-
产肠毒素大肠杆菌(enterotoxigenic Escherichia coli,ETEC)是引起腹泻的主要致病菌之一[1],严重威胁人体健康。目前临床所用的药物治疗效果不佳且不良反应多。益生菌具有调节肠道菌群、减轻炎症反应等功能,可以缓解ETEC导致的腹泻情况; 但是不同益生菌治疗ETEC所致腹泻的具体机制并不清楚。
-
嗜黏蛋白阿克曼氏菌(Akkermansiamuciniphila, A. muciniphila)与宿主健康有着密切联系,多项研究表明,A. muciniphila可以改善炎症反应和代谢综合征的不良症状[2],延缓代谢性疾病的发展进程[3]。因此,它也被认为是对宿主机体有益的潜在益生菌[4]。目前尚无关于A. muciniphila 减缓ETEC致小鼠腹泻的具体研究。本研究采用灌胃方式给予小鼠A. muciniphila菌液连续5 d,之后同样采取灌胃的方式给予ETEC菌液感染小鼠,观察小鼠腹泻情况,感染 ETEC 后 24 h 小鼠体内炎症因子的表达、肠道损伤情况和肠道菌群改变情况,探讨A. muciniphila减轻ETEC致小鼠腹泻的机制,为预防和减缓ETEC 引起的腹泻提供新的治疗方案。
-
1 材料和方法
-
1.1 材料
-
菌株A. muciniphila和ETEC均来自中国工业微生物保藏中心(CICC)。4~6周龄SPF级C57BL/6雄性小鼠24只(北京斯贝福生物有限公司)。小鼠喂养在动物房,12 h 光照/12 h 黑暗循环,温度控制在 23℃,湿度控制在53%。本研究经东部战区疾病预防中心实验动物伦理委员会审批(审批号 2022015642),符合实验室动物管理与使用准则。
-
1.2 方法
-
1.2.1 A. muciniphila及ETEC的培养
-
A. muciniphila使用脑心浸液培养基(BD 公司,美国)培养,3.7 g/100 mL,高压蒸汽灭绝法灭菌后,冷却至55℃时向培养基中加入终浓度为6 g/L的苏氨酸,37℃时加入 A. muciniphila,使用厌氧箱进行培养 48 h;ETEC 使用 LB 培养基,于 37℃恒温摇床中进行培养12 h。
-
1.2.2 腹泻模型的构建
-
小鼠适应性饲养1周后,通过ETEC的灌胃构建腹泻模型小鼠。培养ETEC至吸光度为1.0,菌量约为 1×109 CFU/mL,直接灌胃小鼠。造模约12 h后观察小鼠,造模成功的判断标准为小鼠出现腹泻、无力、厌食等症状。
-
1.2.3 A. muciniphila对腹泻模型小鼠的影响
-
将15只小鼠随机分为3组,每组均为5只。PBS 组,每天正常饮食;模型组,小鼠提前空腹 6 h,之后灌胃 ETEC 菌液,并在接下来 24 h 内观察小鼠腹泻情况、精神状况;干预组,培养 A. muciniphila至 600 nm下吸光度约为1.0,菌量约为 1×109 CFU/mL。取菌液0.2 mL进行灌胃,连续灌胃5 d。之后小鼠空腹 6 h,灌胃 ETEC 菌液,接下来 24 h 观察小鼠腹泻情况、精神状况。造模结束后使用代谢笼收集各组小鼠粪便,颈椎脱臼处死小鼠收集结肠组织和血液。血液 2 800 r/min 离心 15 min,收集血清和部分结肠组织置于-80℃冰箱冻存。
-
1.2.4 腹泻程度观察
-
小鼠腹泻程度的计算公式为:稀便率=一定时间内所排稀便数/一定时间内排便总数;腹泻指数= 稀便率×稀便级[5]。
-
1.2.5 ELISA检测小鼠炎症因子
-
取小鼠血清,按ELISA试剂盒(RD公司,美国) 说明书检测,使用酶标仪在450 nm处测定吸光度,根据相应标准曲线计算白细胞介素(interleukin, IL)⁃1β、肿瘤坏死因子⁃α(tumor necrosis factor⁃α, TNF⁃α)、IL⁃6的含量。
-
1.2.6 qRT⁃PCR检测小鼠结肠组织mRNA的表达
-
将冻存在-80℃冰箱的小鼠结肠组织取出,使用RNA提取试剂盒(上海飞捷公司)从结肠组织中提取总RNA。各检测指标的引物序列如下(表1)。使用 PowerUp SYBR Green 试剂盒,反应体系为 2 × SYBRGreenMasterMix 10μL、Forward Primer 2μL、 Reverse Primer 2 μL、Template2 μL、ddH2O 6 μL,用荧光定量PCR仪进行扩增。以β⁃actin为内参,计算各mRNA相对表达水平。
-
1.2.7 结肠组织病理切片观察小鼠结肠组织的变化
-
造模结束后,将结肠取出并用PBS冲洗掉结肠组织中的血液。之后使用4%多聚甲醛固定结肠组织,经脱水、石蜡包埋、切片(4~5 μm)、二甲苯脱蜡、无水乙醇水合、HE染色固定,镜下观察结肠组织形态变化。
-
1.2.8 16S rRNA检测小鼠肠道菌群的变化
-
