基于核密度估计和K均值聚类算法的骨扫描图像分割
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

南京市医学科技发展资金“青年工程”人才培养专项经费资助(QRX11033)


Segmentation of bone scintigraphy image via the K-means clusters with kernel density estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:探讨K均值聚类的改进算法,并将其应用于全身骨扫描图像的分割。方法:首先对二维全身骨SPECT图像进行锐化-平滑-灰度变换等预处理;其次用核密度估计方法拟合出图像像素概率密度函数曲线,根据曲线的峰值点确定K个初始聚类中心值;再应用K均值聚类对图像进行分割;最后使用模板匹配排除误识别的区域。结果:图像预处理凸显了感兴趣目标,并改善了图像质量;基于核密度估计的K均值聚类算法的Tanimoto相似度系数明显优于传统K均值算法,平均耗时短于其他分割算法。结论:核密度估计有效地避免K均值聚类算法中初始聚类中心选取的盲目性,使聚类结果更为快速-准确-稳定。改进的K均值聚类算法对骨扫描图像分割效果显著,更便于对感兴趣区域进行定性-定量分析。

    Abstract:

    Objective:This paper proposed an improved K-means clustering algorithm based on kernel density estimation which is used for the automatic segmentation of whole-body bone scan image. Methods:First,we sharpened and smoothed the 2D SPECT whole-body scan image for preprocessing. Second,we used Gaussian kernel density estimation curve to obtain optimal clustering centers as the initial value of K-means clustering algorithm. And then,we segmented the image using the K-means clustering algorithm. Finally,the template match method was performed to delete wrong recognized areas. Results:Image preprocessing provided clearer and more detailed activity structures and improve image quality. The improved K-means clustering algorithm generated a higher degree of Tanimoto similarity than traditional K-means method,and it had a less running time than others. Conclusion:Kernel density estimation can effectively avoid the blindness of the initial clustering center selection in the K-means method,and make the clustering results more rapid,accurate and stable. The proposed algorithm is suitable for whole-body bone scan image segmentation which has important significance to the analysis of region of interest.

    参考文献
    相似文献
    引证文献
引用本文

徐 磊,孟庆乐,杨 瑞,曹 艳,王 峰,崔 璨,蒋红兵.基于核密度估计和K均值聚类算法的骨扫描图像分割[J].南京医科大学学报(自然科学版),2015,(4):585-589

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-11-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-05-05
  • 出版日期:
关闭