-
帕金森病(Parkinson’sdisease,PD)是第二大常见的神经退行性疾病,影响1%的60岁以上人群[1]。随着老年人口比例的增加,PD病因的探索及治疗方法的研究变得亟为迫切。PD在临床上通常表现为静止性震颤、运动迟缓、肌僵直、姿势反射障碍等运动障碍。此外,患者通常出现感觉障碍(疼痛等)、睡眠障碍(日间过度睡眠等)、自主神经功能异常及精神神经症状(抑郁及情感障碍)等非运动症状[2]。 PD病理学变化主要与黑质纹状体通路多巴胺能神经元丧失、路易小体形成及胶质细胞增生相关。在过去的研究中,多种细胞功能障碍被证实与PD相关,如线粒体功能障碍、氧化应激、内质网应激、蛋白质错误折叠和免疫炎症反应等[3]。近期研究表明,通过对PD患者进行全基因组关联分析(Genome ⁃wide association study,GWAS),发现脂质在PD的病理进程中也发挥重要作用[4]。这一发现为PD病因背后的分子机制研究提供新的思路,同时也为PD的治疗方法提供新的线索。
-
脂类是一种不溶于水但溶于非极性有机溶剂的化合物,其主要功能为储存能量,提供机体必需脂肪酸。此外,脂质还是细胞的重要组成成分,在生物学活动中承担传递信息和运输物质的功能。随着生物技术的进步和人类认知水平的提高,脂质在各种疾病的作用也逐渐被知晓。研究表明,脂滴与神经退行性病变之间存在多重联系。例如,神经元中脂滴的异常积累可以诱导α⁃突触核蛋白转化为阻止蛋白质水解的形式,从而引起α⁃突触核蛋白在人类神经元中的累积[5],提示脂质可能在PD病因中发挥作用。与其一致的是,编码β⁃葡萄糖脑苷脂酶(β⁃glucocerebrosidase,GBA)的基因突变与家族性PD发病率呈正相关[6]。此外,其他与脂质代谢有关的基因,多个单核苷酸多态性(single nucleotide polymorphism,SNP)与散发性PD相关,如酸性神经酰胺酶1(N ⁃acylsphingosine amidohydrolase1,ASAH1)[7]。脂质可分为8种不同的亚类,分别为脂肪酰、甘油酯、甘油磷脂、鞘脂、固醇类、丙烯醇、糖脂和聚酮[8]。本文总结这些脂质在PD发生中的作用。
-
1 脂肪酰(fatty acyls,FA)
-
FA也称脂酰化合物,泛指脂肪酸及含有脂肪酸残基的脂质。脂酰化合物是乙酰辅酶A、丙二酰辅酶A及甲基丙二酸单酰辅酶A经脂肪酸合成反应而得到的多种脂质分子。必需脂肪酸(essential fatty acids,EFA)经代谢成为各自的长链代谢物。研究表明,EFA及其代谢物参与调节体内多种生理生化过程。FA与亲脂性异种生物化合物螯合还可以发挥细胞神经保护作用[9]。以下将从饱和脂肪酸(satu⁃ rated fatty acid,SFA)、单不饱和脂肪酸(monounsatu⁃ rated fatty acid,MUFA)、多不饱和脂肪酸(polyunsat⁃ urated fatty acids,PUFA)3个方面进行阐述。
-
1.1 SFA
-
SFA是一类碳链中没有不饱和键的脂肪酸,是构成脂质的基本成分之一。在过去20年里,人们发现,富含SFA的高脂饮食引发的肥胖症与神经炎症和反应性胶质增生相关,会导致神经系统疾病如神经退变的发生[10⁃11]。棕榈酸(palmitic acid,PA),又称软脂酸,是一种高级饱和脂肪酸。研究发现,经由PA处理的人神经母细胞瘤细胞SH⁃SY5Y和人胶质母细胞瘤细胞T98G出现时间和剂量依赖性的细胞毒性,而百草枯的联合给药则会加剧PA的神经毒性[12]。在过去研究中,已知神经炎症反应是PD的重要病理学特征,最新证据表明当神经元暴露于PA时,多种炎症反应通路都发生了显著改变[13]。除此之外,已知雌激素和雌激素受体α可以保护绝经前女性免受炎症和肥胖相关疾病的代谢并发症,而体外给予PA会降低动物模型中下丘脑神经元和星形胶质细胞中的过氧化物酶体增殖物激活受体⁃γ共激活因子⁃1α(peroxisome proliferator⁃ activated receptor⁃γ coactivator⁃1α,PGC⁃1α)和雌激素受体α(estrogen receptor,ERα)的水平,从而间接导致神经炎症[14]。
-
1.2 MUFA
-
MUFA是指含有1个双键的脂肪酸。在秀丽隐杆线虫转基因PD模型中,将编码Δ9去饱和酶的基因脂肪⁃5和脂肪⁃7沉默后,MUFA合成SFA的过程受到抑制,挽救了多巴胺神经元的退化。同样,这些基因的沉默也减少了在体壁肌肉中表达α⁃突触核蛋白的PD线虫模型中蛋白质聚集体的形成[15]。有趣的是,PD的另一个主要病理表现,路易小体的形成,也与脂肪酸有密切联系。α⁃突触核蛋白是路易小体的主要组成成分。研究表明其N端和C端可检测到一个与脂肪酸结合蛋白同源的基序,使其能够与油酸结合[16]。这一结构有助于α⁃突触核蛋白与脂筏发生相互作用。
-
1.3 PUFA
-
PUFA是指含有两个或两个以上双键且碳链长度为18~22个碳原子的直链脂肪酸,通常分为omega⁃3和omega⁃6。PUFA在大脑中含量非常丰富,在神经元细胞膜流动性和通透性中起关键作用,还可以作为能量储备,在细胞信号传递中发挥第二信使的作用[17]。多种动物模型的研究数据表明,PUFA可以减少神经细胞的病理性改变,具有潜在的神经保护作用[18-20]。但omega⁃6多不饱和脂肪酸衍生物可修饰α⁃突触核蛋白进而生成有毒低聚物。在过度表达 α⁃突触核蛋白的细胞中,线粒体电子传递链被抑制。提示PUFA可能通过损害线粒体功能导致PD等神经退行性病变[21]。因此,关于摄入PUFA对PD风险的影响目前存在争议。
-
2 甘油酯(glycerylester,GE)
-
GE是甘油(丙三醇)上的羟基与脂肪酸酯化的产物(不包括甘油磷脂)。GE根据甘油的羟基被酯化的个数而分类:甘油中1个羟基被酯化称为单酰甘油(monoacylglycerol,MAG),2个羟基被酯化称为二酰基甘油(diacylglycerol,DAG),3个羟基被酯化称为三酰基甘油(triacylglycerol,TAG),其中TAG最为常见。下面,将分别从MAG、DAG和TAG方面对GE和PD之间的联系进行阐述。