将小鼠粪便从-80℃冰箱取出,用粪便DNA提取试剂盒(QIAamp公司,德国)提取小鼠粪便DNA,将粪便DNA标本进行16S rRNA基因V3~V4(341F~806R) 区域的 PCR 扩增。反应体系包含 2 × PCR Buffer 15 μL、上游引物 1 μL(5 pmol/L)、下游引物 1 μL (5 pmol/L)、模板 DNA ≥1 μL(50 ng)、DNA Polymerase 0.6 μL(1.25 U/μL)、ddH2O补足至30 μL。PCR的反应程序为94℃初始变性5 min;94℃变性30 s,56℃ 退火 30 s,72℃延伸 20 s,26 个循环;72℃ 5 min。扩增产物使用磁珠纯化,纯化后的 PCR 产物进行 Illumina PE250文库构建及测序。以上测序由上海欧易生物科技有限公司完成。
-
1.3 统计学方法
-
采用 Prism 5.0 软件进行统计学分析。计量资料用均数±标准差()表示。使用单因素方差分析,用Newman⁃Keuls比较总差异,P <0.05为差异有统计学意义。
-
2 结果
-
2.1 ETEC感染后小鼠的表现
-
PBS组存活率为100%,而模型组24 h存活率明显下降,仅为40%;干预组24 h存活率是75%,与模型组相比,存活率明显增加。感染 ETEC 后小鼠表现出身体蜷缩成团、毛发光泽度降低、精神不振、行动迟缓、进食饮水频率降低、大便稀疏、腹泻情况增加等症状。干预组小鼠腹泻率及腹泻指数较模型组小鼠明显降低(表2)。
-
2.2 血清炎症因子水平的变化
-
各组小鼠血清炎症因子水平的检测结果显示,与PBS组相比,模型组小鼠血清炎症因子IL⁃1β、 IL⁃6和TNF⁃α浓度明显升高,干预组较模型组IL⁃1β、 IL⁃6和TNF⁃α浓度明显降低,差异具有统计学意义 (P <0.05,图1)。
-
图1 各组小鼠血清IL⁃1β、IL⁃6和TNF⁃α水平
-
Figure1 Levels of IL⁃Iβ,IL⁃6 and TNF⁃α in serum of mice in each group
-
2.3 结肠病理变化
-
小鼠结肠切片显示,模型组结肠组织固有层腺体紊乱,杯状细胞减少,并伴有炎性细胞浸润,而干预组小鼠结肠组织内黏膜肌层、固有层和黏膜柱状上皮结构完整,且结肠组织形态上与PBS组没有太大差异(图2),说明 A. muciniphila 对小鼠的肠黏膜有一定的保护效果。
-
2.4 结肠组织炎症因子mRNA表达的变化
-
与PBS组相比,模型组小鼠结肠组织IL⁃1 mRNA、 IL⁃6 mRNA、TNF⁃α mRNA水平显著升高,而干预组小鼠各炎症因子 mRNA 水平较模型组小鼠明显降低,差异具有统计学意义(P <0.05,图3)。
-
图2 各组小鼠结肠组织的变化(× 40)
-
Figure2 Changes in colon tissue of mice in each group(× 40)
-
图3 各组小鼠炎症因子mRNA(IL⁃1β、IL⁃6、TNF⁃α)水平的变化
-
Figure3 Changes of inflammatory factor mRNA(IL⁃1β,IL⁃6,TNF⁃α)levels of mice in each group
-
2.5 小鼠肠道菌群的变化
-
2.5.1 肠道菌群α多样性指数
-
16S rRNA 肠道菌群高通量测序结果显示模型组小鼠肠道菌群α多样性明显降低。与 PBS 组相比,模型组小鼠菌群ACE指数、Chao1和Shannon指数均明显降低,而干预组小鼠明显恢复了肠道菌群的α多样性(图4)。
-
2.5.2 肠道菌群结构的改变
-
采用主坐标分析(PCoA)和非度量多维尺度分析(NMDS)确定PBS组、模型组以及干预组之间β多样性的差异。结果显示,PBS组、模型组和干预组之间肠道菌群区系存在显著差异,PCoA分析和NMDS 分型显示各组小鼠之间均有明显的聚类(图5),表明A. muciniphila可以改变肠道微生物区系组成。
-
图4 各组小鼠肠道菌群α多样性
-
Figure4 α Diversity of gut microbiota in each group mice
-
图5 各组小鼠肠道菌群的β多样性
-
Figure5 β Diversity of gut microbiota in each group mice
-
2.5.3 A. muciniphila增加了肠道中有益菌的数量
-
分析各组小鼠门水平及属水平细菌的组成,结果显示模型组小鼠拟杆菌门与厚壁菌门的比例明显增加,提示 ETEC 使肠道菌群发生了改变。进一步分析各组小鼠肠道菌群中主要优势菌的数量,肠鼠杆菌(Muribaculaceae)、Mucispirillum、经黏液真杆菌属(Blautia)、拟普雷沃菌属(Alloprevotella)以及乳酸杆菌(Lactobacillus)在模型组小鼠中均明显降低,而在干预组小鼠中的数量增加(图6)。提示 A. muciniphila可以增加其他有益菌的数量。
-
图6 各组小鼠相关细菌的丰度
-
Figure6 Abundance of mouse related bacteria in each group
-
3 讨论
-
