ARIMA乘积季节模型预测我国戊肝的发病趋势
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

南京医科大学科技发展基金(2017NJMU229);江苏省高校自然科学研究(19KJD330001)


The incidence of hepatitis E in China predicted by multiple seasonal ARIMA model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:根据戊型肝炎(戊肝)季节性、趋势性流行现象,建立求和自回归移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型对我国戊肝发病进行预测。方法:应用SPSS23.0软件对2004年1月—2018年6月我国戊肝传染病疫情月度数据建模,对2018年下半年戊肝发病数进行预测,以该时段疫情数据评估模型的预测效果。结果:将ARIMA(2,1,0)(0,1,1)12和ARIMA(0,1,2)(0,1,1)12两个模型预测的平均值作为预测值,预测结果的平均相对误差为4.69%,标准差为3.27%。结论:ARIMA乘积季节模型拟合及预测效果良好,能够较好地描述该时段我国戊肝的发病趋势,为戊肝预防控制措施的制定以及卫生资源的合理配置提供一定的科学依据。

    Abstract:

    Objective:According to the seasonal and trend epidemic phenomenon of hepatitis E,the multiple seasonal ARIMA model was established to predict the infectious incidence of hepatitis E in China. Methods:SPSS23.0 software was used to model the monthly data of the epidemic of hepatitis E infectious diseases in China from January 2004 to June 2018,so as to predict the incidence of hepatitis E in the second half of 2018 and to evaluate the prediction effect of the model through the epidemic data during the period. Results:The average values of the prediction of the two models,ARIMA(2,1,0)(0,1,1)12 and ARIMA(0,1,2)(0,1,1)12,were used as the prediction values,the average relative error of the prediction was 4.69% and the standard deviation was 3.27%. Conclusion:Results of fitting and prediction of the multiple seasonal ARIMA model are good. The model can better describe the incidence trend of hepatitis E in China during the period,and provide certain scientific basis for the formulation of preventive control measures against hepatitis E and reasonable allocation of health resources.

    参考文献
    相似文献
    引证文献
引用本文

丁 勇,吴 静,武 丹,李 婉,张蓓蓓. ARIMA乘积季节模型预测我国戊肝的发病趋势[J].南京医科大学学报(自然科学版),2020,(11):1725-1729

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-08-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-04
  • 出版日期:
通知关闭
郑重声明