-
2.1 MAG
-
MAG是甘油分子中的1个羟基与脂肪酸酯化生成的甘油酯。目前可获得的关于MAG与PD之间联系的信息比较少,已知的多是关于MAG脂肪酶的研究结果。在以往研究中,研究者在LPS处理的小鼠中测试了MAG脂肪酶抑制剂的效果,结果表明抑制剂可以减少PD模型动物前列腺素和促炎细胞因子形成,从而发挥神经保护作用[22]。在PD患者的黑质和豆状核中分别观察到MAG脂肪酶的表达减少和增加[23]。
-
2.2 DAG
-
DAG是由1个甘油分子的2个羟基和2个脂肪酸缩合失去两分子水形成的酯,是参与激素信息传递的磷酸肌醇系统中具有第二信使作用的脂质。研究表明,PD患者额叶皮质中MUFA与PUFA侧链DAG含量明显增加[24]。而二酰甘油激酶(diacylg⁃ lycerol kinase,DGK)家族是磷脂酰肌醇信号通路的一种第二信使代谢酶,广泛调节各种信号传导过程。研究表明其家族成员DGKζ与免疫和炎症反应密切相关。然而关于DGKζ引发炎症信号对NF⁃κB信号通路的调节机制尚不清楚[25]。
-
2.3 TAG
-
TAG是一种由1个甘油分子和3个脂肪酸分子组成的酯类有机化合物,为动物性油脂与植物性油脂的主要成分,可通过日常饮食摄取。多年队列研究结果提示TAG与PD风险呈负相关[26]。在GWAS分析中,数据显示有4种TAG与PD相关联(TAG 44∶1、46∶1、46∶2和48∶0)。这一结果有力地支持了TAG在PD病因学中的关键作用[27]。胃肠道功能障碍是PD最常见的非运动症状之一,研究者们在鱼藤酮诱导的斑马鱼模式动物模型中发现,TAG的主要脂肪酸成分辛酸,可以改善大脑和肠道中神经毒素诱导的氧化应激和炎症,从而减轻临床表现[28]。 α⁃突触核蛋白的异常表达是PD的典型症状。在α⁃ 突触核蛋白过度表达的啮齿动物和人类神经元模型中,研究者发现TAG有明显增加[29]。近些年,由TAG诱导的营养性酮症成为神经退行性疾病治疗的一个可能方向,其机制可能与缓解星形胶质细胞增多相关[30]。
-
3 甘油磷脂
-
当两分子脂肪酸与甘油的C1及C2上的羟基以酯键相连,一分子亲水的磷酸基团与C3的羟基相连就形成最简单的甘油磷脂,又名磷脂酸。磷脂酸中,磷酸基团上的氢离子被其他基团取代,形成其他复杂的甘油磷脂,即磷脂酸(phosphatidic acid, PA)、磷脂酰乙醇胺(phosphatidylethanolamine,PE)、磷脂酰丝氨酸(phosphatidylserine,PS)、磷脂酰胆碱 (phosphatidylcholine,PC)、磷脂酰肌醇(phosphati⁃ dylinositol,PI)、磷脂酰甘油(phosphatidylglycerol, PG)和心磷脂(cardiolipin,CL)。甘油磷脂是细胞膜的关键组成成分,此外,它们还充当信号分子调控脂质代谢相关基因的表达[31]。下面,将分类阐述甘油磷脂与PD之间的联系。
-
3.1 PA
-
PA是一类重要的脂质信使,广泛地参与各种细胞过程,包括囊泡运输、细胞骨架形成、细胞增殖等[32]。虽然体内PA的含量较少,但α⁃突触核蛋白对PA的亲和力较高,这表明局部PA浓度可能对α⁃突触核蛋白功能和含量稳定很重要。对α⁃突触核蛋白过表达的小鼠脑内进行脂质成分分析,结果表明PA浓度增加,且含有PA的囊泡已被证明在体外可刺激α⁃突触核蛋白聚集/原纤维形成,说明PA可能有促进膜表面的蛋白质⁃蛋白质相互作用的能力[33]。
-
3.2 PE
-
PE是哺乳动物细胞膜的组成部分,在细胞凋亡和细胞信号传导等生物过程中发挥着重要作用。在多巴胺和磷脂相互作用的研究中发现,PD患者存在PE水平降低的现象,但这种现象具有性别差异[34]。在早期研究中,已知PE是α⁃突触核蛋白与生物膜相互作用的一个关键因素。近年的动物模型研究数据表明PE缺乏会破坏α⁃突触核蛋白的稳态并诱导其聚集[35],这提示PE可能延缓PD的病理发展进程。
-
3.3 PS
-
PS是一种头部带负电的磷脂,由PC或PE通过与丝氨酸交换碱基合成,是真核细胞膜的重要组成部分,在许多信号通路中发挥重要作用[36]。PS暴露在细胞膜表面,作为吞噬作用的一个“吃我”的信号。在鱼藤酮诱导的神经元/小胶质细胞共培养的PD模型中,利用抗PS抗体阻断小胶质细胞介导的吞噬作用可以发挥对神经元的保护作用[37]。
-
PS与α⁃突触核蛋白之间也有着千丝万缕的联系。结构上,α⁃突触核蛋白的N⁃末端和中部区域与PS发生相互结合[38];功能上,脂膜对α⁃突触核蛋白聚集有影响。除此之外,α⁃突触核蛋白通过其C⁃末端尾部与囊泡⁃SNAP受体(vesiole⁃SNAP receptor,v⁃SNARE)的相互作用以及通过其两亲性N⁃末端结构域与PS的反式相互作用促进SNARE复合物的形成,从而有利于依赖SNARE的囊泡进行对接[39]。
-
3.4 PC
-
PC是一种两性分子,由亲水的头部和疏水的尾部组成,是磷脂的一种。PC是生物膜的重要组成部分,其代谢在促进细胞内胆固醇转运、膜脂稳态和神经元分化过程中发挥重要作用[40-41]。在6⁃OHDA诱发的PD动物模型中,PC和溶血磷脂酰胆碱(lyso⁃ phosphatidylcholine,LPC)脂质分类中大部分的脂质水平明显下调。上调的两种脂质是LPC(16∶0)和LPC(18∶1),这两种脂质对神经炎症信号非常重要。这些发现为PD样病理早期脂质变化的表征提供了依据,并可能为PD的早期干预提供新靶点[42]。此外,研究表明,α⁃突触核蛋白可以通过与磷脂的弱相互作用重构PC膜[43],而PC膜流动性又将影响N⁃乙酰α⁃突触核蛋白的构象和聚集倾向[44]。
-
3.5 CL
-
