骨骼肌肌间脂肪浸润在代谢相关疾病中的研究进展
作者:
作者单位:

1.南京医科大学第一附属医院老年内分泌科;2.江苏省人民医院老年内分泌科

基金项目:

国家重点研发计划资助(2022YFA0806100);国家自然科学基金(82201740)


Research progress on skeletal muscle intermuscular fat infiltration in metabolic-related diseases
Author:
Affiliation:

Department of Gerontoendocrinology,the First Affiliated Hospital of Nanjing Medical University

Fund Project:

National Key R&D Program of China(2022YFA0806100);National Natural Science Foundation of China(82201740)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • | | | |
  • 文章评论
    摘要:

    伴随着人类疾病谱的改变,肥胖及其并发症已成为重要的健康危险因素。在正常生理状态下,骨骼肌中存在一定量的脂滴,这被称为肌间脂肪。然而,当机体肥胖时,脂滴的生成速率超过消耗,导致脂肪组织的存储能力超负荷,进而引发异位脂肪沉积。这种肌间脂肪的过度积累,会严重干扰骨骼肌的正常功能,并在肌少症、肥胖及糖尿病的发生和发展过程中发挥关键作用。尽管肌间脂肪浸润在肥胖及相关代谢性疾病中的重要性已得到广泛认可,但其具体的调控机制尚不明确。因此,探索新的策略和方法以改善肌间脂肪浸润的状况,不仅有助于我们更深入地理解这些疾病的发病机制,还可能为治疗上述疾病提供全新的视角和思路。本文的核心内容在于全面阐述肌间脂肪组织的生理功能,以及在病理状态下导致肌间脂肪浸润的机制。同时,对目前对肌间脂肪浸润干预手段的研究进展进行综述,以期为治疗与肌间脂肪浸润相关的临床疾病提供潜在的治疗策略和方法。

    Abstract:

    With the change of human disease spectrum,obesity and its complications have become important health risk factors.Under normal conditions, there is a certain amount of fat droplets in skeletal muscle,which is called intermuscular fat.In obesity,fat droplet production is greater than consumption, exceeding the storage function of adipose tissue,resulting in ectopic fat deposition.Excessive accumulation of intermuscular fat will lead to poor skeletal muscle function and play an important role in the occurrence and development of sarcopenia,obesity and diabetes.However,the specific regulatory mechanism of the occurrence and development of skeletal muscle intermuscular fat infiltration is still unclear.Exploring new ways and new methods to improve skeletal muscle intermuscular fat infiltration will not only help deepen our understanding of the pathogenesis of these diseases,but also provide new ideas for the treatment of these diseases.In this paper,the physiological function and pathological mechanism of intermuscular adipose tissue causing intermuscular adipose infiltration were reviewed,and the research progress on the intervention of intermuscular adipose infiltration was reviewed to provide potential therapeutic means for the treatment of clinical diseases related to intermuscular adipose infiltration.

