用日期:2024-01-29
  • 在线发布日期:
  • 出版日期:
关闭