CL,亦称双磷脂酰甘油。它是由2个磷酸分子通过1个甘油分子共价连接而成。CL主要存在于动物细胞线粒体的内膜,15%的CL存在心肌。各种研究表明,线粒体功能障碍和异常蛋白质聚集是PD发展的两个主要因素。线粒体功能上,PTEN诱导的激酶1(PTEN⁃induced kinase1,PINK1)突变会导致线粒体缺陷。在分离的线粒体中直接补充CL不仅可以恢复PINK1诱导的复合物I缺陷,还可恢复特定突变体中复合物I和泛醌之间低效的电子转移[45]。 α⁃突触核蛋白能够与线粒体发生相互影响,在体外, α⁃突触核蛋白可以将含有CL的人工膜碎片化,这种结果多见于α⁃突触核蛋白的低聚体形式。因此,α⁃ 突触核蛋白对参与PD发病机制的细胞器形态改变起主要且直接作用[46-47]。
-
4 鞘脂
-
鞘脂是一类含有鞘氨醇骨架的两性脂类,一端连接着一个长链脂肪酸,另一端为一个极性醇。鞘脂包括鞘磷脂、神经节苷脂等,一般存在于植物和动物膜内,在中枢神经系统中含量尤其丰富。除了在细胞膜中发挥结构作用外,其代谢物包括神经酰胺、鞘氨醇和鞘氨醇⁃1⁃磷酸(sphingosine ⁃1⁃phos⁃ phate,S1P),还会作为参与调节细胞生长、分化、衰老和凋亡的生物活性信号分子在细胞中发挥重要功能,其中神经酰胺可能通过调节线粒体自噬促进PD的发生发展[48]。
-
4.1 鞘氨醇
-
鞘氨醇是一种生物活性脂质,已知可诱导细胞凋亡和调节内吞作用。与代谢病相关的鞘脂(葡糖基神经酰胺、葡糖基鞘氨醇、鞘氨醇、鞘氨醇⁃1⁃磷酸)被证实可在体外促进α⁃突触核蛋白聚集,作为人类和哺乳动物神经元内源性α⁃突触核蛋白聚集体形成的诱因[49]。因此,靶向调节葡糖基鞘氨醇生成和代谢的ASAH1和葡萄糖脑苷酶2(glucosylcerami⁃ dasebeta2,GBA2)治疗突变型GBA相关性PD具有良好的前景。
-
鞘氨醇激酶(sphingosine kinase,Sphk1/2)是负责合成S1P和调节生物活性鞘氨醇脂质稳态的一种生物酶。S1P可通过5种特异性G蛋白偶联受体(G protein coupled receptor,GPCR)S1P1~5以自分泌或旁分泌方式作为信使发挥作用。研究表明,在实验性PD模型中抑制Sphk1进一步加重caspase依赖性凋亡,进而引起多巴胺能神经元死亡[50]。在1⁃甲基⁃ 4⁃苯基⁃1,2,3,6⁃四氢吡啶(1⁃methyl⁃4⁃phenyl⁃1,2,3, 6⁃tetrahydropyridine,MPTP)诱导的PD小鼠模型和细胞模型中,鞘氨醇激酶2(sphingosine kinase,Sphk2) 在小鼠中脑黑质区的表达显著下调。荧光共定位结果显示,Sphk2主要存在于线粒体中,提示其在线粒体功能中的重要作用[51]。
-
4.2 鞘磷脂(sphingomyelin,SM)
-
在真核细胞和血浆中最丰富的鞘脂是SM。它是细胞膜的组成部分之一,也是生物活性脂质的来源,如神经酰胺、神经酰胺⁃1⁃磷酸和S1P。研究表明,神经酰胺在线粒体中积累并对线粒体功能产生负面影响,最显著的是对于线粒体电子传递链的影响。PINK1突变对于线粒体电子传递链的影响是早发性PD的关键。β⁃氧化在线粒体电子传递链功能障碍中起保护作用,而神经酰胺的积累会使得PINK1突变体中的β⁃氧化减少从而导致线粒体障碍[52]。位于内质网/高尔基体以及细胞核中的SM由中性SMase1(neutral SMase1,nSMase1)代谢,而在用MPTP诱导PD的小鼠中脑中,nSMase1减少,SM累积[53]。因此,SM积聚在PD发病机制中的作用可能是多方面的,与炎症、线粒体功能障碍和/或α⁃突触核蛋白的表达和聚集有关。
-
4.3 脑苷脂
-
脑苷脂是酰基鞘氨醇上以糖苷键结合一分子己糖而成的化合物,是神经鞘糖脂的一种,可分为半乳糖型和葡萄糖型两大类。脑苷脂的主要功能为组成细胞结构以及作为细胞内外信号分子。GBA基因编码一种参与鞘脂代谢的溶酶体酶,葡糖脑苷脂酶(glucocerebrosidase,GCase)。GBA基因突变是PD发病的最重要风险因素,占所有PD病例的比例超过5%。此外,在散发性PD病例脑中发现GCase活性丧失。缺乏GCase的细胞和动物模型会出现溶酶体功能障碍,尤其是自噬溶酶体途径,导致α⁃突触核蛋白累积。由于葡萄糖脑苷酶1(glucocerebrosi⁃ dase1,GBA1)缺乏有助于α⁃突触核蛋白的聚集并导致包括神经节苷脂在内的神经元鞘糖脂(glyco⁃ sphingolipid,GSL)的变化,现有假设推测GBA1缺乏可能影响α⁃突触核蛋白四聚体的形成[54]。
-
5 固醇类
-
固醇脂又称为甾醇脂,主要包括固醇、类固醇、胆汁酸及其衍生物。胆固醇及其衍生物与甘油磷脂和鞘磷脂是细胞膜脂的重要组成部分。众所周知,甾醇在免疫细胞功能中发挥作用,能够影响膜的流动性和通透性,并作为信号分子和激素。
-
大脑是胆固醇含量最高的组织。作为膜成分,胆固醇影响细胞膜的物理特性(例如有序性、流动性和渗透性)和生物特性(例如调节蛋白质和脂筏的功能)[55],从而参与重要的神经活动过程,如电脉冲沿轴突的传递、突触形成和突触功能[56]。通过对PD患者及对照组的追踪统计,表明PD患者发病率与胆固醇摄入呈负相关[57]。α⁃突触核蛋白和胆固醇代谢之间存在紧密的相互关系。一方面,胆固醇调节α⁃突触核蛋白与突触样囊泡的结合,触发其聚集[58];另一方面,α⁃突触核蛋白可能刺激神经元细胞中的胆固醇外流,在胆固醇和α⁃突触核蛋白之间形成调节反馈回路[59]。此外,研究发现野生型α⁃ 突触核蛋白(wild type α⁃synuclein,WT⁃α⁃Syn)过表达的人类神经母细胞瘤细胞中胆固醇酯水平上调[60],也表明PD的重要致病因素α⁃突触核蛋白和胆固醇代谢之间存在紧密联系。
-
6 糖脂和聚酮
-
糖脂是指含有糖基配体的脂类化合物,自然界中的糖脂可按其组分中的醇基种类而分为两大类:甘油糖脂及鞘糖脂。上文中提到的脑苷脂便是糖脂的一种。除了上文中已提及的GBA,另一种编码半乳糖神经酰胺酶(galactosylceramidase,GALC)的基因,它的缺乏可能通过增加神经元脆弱性而导致晚发性突触核蛋白病[61]。