    参考文献
    [1] COLLABORATION NCDRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants[J]. Lancet, 2016,387(10026):1377-1396
    [2] PERREAULT L, STARLING AP, GLUECK D, et al. Biomarkers of Ectopic Fat Deposition: The Next Frontier in Serum Lipidomics[J]. J Clin Endocrinol Metab, 2016,101(1):176-182
    [3] 张文娜, 朱浩, 王晓东. 血管周围脂肪与心血管疾病的研究进展[J]. 南京医科大学学报(自然科学版), 2023,43(05):725-731
    [4] MARCUS RL, ADDISON O, KIDDE JP, et al. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise[J]. J Nutr Health Aging, 2010,14(5):362-366
    [5] SPARKS LM, GOODPASTER BH, BERGMAN BC. The Metabolic Significance of Intermuscular Adipose Tissue: Is IMAT a Friend or a Foe to Metabolic Health?[J]. Diabetes, 2021,70(11):2457-2467
    [6] GOODPASTER BH, KRISHNASWAMI S, RESNICK H, et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women[J]. Diabetes Care, 2003,26(2):372-379
    [7] CHENG X, JIANG S, PAN B, et al. Ectopic and visceral fat deposition in aging, obesity, and idiopathic pulmonary fibrosis: an interconnected role[J]. Lipids Health Dis, 2023,22(1):201
    [8] BEGAYE L, SIMCOX JA. Intramuscular adipocytes: a buried adipose tissue depot deserving more exploration[J]. J Lipid Res, 2019,60(4):753-754
    [9] HAUSMAN GJ, BASU U, DU M, et al. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues[J]. Adipocyte, 2014,3(4):242-255
    [10] XU Z, YOU W, CHEN W, et al. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle[J]. J Cachexia Sarcopenia Muscle, 2021,12(1):109-129
    [11] UEZUMI A, FUKADA S, YAMAMOTO N, et al. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle[J]. Nat Cell Biol, 2010,12(2):143-152
    [12] YANG J, VAMVINI M, NIGRO P, et al. Single-cell dissection of the obesity-exercise axis in adipose-muscle tissues implies a critical role for mesenchymal stem cells[J]. Cell Metab, 2022,34(10):1578-1593 e1576
    [13] GIULIANI G, ROSINA M, REGGIO A. Signaling pathways regulating the fate of fibro/adipogenic progenitors (FAPs) in skeletal muscle regeneration and disease[J]. FEBS J, 2022,289(21):6484-6517
    [14] HARDING RL, CLARK DL, HALEVY O, et al. The effect of temperature on apoptosis and adipogenesis on skeletal muscle satellite cells derived from different muscle types[J]. Physiol Rep, 2015,3(9)
    [15] GOODPASTER BH, BERGMAN BC, BRENNAN AM, et al. Intermuscular adipose tissue in metabolic disease[J]. Nat Rev Endocrinol, 2023,19(5):285-298
    [16] GLATZ JF, LUIKEN JJ, BONEN A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease[J]. Physiol Rev, 2010,90(1):367-417
    [17] KANNAN R, PALMQUIST DL, BAKER N. Contribution of intermuscular fat to lipogenesis from dietary glucose carbon in mice[J]. Biochim Biophys Acta, 1976,431(2):225-232
    [18] MATTACKS CA, SADLER D, POND CM. The effects of exercise and dietary restriction on the activities of hexokinase and phosphofructokinase in superficial, intra-abdominal and intermuscular adipose tissue of guinea-pigs[J]. Comp Biochem Physiol B, 1987,87(3):533-542
    [19] BAGCHI DP, MACDOUGALD OA. Identification and Dissection of Diverse Mouse Adipose Depots[J]. J Vis Exp, 2019(149)
    [20] BENNETT CN, LONGO KA, WRIGHT WS, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b[J]. Proc Natl Acad Sci U S A, 2005,102(9):3324-3329
    [21] MARINKOVIC M, FUOCO C, SACCO F, et al. Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis[J]. Life Sci Alliance, 2019,2(3)
    [22] REGGIO A, ROSINA M, PALMA A, et al. Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/beta-catenin axis[J]. Cell Death Differ, 2020,27(10):2921-2941
    [23] VETTOR R, MILAN G, FRANZIN C, et al. The origin of intermuscular adipose tissue and its pathophysiological implications[J]. Am J Physiol Endocrinol Metab, 2009,297(5):E987-998
    [24] VELLA CA, ALLISON MA. Associations of abdominal intermuscular adipose tissue and inflammation: The Multi-Ethnic Study of Atherosclerosis[J]. Obes Res Clin Pract, 2018,12(6):534-540
    [25] 马敬弟, 卢姗, 马向华. 脂肪细胞因子与肥胖的关系[J]. 南京医科大学学报(自然科学版), 2012,32(12):1743-1745
    [26] 郑莉芳, 陈佩杰, 周永战, et al. 骨骼肌中脂肪沉积及其调节机制[J]. 生理学报, 2017,69(03):344-350
    [27] KALINKOVICH A, LIVSHITS G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis[J]. Ageing Res Rev, 2017,35:200-221
