-
急性肠缺血性疾病是临床上较为常见的危急重症,随着介入技术和器材的快速发展,肠系膜上动脉的开通率逐年升高,然而,介入开通闭塞的肠系膜上动脉后,大量血液快速进入缺血的肠组织,容易导致肠缺血再灌注损伤(ischemia reperfusion injury,IRI),肠IRI不但会引起肠黏膜屏障的破坏、肠坏死,还会导致全身炎症反应综合征,多器官功能障碍,甚至患者死亡[1]。
-
线粒体自噬是一种选择性清除受损伤的线粒体的特异自噬过程,线粒体自噬在维持线粒体正常功能方面发挥着重要的作用,参与了人体的诸多病理和生理过程。近年来,虽然越来越多的文献研究证实线粒体自噬在肠IRI过程中发挥着极其重要的作用,但目前对线粒体自噬在肠IRI中发挥的作用和具体机制尚不完全清楚[2-3]。
-
为了更好地了解线粒体自噬在肠IRI的病理过程发挥的作用及其机制,本文结合最新的文献报道,详细阐述了线粒体自噬在肠IRI中的作用及其机制,为防治肠IRI提供参考。
-
1 肠IRI与线粒体自噬
-
肠IRI多发于外科急症、重度感染、体外循环、小肠移植及急性肠系膜上动脉栓塞或夹层性疾病的有效治疗后[4]。肠IRI不仅会进一步加重肠道黏膜组织的损伤,还会因肠道黏膜屏障的破坏和炎症反应而导致患者全身多器官功能障碍,甚至患者死亡[1]。由于严重肠IRI患者的病死率高,且无有效的治疗方法,因此,肠IRI的有效防治仍是目前医学研究领域中亟待解决的难题。
-
目前,已知有多种病理改变共同参与了肠IRI的发生、发展,如氧自由基损伤、钙超载、白细胞黏附、内皮功能失调、转录因子聚集和多种信号通路激活等[5-6],此外细胞凋亡、细胞焦亡和细胞自噬也被认为与肠IRI密切相关[7-8]。细胞自噬是一种细胞的自我降解和循环利用胞内组分的病理生理过程,细胞自噬参与细胞器更新和蛋白质量控制的细胞成分降解和回收的调节[9]。线粒体自噬(mitophagy) 属于细胞选择性自噬的范畴,属于细胞器自噬,是细胞自噬装置对线粒体的靶向吞噬和破坏的过程,线粒体自噬的主要目的是识别和清除功能障碍的线粒体,是一种对受损的线粒体的清除和控制手段,因此,目前认为线粒体自噬是线粒体质量控制的主要机制。目前文献证实,线粒体自噬参与了机体内多个组织器官的IRI病理过程,如心脏IRI、肝脏IRI、大脑IRI、肾脏IRI等[10-14]。同时,已有文献证实,线粒体自噬在肠IRI的病理过程中发挥着重要的作用[2,15]。以下将对其具体作用和机制进行详细的综述。
-
2 线粒体自噬在肠IRI中的作用
-
线粒体自噬是一种选择性清除受损线粒体的特异性自噬现象,根据线粒体自噬过程的特征,可分为4个时期:①前期线粒体受损后发生通透性转变,导致线粒体去极化,诱导线粒体自噬相关蛋白活化;②早期自噬体包裹受损线粒体,形成线粒体自噬体;③中期线粒体自噬体与溶酶体融合后形成成熟的线粒体自噬溶酶体;④末期线粒体被溶酶体降解。适度的线粒体自噬对维持线粒体的膜电位以及维持细胞膜的正常结构和功能具有一定的作用,其可以减轻人体组织器官IRI的程度;然而,过度的线粒体自噬或线粒体功能障碍导致自噬功能受损会加重人体组织器官IRI的程度。因此,线粒体自噬是一把“双刃剑”,其在人体组织器官IRI中的作用主要取决于IRI的程度[16-17]。
-
近年来,线粒体自噬在肠IRI中发挥的作用得到了广泛和深入的研究。有研究认为[2],线粒体自噬可以减轻肠IRI的程度,而另有研究发现[15],线粒体自噬可能加重了肠IRI的程度。因此,线粒体自噬在肠IRI过程中也发挥着“双刃剑”的作用,其发挥的具体作用主要取决于IRI的程度,在轻度肠IRI的病理改变中,线粒体自噬选择性地清除功能受损的线粒体,保证细胞内营养物质的利用及能量摄取,从而发挥着减轻IRI的作用;而在严重肠IRI的病理改变中,大量线粒体受损,导致过度的线粒体自噬,细胞内线粒体的缺乏使得ATP生成减少[18],进一步加重应激及炎症反应,发挥着促进IRI的作用。
-
3 线粒体自噬在肠IRI中的调控机制
-
在人体组织器官IRI的病理过程中,多种机制共同参与并调控了线粒体自噬的发生,目前研究较为透彻的是以下4种信号通路:PTEN诱导假定激酶1(PTEN Induced Putative Kinase1,PINK1)/Parkin信号通路、BNIP3/NIX信号通路、FUNDC1信号通路、 Beclin1信号通路,以下对线粒体自噬涉及到的4种信号通路得具体调控机制进行详细的介绍。
-
3.1 PINK1/Parkin信号通路
-