-
聚酮是一类由细菌、真菌、植物和动物生成的二级代谢产物,可能的作用有抑菌、维持细胞稳定或作为天然杀虫剂等。热休克蛋白⁃90(heat shock protein⁃90,Hsp90)的抑制在神经变性中起关键作用。据报道,对Hsp90的药理学抑制可导致热休克转录因子⁃1(heat shock transcription factor⁃1,Hsf⁃1) 的激活,从而导致Hsp70和其他较小的热休克蛋白的上调。一般来说,Hsp70可能防止错误折叠蛋白质的聚集。有学者认为Hsp70可特定靶向α⁃突触核蛋白发挥作用[62]。
-
根赤壳菌素和格尔德霉素是已发现的真菌和细菌代谢物,现有研究表明这两种分子都以Hsp90的N端ATP结合位点为靶点抑制Hsp90的功能,具有高度的特异性[63]。
-
7 总结与展望
-
本文概述了在PD患者、动物和细胞模型的多项研究中脂质代谢的研究进展。从文中可以发现, PD中存在脂质代谢异常,这些脂质在PD患者的不同脑细胞类型之间协同作用,发挥储存和运输功能 (表1)。更深入的研究表明,脂质成分以动态方式定义细胞器特性和脂质双层特性等。其中,膜的改变动态控制如(突触)囊泡运输、胞吞⁃胞吐和α⁃突触核蛋白聚集等重要的生理过程,这些过程已经被证实与PD密切相关。脂质还通过受体和其他信号转导蛋白在脑细胞内和细胞间信号传导中直接或间接发挥重要作用,例如,PUFA参与炎症、神经发生和神经保护。然而,仍有部分脂质并未发现与PD相关。性别、年龄、病因特异性DNA多态性或微生物等多种变量可能影响研究结果。脂质像一把双刃剑,有些脂质如高密度脂蛋白可以降低动脉粥样硬化风险,但过量的SFA则会导致神经炎症。脂质在人体中仿佛一架天平,多种因素可以导致这架天平发生失衡而对神经系统产生不可逆的损伤。因此,今后对PD进行更细化的分类是深入理解脂质代谢异常的生物学意义的关键,进一步探索PD与脂质代谢异常之间的病理生理学关系,将有望助力开发治疗PD的新疗法。
-
参考文献
-
[1] TYSNES O B,STORSTEIN A.Epidemiology of Parkin⁃ son’s disease[J].J Neural Transm(Vienna),2017,124(8):901-905
-
[2] BLOEM B R,OKUN M S,KLEIN C.Parkinson’s disease [J].Lancet,2021,397(10291):2284-2303
-
[3] 崔亚欢,陈乃耀.帕金森病的发病机制研究[J].中华老年心脑血管病杂志,2019,21(1):106-110
-
[4] KLEMANN C,MARTENS G J M,SHARMA M,et al.Inte⁃ grated molecular landscape of Parkinson’s disease[J].NPJ Parkinson’s Dis,2017,3:14
-
[5] GIRARD V,JOLLIVET F,KNITTELFELDER O,et al.Abnormal accumulation of lipid droplets in neurons induces the conversion of alpha ⁃ Synuclein to proteolytic resistant forms in a drosophila model of parkinson’s disease[J].PLoS Genet,2021,17(11):1-27
-
[6] 郭丽丽,王咏,王莹,等.SNCA和GBA在帕金森病中相互作用研究进展[J].基础医学与临床,2019,(1).97-101
-
[7] ROBAK L A,JANSEN I E,VAN ROOIJ J,et al.Exces⁃ sive burden of lysosomal storage disorder gene variants in Parkinson’s disease[J].Brain,2017,140(12):3191-3203
-
[8] FAHY E,SUBRAMANIAM S,MURPHY R C,et al.Up⁃ date of the LIPID MAPS comprehensive classification sys⁃ tem for lipids[J].J Lipid Res,2009,50(Suppl):S9-14
-
[9] DE CARVALHO CCCR,CARAMUJO M J.The various roles of fatty acids[J].Molecules,2018,23(10):2583
-
[10] ALEXAKI V I.The impact of obesity on microglial func⁃ tion:immune,metabolic and endocrine perspectives[J].Cells,2021,10(7):1584
-
[11] GUILLEMOT ⁃ LEGRIS O,MUCCIOLI G G.Obesity ⁃ in⁃ duced neuroinflammation:beyond the hypothalamus[J].Trends Neurosci,2017,40(4):237-253
-
[12] NG Y W,SAY Y H.Palmitic acid induces neurotoxicity and gliatoxicity in SH ⁃ SY5Y human neuroblastoma and T98G human glioblastoma cells[J].Peer J,2018,6:1-21
-