    [28] POURTEYMOUR S, LEE S, LANGLEITE TM, et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity[J]. Physiol Rep, 2015,3(8)
    [29] BADIN PM, LANGIN D, MORO C. Dynamics of skeletal muscle lipid pools[J]. Trends Endocrinol Metab, 2013,24(12):607-615
    [30] KASE ET, FENG YZ, BADIN PM, et al. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals[J]. Biochim Biophys Acta, 2015,1851(9):1194-1201
    [31] HOLLOWAY GP, CHOU CJ, LALLY J, et al. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance[J]. Diabetologia, 2011,54(6):1457-1467
    [32] AON MA, BHATT N, CORTASSA SC. Mitochondrial and cellular mechanisms for managing lipid excess[J]. Front Physiol, 2014,5:282
    [33] KIM KH, CHOI S, ZHOU Y, et al. Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice[J]. Hepatology, 2017,66(2):498-509
    [34] MOADDEL R, FABBRI E, KHADEER MA, et al. Plasma Biomarkers of Poor Muscle Quality in Older Men and Women from the Baltimore Longitudinal Study of Aging[J]. J Gerontol A Biol Sci Med Sci, 2016,71(10):1266-1272
    [35] 王瑾, 赵婷, 王馥婕, et al. 老年肌肉衰减人群的营养干预与人体成分研究[J]. 南京医科大学学报(自然科学版), 2019,39(11):1654-1657
    [36] FARSIJANI S, SANTANASTO AJ, MILJKOVIC I, et al. The Relationship Between Intermuscular Fat and Physical Performance Is Moderated by Muscle Area in Older Adults[J]. J Gerontol A Biol Sci Med Sci, 2021,76(1):115-122
    [37] GOODPASTER BH, CARLSON CL, VISSER M, et al. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study[J]. J Appl Physiol (1985), 2001,90(6):2157-2165
    [38] MARCUS RL, ADDISON O, DIBBLE LE, et al. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals[J]. J Aging Res, 2012,2012:629637
    [39] ALMURDHI MM, REEVES ND, BOWLING FL, et al. Reduced Lower-Limb Muscle Strength and Volume in Patients With Type 2 Diabetes in Relation to Neuropathy, Intramuscular Fat, and Vitamin D Levels[J]. Diabetes Care, 2016,39(3):441-447
    [40] AKAZAWA N, OKAWA N, HINO T, et al. Dysphagia is more strongly associated with increased intramuscular adipose tissue of the quadriceps than with loss of muscle mass in older inpatients[J]. Nutr Res, 2019,65:71-78
    [41] RAHEMI H, NIGAM N, WAKELING JM. The effect of intramuscular fat on skeletal muscle mechanics: implications for the elderly and obese[J]. J R Soc Interface, 2015,12(109):20150365
    [42] MILJKOVIC I, KUIPERS AL, CVEJKUS R, et al. Myosteatosis increases with aging and is associated with incident diabetes in African ancestry men[J]. Obesity (Silver Spring), 2016,24(2):476-482
    [43] RANDLE PJ, GARLAND PB, HALES CN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus[J]. Lancet, 1963,1(7285):785-789
    [44] MARTINS AR, NACHBAR RT, GORJAO R, et al. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function[J]. Lipids Health Dis, 2012,11:30
    [45] 谭玲玲, 杨茗. 老年人脂肪肌的研究进展[J]. 中华老年医学杂志, 2020,39(6):732-736
    [46] AL SAEDI A, DUQUE G, STUPKA N. Targeting intramuscular adipose tissue expansion to preserve contractile function in volumetric muscle loss: A potentially novel therapy?[J]. Curr Opin Pharmacol, 2021,58:21-26
    [47] PRIOR SJ, JOSEPH LJ, BRANDAUER J, et al. Reduction in midthigh low-density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men[J]. J Clin Endocrinol Metab, 2007,92(3):880-886
    [48] ZOICO E, CORZATO F, BAMBACE C, et al. Myosteatosis and myofibrosis: relationship with aging, inflammation and insulin resistance[J]. Arch Gerontol Geriatr, 2013,57(3):411-416
    [49] TAAFFE DR, HENWOOD TR, NALLS MA, et al. Alterations in muscle attenuation following detraining and retraining in resistance-trained older adults[J]. Gerontology, 2009,55(2):217-223
    [50] SHEN W, CHEN J, ZHOU J, et al. Effect of 2-year caloric restriction on organ and tissue size in nonobese 21- to 50-year-old adults in a randomized clinical trial: the CALERIE study[J]. Am J Clin Nutr, 2021,114(4):1295-1303
    [51] TORO-RAMOS T, GOODPASTER BH, JANUMALA I, et al. Continued loss in visceral and intermuscular adipose tissue in weight-stable women following bariatric surgery[J]. Obesity (Silver Spring), 2015,23(1):62-69
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:299
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-12
  • 最后修改日期:2024-02-27
  • 录用日期:2024-04-19
关闭