PINK1/Parkin是调控细胞内线粒体自噬的经典信号通路,PINK1是受损伤的线粒体的分子感受器, Parkin主要介导底物泛素化,调节蛋白降解和信号转导[19];有研究报道,氧糖剥夺⁃复氧即缺血再灌注的病理过程,可激活PINK1介导的线粒体自噬[20]; 另有文献报道,PINK1/Parkin还可以通过其他机制影响细胞内的线粒体的质量控制,如通过PINK1介导的磷酸化和Parkin介导的蛋白酶体降解线粒体衔接蛋白,从而影响细胞内线粒体的运动,最终促进线粒体自噬的发生,进而去除受损的线粒体[21]。总之,PINK1/Parkin是线粒体质量控制的关键信号通路,其在线粒体自噬的发生过程中发挥着极其关键的作用。
-
3.2 BNIP3/NIX信号通路
-
BNIP3和NIX均位于线粒体的外膜,在缺血、缺氧的条件下,BNIP3可通过以下2种途径诱导细胞内线粒体自噬的发生[22]:① BNIP3能通过其BH3结构域调控自噬的核心蛋白Beclin⁃1竞争性地与Bcl⁃2相结合,进而诱导Beclin⁃1的大量释放,游离的Be⁃ clin⁃1会激活线粒体自噬的发生[23];② BNIP3的N端具有LIR序列,其可识别自噬膜蛋白微管相关蛋白I轻链3(LC3),并与之直接结合,从而诱导线粒体自噬的发生[24]。因此,BNIP3/NIX信号通路在线粒体自噬的发生过程中也发挥着重要的作用。
-
3.3 FUNDC1信号通路
-
FUNDC1是一种调控线粒体自噬的关键受体,也是线粒体质量控制的关键线粒体膜蛋白, FUNDC1位于线粒体的外膜上,FUNDC1含有3个跨膜结构域以及1个N端LC3相互作用的区基序,其在线粒体自噬过程中发挥着重要的作用[25]。文献研究证实,敲除FUNDC1或LC3相互作用区基序发生突变均可以抑制线粒体自噬的发生[26]。在常氧条件下,FUNDC1以“闭环”的形式存在于线粒体外膜,在酪氨酸18位点处被酪氨酸激酶磷酸化,此时的FUNDC1与LC3的亲和力较低,然而在缺血缺氧的条件下,酪氨酸激酶被灭活,FUNDC1与LC3的亲和力显著提升,并且FUNDC1可以被丝氨酸/苏氨酸蛋白磷酸酶通过去磷酸化的形式激活,进而诱导线粒体自噬的发生。最新的研究报道,NLRX1可以通过调控FUNDC1⁃NIPSNAP轴介导线粒体自噬的发生,从而减轻肠IRI的程度[2]。基于以上研究, FUNDC1信号通路在线粒体自噬的发生过程中也发挥着重要的作用。
-
3.4 Beclin1信号通路
-
Beclin1基因不但是一种自噬相关的基因,还是一种自噬的调节蛋白,其在线粒体自噬的过程中发挥着重要的作用。目前已有研究证实,Beclin1不但参与了细胞的自噬,还参与了线粒体的自噬过程[27]。研究发现,Beclin1在IRI的组织器官中的表达水平随IRI程度而变化[28]。已有研究表明,Beclin1不仅在BNIP3⁃NIX信号通路介导的线粒体自噬过程中发挥着重要的作用,还可以与PINK1相互作用,在线粒体自噬过程中发挥一定的作用[29]。此外,有研究证实,Beclin1⁃Parkin信号通路通过诱导线粒体自噬在脊髓IRI的过程中发挥神经元的保护作用[30]。因此,Beclin1信号通路在线粒体自噬的发生过程中也发挥着重要的作用。
-
4 结论
-
肠IRI是临床上常见的病理改变,线粒体自噬在肠IRI的病理过程中发挥着极其重要的作用,其发挥的主要作用取决于肠IRI的程度,在轻度肠IRI的病理改变中,线粒体自噬发挥着减轻肠IRI的作用,而在严重肠IRI的病理改变中,线粒体自噬发挥着促进IRI的作用。线粒体自噬在肠IRI中的调控机制涉及多种信号通路,如PINK1/Parkin信号通路、 BNIP3/NIX信号通路、FUNDC1信号通路、Beclin1信号通路。深入研究线粒体自噬以及相关的调控机制,有助于更好地了解肠IRI的病理过程,从而为靶向治疗肠IRI提供新的理念和思路。
-
参考文献
-
[1] REINTAM BLASER A,ACOSTA S,ARABI Y M.A clini⁃ cal approach to acute mesenteric ischemia[J].Curr Opin Crit Care,2021,27(2):183-192
-
[2] LI S,ZHOU Y,GU X,et al.NLRX1/FUNDC1/NIPSNAP1⁃ 2 axis regulates mitophagy and alleviates intestinal isch⁃ aemia/reperfusion injury[J].Cell Prolif,2021,54(3):e12986
-
[3] KIP A M,SOONS Z,MOHREN R,et al.Proteomics analy⁃ sis of human intestinal organoids during hypoxia and reox⁃ ygenation as a model to study ischemia⁃reperfusion injury [J].Cell Death Dis,2021,12(1):95
