基于改进型U-Net的变色油墨血浆判别模型
DOI:
作者:
作者单位:

1.中国科学院苏州生物医学工程技术研究所;2.苏州市中心血站

作者简介:

通讯作者:

中图分类号:

基金项目:

苏州市重大疾病、传染病预防和控制关键技术(研究)项目


A plasma discrimination model for color changing ink based on improved U-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:因主观判别尺度不一和计算响应过长,在血浆制备过程中易出现疑似溶血血浆误判输出和非疑似溶血血浆医学报废的现象,对患者的生命安全带来极大隐患。方法:针对位于临界状态下人血血浆生物样本疑似溶血与非疑似溶血人工视觉差异微小的问题,本文提出了一种基于深度学习和变色油墨理念限界法。结果:利用改进型U-Net网络进行图像分割,引入改进型注意力机制、批量归一化和填充模块来解决空间映射关系中存在的估计均值偏移、计算效率低和感受野视场不足的问题。结论:采用变色油墨限界法为分类判别,在确保血浆样本识别精度为前提的同时,提升了血浆判别的计算效率、降低了判别时间。利用自采样本数据集对该模型进行了验证对比。结果表明,本文模型的血浆判别精度优于其它判别模型。

    Abstract:

    Objective: Due to varying subjective discrimination scales and excessively long network computational responses, During the plasma preparation process, there is a tendency for suspected hemolytic plasma to be misjudged and non suspected hemolytic plasma to be medically discarded, It poses great risks to the patient's life safety. Methods: Regarding the issue of minimal differences in artificial vision between suspected hemolysis and non suspected hemolysis in biological samples of human blood plasma at critical states,This article proposes a bounded method based on deep learning and color changing ink concepts. Results: Using an improved U-Net network for image segmentation, Introducing optimized CA module, batch normalization, and filling module, to solve the problems of estimation mean shift, low computational efficiency, and insufficient receptive field of view in spatial mapping relationships. Conclusion: Using the color changing ink limit method for classification discrimination, While ensuring the accuracy of plasma sample recognition, Improved the computational efficiency of plasma discrimination and reduced discrimination time. The model was validated and compared using a self collected sample dataset. The results indicate that the plasma discrimination accuracy of our model is superior to other discrimination models.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-28
  • 最后修改日期:2024-06-05
  • 录用日期:2024-08-19
  • 在线发布日期:
  • 出版日期:
关闭