[13] FLORES⁃LEÓN M,ALCARAZ N,PÉREZ⁃DOMÍNGUEZ M,et al.Transcriptional profiles reveal deregulation of lipid metabolism and inflammatory pathways in neurons ex⁃ posed to palmitic acid[J].Mol Neurobiol,2021,58(9):4639-4651
-
[14] MORSELLI E,FUENTE⁃MARTIN E,FINAN B,et al.Hy⁃ pothalamic PGC⁃1alpha protects against high⁃fat diet ex⁃ posure by regulating ERalpha[J].Cell Rep,2014,9(2):633-645
-
[15] MAULIK M,MITRA S,BASMAYOR A M,et al.Genetic silencing of fatty acid desaturases modulates α⁃synuclein toxicity and neuronal loss inparkinson ⁃like models of C.elegans[J].Front Aging Neurosci,2019,11:207
-
[16] SHARON R,GOLDBER M S,BAR ⁃ JOSEF I,et al.α ⁃ Synuclein occurs in lipid⁃rich high molecular weight com⁃ plexes,binds fatty acids,and shows homology to the fatty acid⁃binding proteins[J].Proc Natl Acad Sci USA,2001,98:9110-9115
-
[17] FECCHIO C,PALAZZI L,DE LAURETO P P.α⁃Synuclein and polyunsaturated fatty acids:molecular basis of the in⁃ teraction and implication in neurodegeneration[J].Mole⁃ cules,2018,23:1531
-
[18] LAMONTAGNE⁃PROULX J,COULOMBE K,DAHHANI F,et al.Effect of docosahexaenoic acid(DHA)at the en⁃ teric level in a synucleinopathy mouse model[J].Nutri⁃ ents,2021,13(12):4218
-
[19] BARROS A S,CRISPIM R Y G,CAVALCANTI J U,et al.Impact of the chronic omega⁃3 fatty acids supplementa⁃ tion in hemiparkinsonismmodelinduced by 6⁃Hydroxydo⁃ pamine in rats[J].Basic Clin Pharmacol Toxicol,2017,120(6):523-531
-
[20] DELATTRE A M,CARABELLI B,MORI M A,et al.Ma⁃ ternal omega ⁃ 3 supplement improves dopaminergic sys⁃ tem in pre⁃ and postnatal inflammation⁃induced neurotox⁃ icity in Parkinson’s disease model[J].Neurobiol,2017,54:2090-2106
-
[21] SHAMOTO⁃NAGAI M,HISAKA S,NAOI M,et al.Modi⁃ fication of α⁃synuclein by lipid peroxidation products de⁃ rived from polyunsaturated fatty acids promotes toxic oligomerization:its relevance to Parkinson disease[J].Clin Biochem Nutr,2018,62:207-212
-
[22] DENG H,LI W.Monoacylglycerol lipase inhibitors:modu⁃ lators for lipid metabolism in cancer malignancy,neuro⁃ logical and metabolic disorders[J].Acta Pharm Sin B,2020,10(4):582-602
-
[23] NAVARRETE F,GARCIA⁃GUTIERREZ M S,ARACIL⁃ FERNANDEZ A,et al.Cannabinoid CB1 and CB2 Recep⁃ tors,and monoacylglycerol lipase gene expression altera⁃ tions in the basal ganglia of patients with Parkinson’s Dis⁃ ease[J].Neurotherapeutics,2018,15(2):459-469
-
[24] WOOD P L,TIPPIREDDY S,FERIANTE J,et al.Aug⁃ mented frontal cortex diacylglycerol levels in Parkinson’s disease and Lewy body disease[J].PLoS One,2018,13(3):1-15
-
