一种新型结直肠癌预后模型的建立与治疗预测
DOI:
作者:
作者单位:

江苏医药职业学院

作者简介:

通讯作者:

中图分类号:

基金项目:


A novel prognostic model for predicting the outcomes and therapeutic efficacy of colorectal cancer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:构建一种新的预测结直肠癌(Colorectal cancer, CRC)预后和治疗的模型。方法:首先利用单因素分析和最小绝对收缩和选择运算(Least absolute shrinkage and selection operator, LASSO)-Cox回归分析训练队列GSE39582,构建CRC预后标签(Prognostic signature of colorectal cancer, PSCRC),并利用外部队列CRC_TCGA和GSE17536验证PSCRC。然后,评估PSCRC与临床指标、免疫微环境和免疫细胞浸润的相关性,基因富集分析(Gene set enrichment analysis, GSEA)PSCRC的潜在功能。接下来,整合PSCRC和临床分期等7个因素绘制预后列线图,并通过决策曲线分析(Decision curve analysis, DCA)评估预后效果。最后,预测免疫治疗和化疗疗效。结果:本研究构建了一个预后标签PSCRC,两个外部队列证实其预后敏感性和特异性较高。TNM分期均显著影响PSCRC风险评分(所有p < 0.001);PSCRC与肿瘤微环境基质评分、免疫评分和ESTIMATE评分均显著正相关(所有p < 0.001),与嗜中性粒细胞等浸润显著正相关(所有p < 0.05),与活化记忆性CD4+ T细胞等浸润显著负相关(所有p < 0.01)。进一步地,GSEA分析显示PSCRC可能参与氧化磷酸化、血管新生、缺氧和炎症应答等过程。重要的是,新构建模型显示出较好的预后能力,C指数为0.765,95% 置信区间(Confidence interval, CI)为0.747-0.783(p < 0.001)。最后,治疗预测显示低风险评分组免疫治疗响应率更高(p < 0.001,p < 0.001,p = 0.08);PSCRC与伊马替尼、达沙替尼、帕唑帕尼等化疗药半抑制浓度(Half maximal inhibitory concentration, IC50)显著负相关(所有p < 0.001),与二甲双胍、索拉非尼等药物IC50显著正相关(所有p < 0.001)。结论:我们构建了一个预后标签PSCRC,为CRC预后提供了良好的模型,还为预测治疗提供了潜在标志物。

    Abstract:

    Objective: To construct a new model for predicting the outcomes and therapeutic efficacy of colorectal cancer (CRC). Methods: Firstly, univariate and LASSO-Cox regression analysis were used to train cohort GSE39582 to construct a prognostic signature of colorectal cancer (PSCRC), and external cohorts CRC_TCGA and GSE17536 were used to validate PSCRC. Then, the correlation between PSCRC and clinical indicators, immune microenvironment (TME) and immune cells infiltration was evaluated, and the molecular function of PSCRC was analyzed by Gene set enrichment analysis (GSEA). Next, 7 factors including PSCRC and clinical stage were integrated to draw a prognostic nomogram, and the prognostic effect was evaluated by decision curve analysis (DCA). Finally, the efficacy of immunotherapy and chemotherapy was predicted. Results: We constructed a prognostic signature PSCRC, and two external cohorts confirmed its high prognostic sensitivity and specificity. TNM stage significantly affected the PSCRC riskscore (all p < 0.001); PSCRC was significantly positively correlated with TME StromalScore, ImmuneScore and ESTIMATEScore (all p < 0.001), significantly positively correlated with neutrophil and other cells (all p < 0.05), and significantly negatively correlated with T cell CD4+ memory activated and other cells (all p < 0.01). In addition, GSEA analysis indicated that PSCRC may participate in oxidative phosphorylation, angiogenesis, hypoxia and inflammatory response. Moreover, the newly constructed model showed good prognostic ability (C-index: 0.765, 95% CI (0.747-0.783), p < 0.001). Finally, the therapy prediction results showed that the low-risk scoring group had a higher response rate to immunotherapy (p < 0.001, p < 0.001, p = 0.08); PSCRC was significantly negatively correlated with the half inhibitory concentration (IC50) of imatinib, dasatinib, pazopanib and other drugs (all p < 0.001), and significantly positively correlated with the IC50 of metformin, sorafenib and other drugs (all p < 0.001). Conclusion: We constructed a prognostic signature PSCRC, which provides a good model for CRC prognosis and also a potential marker for predicting treatment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-19
  • 最后修改日期:2024-03-08
  • 录用日期:2024-08-30
  • 在线发布日期:
  • 出版日期:
关闭