ETEC 是一种常见的可以引起腹泻的大肠杆菌,有研究发现其致病性与菌毛黏附素、耐热肠毒素和不耐热肠毒素有关[6-7],但其致病的具体机制并不清楚。研究发现腹腔注射ETEC K88能诱导雄性 ICR小鼠的肠道炎症,ETEC K88提高了小鼠回肠中部 IL⁃1β、IL⁃6、TNF⁃α等促炎细胞因子的表达[8-9]。另有研究发现ETEC降低了小鼠的体重和粪便水分含量,并破坏了空肠形态,且感染ETEC 后,小鼠空肠绒毛长度缩短,造成上皮糜烂[10-11]。本研究取小鼠结肠组织段检测炎症因子的表达,与之前的研究检测肠段组织虽不同,但两次炎症因子检测结果具有相似性。此外,本研究病理切片结果也显示小鼠结肠部位有明显的炎症细胞浸润、结肠黏膜发生紊乱等病理特征性反应。
-
肠道菌群在维持人类健康中发挥着重要的作用,这些菌群与人体相互作用有利于食物的消化吸收、能量代谢,菌群的代谢产物有利于调节肠道局部和全身免疫应答,阻止外来病原微生物的入侵,维持肠道稳态[9]。有文献报道腹泻和营养不良均与肠道微生物菌群失调有关[12-13]。然而,肠道微生物菌群在 ETEC 引起的腹泻中的作用尚不清楚,通过 16S rRNA菌群测序,本研究发现干预组与模型组小鼠的α多样性明显不同。提示给予小鼠A. muciniphila 后可改善因ETEC引起的肠道菌群的α多样性降低。此外,肠道菌群测序结果显示Blautia、Alloprevotella、 Mucispirillum、Muribaculaceae、Lactobacillus等体内主要优势菌均发生了显著变化。其中,Blautia作为肠道微生物区系的优势属,在代谢性疾病、炎症性疾病和生物转化中发挥着一定的作用[14]。Alloprevotella 可以通过分解短链脂肪酸促进肠道分泌一种有助于控制机体血糖浓度的L细胞,改善机体糖代谢紊乱[15]。有研究报道 Lactobacillus 能有效预防 ETEC 引起的腹泻小鼠体重减轻和肠道损伤症状,减少炎症因子的产生,增强肠道屏障功能[16]。此外,有研究发现 Lactobacillus 对 ETEC 感染性腹泻的保护作用是通过多种途径进行干预的,主要包括下调促炎细胞因子和上调抗炎细胞因子,增加水通道蛋白 3(aquaporin3,AQP3),降低 Toll 样受体 4(Toll ⁃like receptor 4,TLR4)和热稳定肠毒素(ST)的表达,调节肠道微生物菌群,增加短链脂肪酸的产生[17]。这些研究均强调 Lactobacillus 在缓解 ETEC 引起的腹泻方面可能起到有益的作用[18-19],这些益生菌相对丰度的增加说明 A. muciniphila 可以通过增加其他益生菌的丰度,从而增加其益生作用,进而改善机体肠道损伤情况。
-
随着近年来有关 A. muciniphila 的研究不断增加,A. muciniphila 已经逐渐成为新的“明星益生菌”。这种潜在的益生菌可以在肠道细胞上进行定植[20]。A. muciniphila在寄主的代谢调节与免疫反应中起着重要作用,且已被证明是一种有效的治疗肥胖症、2型糖尿病、动脉粥样硬化、自闭症等相关胃肠功能障碍疾病的靶点[21]。A. muciniphila的主要代谢产物是短链脂肪酸,可以在结肠中被吸收,并作为结肠细胞的能量来源,它们还在各种类型的代谢紊乱中显示出潜在的治疗和抗炎作用[22-24]。Everard 等[25] 研究发现给予小鼠灌胃A. muciniphila后,小鼠体重和脂肪质量增加得到减缓,血清甘油三酯和空腹血糖水平下降,胰岛素敏感性增强。此外,口服 A. muciniphila可以降低由高脂饮食引起的肥胖小鼠肠道屏障的通透性,嗜黏蛋白可使饲喂高脂饮食的肥胖小鼠和酒精性脂肪肝小鼠肠道内层黏液厚度增加,增加杯状细胞数量,上调紧密连接蛋白的表达,包括occludin、claudin、ZO⁃1、ZO⁃2和ZO⁃3 [25-27]。
-
本实验通过检测炎症因子的表达、病理切片的观察以及16S rRNA的肠道菌群测序可以观察到 A. muciniphila通过降低机体炎症因子的表达以及增加肠道菌群中有益菌的丰度以减缓由ETEC引起的急性腹泻。
-
本研究也存在一些不足,如选取的小鼠为6周龄,有研究显示A. muciniphila对不同年龄段宿主的代谢调节有不同的影响[28],在此研究基础上,应继续研究不同年龄段小鼠给予A. muciniphila后的腹泻恢复情况。本研究只进行了动物实验,并未进行细胞实验,后续应该进行体外实验来验证A. muciniphila对细胞水平的影响。
-
总的来说,本研究显示A. muciniphila可以减轻由 ETEC 引起的小鼠腹泻。这为进一步研究益生菌对治疗肠道炎症提供了临床参考。研究拓展了 A. muciniphila的潜在益生功能,也为今后基于益生菌治疗改善急性腹泻提供了理论支撑。
-
参考文献
-
[1] 张赛群,朱红梅,周涵韬,等.产肠毒素性大肠杆菌K88的致病特性及其益生菌的筛选[J].中国兽医科学,2008,38(5):386-392
-
[2] ANHÊ F F,SCHERTZER J D,MARETTE A.Bacteria to alleviate metabolic syndrome[J].Nat Med,2019,25(7):1031-1033