-
[4] 徐敏,杨涛,孟珂伟,等.小肠移植缺血再灌注损伤的防治研究进展[J].中国医师杂志,2019,21(5):791-794
-
[5] 张培蕾,鲁海涛,朱悦奇,等.丁苯酞对大鼠局灶性脑缺血再灌注损伤的保护作用[J].介入放射学杂志,2012,21(3):239-242
-
[6] 罗丹,吴鹏俐,陈晓琴,等.肠缺血再灌注损伤相关分子机制的研究进展[J].西南国防医药,2019,29(2):197-199
-
[7] JIA Z,LIAN W,SHI H,et al.Ischemic postconditioning protects against intestinal ischemia/reperfusion injury via the HIF⁃1α/miR⁃21 axis[J].Sci Rep,2017,7(1):16190
-
[8] HSU C C,HUANG C C,CHIEN L H,et al.Ischemia/re⁃ perfusion injured intestinal epithelial cells cause cortical neuron death by releasing exosomal microRNAs associat⁃ ed with apoptosis,necroptosis,and pyroptosis[J].Sci Rep,2020,10(1):14409
-
[9] ADELIPOUR M,SALETH L R,GHAVAMI S,et al.The role of autophagy in the metabolism and differentiation of stem cells[J].Biochim Biophys Acta Mol Basis Dis,2022,1868(8):166412
-
[10] YU W,LYU J,JIA L,et al.Dexmedetomidine ameliorates hippocampus injury and cognitive dysfunction induced by hepatic ischemia/reperfusion by activating SIRT3⁃mediat⁃ ed mitophagy and inhibiting activation of the NLRP3 in⁃ flammasome in young rats[J].Oxid Med Cell Longev,2020,2020:7385458
-
[11] ZHANG H,YAN Q,WANG X,et al.The role of mitochon⁃ dria in liver ischemia ⁃ reperfusion injury:from aspects of mitochondrial oxidative stress,mitochondrial fission,mito⁃ chondrial membrane permeable transport pore formation,mitophagy,and mitochondria ⁃ related protective measures [J].Oxid Med Cell Longev,2021,2021:6670579
-
[12] SHEN L,GAN Q,YANG Y,et al.Mitophagy in cerebral ischemia and ischemia/reperfusion injury[J].Front Aging Neurosci,2021,13:687246
-
[13] LIU D,LIU Y,ZHENG X,et al.c⁃MYC⁃induced long non⁃ coding RNA MEG3 aggravates kidney ischemia ⁃ reperfu⁃ sion injury through activating mitophagy by upregulation of RTKN to trigger the Wnt/beta⁃catenin pathway[J].Cell Death Dis,2021,12(2):191
-
[14] 臧小栋,马思雨,胡擎晖,等.长链非编码RNA在脑缺血再灌注损伤中调控神经元细胞自噬的研究进展[J].南京医科大学学报,2022,42(5):751-758
-
[15] ZENG Z,LIU H M,ZHANG Y Y,et al.Aggravated intes⁃ tinal ischemia ⁃ reperfusion injury is associated with acti⁃ vated mitochondrial autophagy in a mouse model of diabe⁃ tes[J].Mol Med Rep,2020,22(3):1892-1900
