基于光谱CT和影像组学特征的机器学习模型和诺莫图预测甲状腺结节良恶性
DOI:
作者:
作者单位:

1.南京医科大学鼓楼临床医学院/南京医科大学第四附属医院;2.南京医科大学第四附属医院;3.南京医科大学鼓楼临床医学院/南京鼓楼医院

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省“十三五”强卫工程青年医学重点人才(QNRC2016041);南京医科大学科技发展基金一般项目(NMUB20230037)


Machine Learning Models and Nomograms Based on Spectral CT and Radiomic Features for Predicting the Benignancy and Malignancy of Thyroid Nodules
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:构建光谱CT参数和影像组学机器学习的模型预测甲状腺结节良恶性。方法:回顾性分析行光谱CT增强扫描的118名甲状腺结节患者(143例结节)影像及临床资料(46例良性结节和97例恶性结节),7:3随机分为训练集(n=100)和验证集(n=43)。采用差异性检验、组间一致性评估(ICC)和最小绝对收缩和选择算子(LASSO)筛选特征并计算影像组学评分(radscore)。运用决策树(DT)、随机森林(RF)、极限梯度提升(XGboost)、支持向量机(SVM)、K-近邻(KNN)和逻辑回归(LR)六种机器学习算法进行建模,筛选最佳的模型并构建诺莫图。结果:XGboost模型在验证集中性能最好(曲线下面积:0.938;准确度:86.05%;灵敏度89.29%;特异度80.00%),NIC、radscore和年龄是重要的预测因素。构建的诺莫图具有良好的性能。结论:结合光谱CT和影像组学的机器学习模型及诺莫图能够为甲状腺结节良恶性的非侵入性预测提供高准确性的参考。

    Abstract:

    Objective: The purpose of this study was to establish the applicability of a predictive model based on spectral computed tomography (CT) parameters and radiomics features through machine learning for differentiating between benign and malignant thyroid nodules.Methods: A retrospective analysis was conducted on imaging and clinical data from 118 patients with thyroid nodules who underwent spectral CT enhancement scanning (comprising 46 benign and 97 malignant nodules). These patients were randomly divided into a training set (n=100) and a validation set (n=43) in a 7:3 ratio. Discriminative testing, intraclass correlation coefficient (ICC), and the Least Absolute Shrinkage and Selection Operator (LASSO) were employed to select features and calculate a radiomics score (radscore). Six machine learning algorithms—decision tree (DT), random forest (RF), extreme gradient boosting (XGboost), support vector machine (SVM), K-nearest neighbors (KNN), and logistic regression (LR)—were utilized to develop models. The optimal model was selected to construct nomograms.Results: The XGboost model demonstrated optimal performance in the validation set(AUC: 0.938; Accuracy: 86.05%; Sensitivity:89.29%; Specificity: 80.00%), with normalized iodine concentration (NIC), radscore, and age identified as significant predictive factors. The ensuing nomograms exhibited robust performance.Conclusion: The machine learning model that combines spectral CT and radiomics features with the nomograms provides a highly accurate reference for non-invasive prediction of the benignity or malignancy of thyroid nodules.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-14
  • 最后修改日期:2024-04-03
  • 录用日期:2024-07-08
  • 在线发布日期:
  • 出版日期:
关闭