[25] TSUCHIYA R,TANAKA T,HOZUMI Y,et al.Downregu⁃ lation of diacylglycerol kinase ζ enhances activation of cy⁃ tokine⁃induced NF⁃κB signaling pathway[J].BiochimBio⁃ phys Acta,2015,1853:361-369
-
[26] FANG F,ZHAN Y,HAMMAR N,et al.Lipids,apolipo⁃ proteins,and the risk of Parkinson disease[J].Circ Res,2019,125(6):643-652
-
[27] XICOY H,KLEMANN C J,DE WITTE W,et al.Shared genetic etiology between Parkinson’s disease and blood levels of specific lipids[J].NPJ Parkinsons Dis,2021,7(1):23
-
[28] SCANSIZ D,ÜNALI ·,ÜSTÜNDAĞ Ü V,et al.Caprylic acid ameliorates rotenone induced inflammation and oxidative stress in the gut⁃brain axis in Zebrafish[J].Mol Biol Rep,2021,48(6):5259-5273
-
[29] FANNING S,HAQUE A,IMBERDIS T,et al.Lipidomic analysis of α ⁃ synuclein neurotoxicity Identifies stearoyl coa desaturase as a target for parkinson treatment[J].Mol Cell,2019,73(5):1001-1014
-
[30] MORRIS G,MAES M,BERK M,et al.Nutritional ketosis as an intervention to relieve astrogliosis:Possible thera⁃ peutic applications in the treatment of neurodegenerative and neuroprogressive disorders[J].Eur Psychiatry,2020,63(1):1-21
-
[31] MUSILLE P M,KOHN J A,ORTLUND E A.Phospholipid⁃ driven gene regulation[J].FEBS Lett,2013,587:1238-1246
-
[32] JIANG Z,HESS S K,HEINRICH F,et al.Molecular de⁃ tails of α ⁃ Synuclein membrane association revealed by neutrons and photons[J].PhysChemB,2015,119:4812-4823
-
[33] MIZUNO S,SASAI H,KUME A,et al.Dioleoyl⁃phospha⁃ tidic acid selectively binds to α⁃synuclein and strongly in⁃ duces its aggregation[J].FEBS Lett,2017,591(5):784-791
-
[34] SEYFRIED T N,CHOI H,CHEVALIER A,et al.Sex⁃re⁃ lated abnormalities in substantia nigralipids in Parkinson’ s disease[J].ASN Neuro,2018,10:1-10
-
[35] WANG S,ZHANG S,XU C,et al.Chemical compensation of mitochondrial phospholipid depletion in yeast and ani⁃ mal models of parkinson’s Disease[J].PLoS One,2016,11(10):1-21
-
[36] KAY J G,GRINSTEIN S.Phosphatidylserine ⁃ mediated cellular signaling[J].Adv Exp Med Biol,2013,991:177-193
-
[37] BUTLER C A,POPESCU A S,KITCHENER E J A,et al.Microglial phagocytosis of neurons in neurodegeneration,and its regulation[J].J Neurochem,2021,158(3):621-639
-
[38] ALMANDOZ ⁃GIL L,LINDSTROM V,SIGVARDSON J,et al.Mapping of surface⁃exposed epitopes of in vitro and in vivo aggregated species of alpha ⁃ synuclein[J].Cell Mol Neurobiol,2017,37(7):1217-1226
-
[39] LOU X,KIM J,HAWK B J,et al.α⁃Synuclein may cross⁃ bridge v ⁃ SNARE and acidic phospholipids to facilitate SNARE⁃dependent vesicle docking[J].Biochem J,2017,474:2039-2049
-
[40] LAGACE T A.Phosphatidylcholine:greasing the choles⁃ terol transport machinery[J].Lipid Insights,2015,8(Suppl 1):65-73