-
[16] LI Y,MENG W,HOU Y,et al.Dual role of mitophagy in cardiovascular diseases[J].J Cardiovasc Pharmacol,2021,78(1):30-39
-
[17] CARINCI M,VEZZANI B,PATERGNANI S,et al.Differ⁃ ent roles of mitochondria in cell death and inflammation:focusing on mitochondrial quality control in ischemic stroke and reperfusion[J].Biomedicines,2021,9(2):169
-
[18] 丁可,孙涛,潘锐,等.线粒体相关内质网膜在肠缺血再灌注损伤中的研究进展[J].山东医药,2021,61(1):92-95
-
[19] JIANG T,LIU T,DENG X,et al.Adiponectin ameliorates lung ischemia ⁃ reperfusion injury through SIRT1 ⁃ PINK1 signaling ⁃mediated mitophagy in type 2 diabetic rats[J].Respir Res,2021,22(1):258
-
[20] WU X,LI X,LIU Y,et al.Hydrogen exerts neuroprotec⁃ tive effects on OGD/R damaged neurons in rat hippocam⁃ pal by protecting mitochondrial function via regulating mi⁃ tophagy mediated by PINK1/Parkin signaling pathway [J].Brain Res,2018,1698:89-98
-
[21] AGARWAL S,MUQIT M M K.PTEN ⁃induced kinase 1(PINK1)and Parkin:Unlocking a mitochondrial quality control pathway linked to Parkinson’s disease[J].Curr Opin Neurobiol,2022,72:111-119
-
[22] CHEN J L,WANG X X,CHEN L,et al.A sphingosine ki⁃ nase 2⁃mimicking TAT ⁃ peptide protects neurons against ischemia ⁃ reperfusion injury by activating BNIP3⁃mediat⁃ ed mitophagy[J].Neuropharmacology,2020,181:108326
-
[23] LIN Y F,CHIU I J,CHENG F Y,et al.The role of hypoxia⁃ inducible factor ⁃ 1α in zinc oxide nanoparticle ⁃ induced nephrotoxicity in vitro and in vivo[J].Part Fibre Toxicol,2016,13(1):52
-
[24] HANNA R A,QUINSAY M N,OROGO A M,et al.Micro⁃ tubule ⁃ associated protein 1 light chain 3(LC3)interacts with Bnip3 protein to selectively remove endoplasmic re⁃ ticulum and mitochondria via autophagy[J].J Biol Chem,2012,287(23):19094-19104
-
[25] ZHAO Y,HUANG S,LIU J,et al.Mitophagy contributes to the pathogenesis of inflammatory diseases[J].Inflam⁃ mation,2018,41(5):1590-1600
-
[26] LIU L,FENG D,CHEN G,et al.Mitochondrial outer ⁃ membrane protein FUNDC1 mediates hypoxia ⁃ induced mitophagy in mammalian cells[J].Nat Cell Biol,2012,14(2):177-185