-
[3] CANI P D,EVERARD A.Akkermansia muciniphila:a novel target controlling obesity,type 2 diabetes and in⁃ flammation?[J].Med Sci(Paris),2014,30(2):125-127
-
[4] O’TOOLE P W,MARCHESI J R,HILL C.Next⁃genera⁃ tion probiotics:the spectrum from probiotics to live bio⁃ therapeutics[J].Nat Microbiol,2017,2(5):17057
-
[5] 金鑫,葛亚中,敬璞,等.益生菌制剂对抗生素诱导腹泻模型小鼠肠道菌群的恢复[J].现代食品科技,2017,33(7):17-24
-
[6] 李晓丽,何万领,张才,等.甘草提取物对产蛋后期蛋鸡生产性能及蛋品质的影响[J].中国兽医学报,2015,35(8):1361-1365
-
[7] NAGY B,FEKETE P Z.Enterotoxigenic Escherichia coli(ETEC)in farm animals[J].Vet Res,1999,30(2/3):259-284
-
[8] JIANG Q,ZHANG H,XIE Y,et al.Recombinant expres⁃ sion of porcine lactoferrin peptide LF ⁃6 with intein tech⁃ nology and its immunomodulatory function in ETEC K88⁃ infected mice[J].Int Immunopharmacol,2016,39:181-191
-
[9] REN W,YIN J,DUAN J,et al.Mouse intestinal innate immune responses altered by enterotoxigenic Escherichia coli(ETEC)infection[J].Microbes Infect,2014,16(11):954-961
-
[10] TANG C E,XIE B J,ZONG Q,et al.Proanthocyanidins and probiotics combination supplementation ameliorated intestinal injury in enterotoxigenic escherichia coli infect⁃ ed diarrhea mice[J].J Funct Foods,2019,62(C):103521
-
[11] WANG K,QI Y,YI S,et al.Mouse duodenum as a model of inflammation induced by enterotoxigenic Escherichia coli K88[J].J Vet Res,2016,60:19-23
-
[12] POP M,WALKER A W,PAULSON J,et al.Diarrhea in young children from low⁃income countries leads to large⁃ scale alterations in intestinal microbiota composition[J].Genome Biol,2014,15(6):R76
-
[13] SATHISH S,SAYEEDA H,TANYA Y,et al.Persistent gut microbiota immaturity in malnourished bangladeshi children[J].Nature,2014,510(7505):417-421
-
[14] LIU X M,MAO B Y,GU J Y,et al.Blautia ⁃a new func⁃ tional genus with potential probiotic properties?[J].Gut Microbes,2021,13(1):1-21
-
[15] MARTIN A M,YABUT J M,CHOO J M,et al.The gut mi⁃ crobiome regulates host glucose homeostasis via peripher⁃ al serotonin[J].PNAS,2019,116(40):19802-19804
-
[16] HAN X,DING S,MA Y,et al.Lactobacillus plantarum and Lactobacillus brevis alleviate intestinal inflammation and microbial disorder induced by ETEC in a murine model[J].Oxid Med Cell Longev,2021,2021:6867962