-
[41] MAGAQUIAN D,DELGADO OCAÑA S,PEREZ C,et al.Phosphatidylcholine restores neuronal plasticity of neural stem cells under inflammatory stress[J].Sci Rep,2021,11(1):22891
-
[42] FARMER K,SMITH C A,HAYLEY S,et al.Major altera⁃ tions of phosphatidylcholine and lysophosphotidylcholine⁃ lipids in the substantia nigrausing an early stage model of Parkinson’s disease[J].Int J Mol Sci,2015,16(8):18865-18877
-
[43] KAUR U,LEE J C.Membrane interactions of α⁃synuclein probed by neutrons and photons[J].Acc Chem Res,2021,54(2):302-310
-
[44] O’LEARY E I,JIANG Z,STRUB M P,et al.Effects of phosphatidylcholine membrane fluidity on the conforma⁃ tion and aggregation of N ⁃ terminally acetylated alpha ⁃ synuclein[J].J Biol Chem,2018,293(28):11195-11205
-
[45] VOS M,GEENS A,BOHM C,et al.Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency[J].J Cell Biol,2017,216(3):695-708
-
[46] RYAN T,BAMM V V,STYKEL M G,et al.Cardiolipin exposure on the outer mitochondrial membrane modulates α⁃synuclein[J].Nat Commun,2018,9(1):817
-
[47] NAKAMURA K,NEMANI V M,AZARBAL F,et al.Direct membrane association drives mitochondrial fission by the Parkinson disease ⁃associated protein alpha ⁃ synu⁃ clein[J].J Biol Chem,2011,286(23):20710⁃20726
-
[48] SHERIDAN M,OGRETMEN B.The role of ceramide me⁃ tabolism and signaling in the regulation of mitophagy and cancer therapy[J].Cancers(Basel),2021,13(10):2475
-
[49] TAGUCHI Y V,LIU J,RUAN J,et al.Glucosylsphin⁃ gosinepromotes alpha⁃synuclein pathology in mutant GBA ⁃associated Parkinson’s disease[J].J Neurosci,2017,37(40):9617-9631
-
[50] PYSZKO J A,STROSZNAJDER J B.The key role of sphingosine kinases in the molecular mechanism of neuro⁃ nal cell survival and death in an experimental model of Parkinson’s disease[J].Folia Neuropathol,2014,52:260-269
-
[51] SIVASUBRAMANIAN M,KANAGARAJ N,DHEEN S T,et al.Sphingosine kinase 2 and sphingosine⁃1⁃phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson’s disease and in MPP+ ⁃treat⁃ ed MN9D cells in vitro[J].Neuroscience,2015,290:636-648
-
[52] VOS M,DULOVIC⁃MAHLOW M,MANDIK F,et al.Ce⁃ ramide accumulation induces mitophagy and impairs β ⁃ oxidation in PINK1 deficiency[J].Proc Natl Acad Sci U S A,2021,118(43):1-10
-
[53] CATALDI S,ARCURI C,HUNOT S,et al.Neutral sphin⁃ gomyelinase behaviour in hippocampus neuroinflamma⁃ tion of MPTP ⁃induced mouse model of parkinson’s dis⁃ ease and in embryonic hippocampal cells[J].Mediators Inflamm,2017,2017:1-8
-