-
[27] HOU C,LU S,SU Y,et al.C/EBP⁃alpha induces autopha⁃ gy by binding to Beclin1 through its own acetylation modi⁃ fication in activated hepatic stellate cells[J].Exp Cell Res,2021,405(2):112721
-
[28] YANG X,HEI C,LIU P,et al.Inhibition of mTOR path⁃ way by rapamycin reduces brain damage in rats subjected to transient forebrain ischemia[J].Int J Biol Sci,2015,11(12):1424⁃1435
-
[29] LAN R,ZHANG Y,WU T,et al.Xiao⁃xu⁃ming decoction reduced mitophagy activation and improved mitochondri⁃ al function in cerebral ischemia and reperfusion injury [J].Behav Neurol,2018,2018:4147502
-
[30] HUANG Y F,GU C J,WANG Q,et al.The protective ef⁃ fort of GPCR kinase 2 ⁃ interacting protein ⁃ 1 in neurons via promoting Beclin1 ⁃ Parkin induced mitophagy at the early stage of spinal cord ischemia⁃reperfusion injury[J].FASEB J,2020,34(2):2055⁃2074
-
摘要
急性肠缺血性疾病是临床上常见的急危重疾病,如肠系膜上动脉栓塞等,经有效治疗并恢复血流后,容易出现缺血再灌注损伤(ischemia reperfusion injury,IRI)。线粒体自噬在肠IRI的病理过程发挥着极其重要的作用;线粒体自噬是一把“双刃剑”,其发挥的作用主要取决于肠IRI的程度,在轻度肠IRI的病理改变中,发挥着减轻IRI的作用,而在严重肠IRI的病理改变中,发挥着加重IRI的作用。线粒体自噬在肠IRI中的调控机制涉及多种信号通路,包括PINK1/Parkin信号通路、BNIP3/NIX 信号通路、FUNDC1信号通路、Beclin1信号通路。随着研究的深入,线粒体自噬在肠IRI过程中的作用和机制越来越清晰,为肠IRI的精准治疗提供参考。
Abstract
Acute intestinal ischemic is a common and critical illness,such as superior mesenteric artery embolism. Ischemia reperfusion injury(IRI)is common after treatment. In the pathological process of intestinal IRI,mitophagy is a “double⁃edged sword”. Its role mainly depends on the degree of IRI. In the pathological changes of mild intestinal IRI,it plays a role in alleviating IRI,while in severe cases,it plays the opposite role. The regulation mechanism of mitophagy in intestinal IRI involves multiple signal pathways, such as PINK1/Parkin signal pathway,BNIP3/NIX signal pathway,FUNDC1 signal pathway and Beclin1 signal pathway. With the deepening of related research,the function and mechanism of mitophagy in intestinal IRI is gradually clear,which provides a reference for accurate intestinal IRI.