基于CT图像的深度学习在主动脉夹层中的应用进展
DOI:
作者:
作者单位:

南京医科大学附属常州第二人民医院 介入血管科

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(81401498),中国博士后科学基金(2023M730371),南京医科大学常州医学中心项目(CMCC202206,CMCB202304)


The Application Progress of Deep Learning Based on CT Images in Aortic DissectionTang Zheyu1*, Liu Tingting1, 2*, Li Shaoqin1, Jia Zhongzhi1
Author:
Affiliation:

Fund Project:

Natural Science Foundation of China (81401498),China Postdoctoral Science Foundation(2023M730371),Nanjing Medical University Changzhou Medical Center Project(CMCC202206,CMCB202304)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    主动脉夹层(AD)是一种临床上常见的急症,快速、精准的诊治直接影响AD患者的预后,然而对其快速、精准的诊治具有一定的挑战性。近年来,基于CT图像的深度学习在辅助AD诊治方面的应用日益增多,尤其在AD的识别、分割以及预测患者预后方面,为AD的临床诊治决策提供了重要价值。为了更好的掌握基于CT图像的深度学习在AD中的应用,本综述将总结与讨论目前深度学习在AD诊治中的应用、存在的问题及潜在的优化策略。

    Abstract:

    Aortic dissection (AD) is a critical emergency, where rapid and accurate diagnosis and treatment significantly influence the prognosis of AD patients. However, achieving such precise and swift diagnosis and treatment poses substantial challenges. In recent years, the application of deep learning based on CT images in assisting the diagnosis and treatment of AD has increasingly gained prominence, particularly in the identification, segmentation, and prediction of patient outcomes, thereby offering significant value for clinical decision-making in AD management. To better understand the application of deep learning based on CT images in AD, this review will summarize and discuss the current applications, existing challenges, and potential optimization strategies of deep learning in the diagnosis and treatment of AD.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-21
  • 最后修改日期:2024-04-07
  • 录用日期:2024-08-08
  • 在线发布日期:
  • 出版日期:
关闭