[54] KIM S,YUN S P,LEE S,et al.GBA1 deficiency negatively affects physiological alpha⁃synuclein tetramers and relat⁃ ed multimers[J].Proc Natl Acad Sci U S A,2018,115(4):798-803
-
[55] RADHAKRISHNAN A,ROHATGI R,SIEBOLD C.Cho⁃ lesterol access in cellular membranes controls Hedgehog signaling[J].Nat Chem Biol,2020,16(12):1303-1313
-
[56] EGAWA J,PEARN M L,LEMKUIL B P,et al.Membrane lipid rafts and neurobiology:age⁃related changes in mem⁃ brane lipids and loss of neuronal function[J].J Physiol,2016,594(16):4565-4579
-
[57] HUANG X,STERLING NW,DU G,et al.Brain cholesterol metabolism and Parkinson’s disease[J].Mov Disord,2019,34(3):386-395
-
[58] JAKUBEC M,BARIÅS E,FURSE S,et al.Cholesterol ⁃ containing lipid nanodiscs promote an α⁃ synuclein bind⁃ ing mode that accelerates oligomerization[J].FEBS J.2021,288(6):1887-1905
-
[59] HSIAO J T,HALLIDAY G M,KIM W S.Alpha⁃synuclein regulates neuronal cholesterol efflux[J].Molecules,2017,22(10):1769
-
[60] ALZA N P,CONDE M A,SCODELARO⁃BILBAO P G,et al.Neutral lipids as early biomarkers of cellular fate:the case of α⁃ synuclein overexpression[J].Cell Death Dis,2021,12(1):52
-
[61] MARSHALL M S,BONGARZONE E R.Beyond Krabbe’s disease:the potential contribution of galactosylcerami⁃ dase deficiency to neuronal vulnerability in late ⁃ onset synucleinopathies[J].Neurosci Res,2016,94:1328-1332
-
[62] APRILE F A,KÄLLSTIG E,LIMORENKO G,et al.The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α ⁃ synuclein aggregation[J].Sci Rep,2017,7(1):9039
-
[63] DLUGOSZ A,JANECKA A.Novobiocin analogs as poten⁃ tial anticancer agents[J].Mini Rev Med Chem,2017,17(9):728-733
-
摘要
帕金森病(Parkinson’s disease,PD)是一种神经退行性疾病,其主要病理学特征为黑质纹状体通路多巴胺能神经元进行性丢失,同时伴随路易小体形成和胶质细胞增生。目前报道的脂质代谢与PD发病相关性的研究表明不同类型的脂质成分在PD进展中发挥重要作用。但因临床患者受多种因素的影响(年龄、性别或病因),故难以获得脂质与PD发生发展之间的明确联系。本文旨在综述脂质在PD中的研究进展,深化对PD病理和发病机制的认识,以期为治疗PD提供新的潜在靶点和研究方向。
Abstract
Parkinson’s disease(PD)is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons(DA) in the substantia nigra pars compacta,accompanied by an accumulation of Lewy bodies and activation of neuroglial cells. Current studies on the correlation between lipid metabolism and PD suggest that different kinds of lipid components play an important role in the progression of PD. However,as it was influenced by a variety of factors(age,gender or etiology)in clinical,it is difficult to obtain a definitive association between lipids and the development of PD. This article aims to review the progress of lipid components in PD, deepen the understanding of the pathology and pathogenesis of PD,and provide new potential targets for the treatment of PD.