-
[17] YUE Y,HE Z J,ZHOU Y H,et al.Lactobacillus planta⁃ rum relieves diarrhea caused by enterotoxin ⁃ producing escherichia coli through inflammation modulation and gut microbiota regulation[J].Food Funct,2020,11(12):10362-10374
-
[18] OHLAND C L,MACNAUGHTON W K.Probiotic bacte⁃ ria and intestinal epithelial barrier function[J].Am J Physiol Gastrointest Liver Physiol,2010,298(6):G807-G819
-
[19] YU Q,YUAN L,DENG J,et al.Lactobacillus protects the integrity of intestinal epithelial barrier damaged by patho⁃ genic bacteria[J].Front Cell Infect Microbiol,2015,5:26
-
[20] ZOU Y,CHEN T.Engineered Akkermansia muciniphila:a promising agent against diseases(Review)[J].Exp Ther Med,2020,20(6):285
-
[21] CANI P D,DE VOS W M.Next⁃generation beneficial mi⁃ crobes:the case of Akkermansia muciniphila[J].Front Mi⁃ crobiol,2017,8:1765
-
[22] OTTMAN N,GEERLINGS SY,AALVINK S,et al.Action and function of Akkermansia muciniphila in microbiome ecology,health and disease[J].Best Pract Res Clin Gas⁃ troenterol,2017,31(6):637-642
-
[23] RONAN T,FRANÇOIS B,BÉATRICE D V,et al.Butyr⁃ ate utilization by the colonic mucosa in inflammatory bow⁃ el diseases:a transport deficiency[J].Inflamm Bowel Dis,2010,16(4):684-695
-
[24] PUERTOLLANO E,KOLIDA S,YAQOOB P.Biological significance of short⁃chain fatty acid metabolism by the in⁃ testinal microbiome[J].Curr Opin Clin Nutr Metab Care,2014,17(2):139-144
-
[25] EVERARD A,BELZER C,GEURTS L,et al.Cross ⁃talk between Akkermansia muciniphila and intestinal epitheli⁃ um controls diet ⁃ induced obesity[J].PNAS,2013,110(22):9066-9071
-
[26] GRANDER C,ADOLPH T E,WIESER V,et al.Recov⁃ ery of ethanol ⁃ induced Akkermansia muciniphila deple⁃ tion ameliorates alcoholic liver disease[J].Gut,2018,67(5):891-901
-
[27] REUNANEN J,KAINULAINEN V,HUUSKONEN L,et al.Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J].Appl Environ Microbiol,2015,81(11):3655-3662
-
[28] GUO X,ZHANG J,WU F,et al.Different subtype strains of Akkermansia muciniphila abundantly colonize in South⁃ ern China[J].J Appl Microbiol,2016,120(2):452-459
-
摘要
目的:以产肠毒素大肠杆菌(enterotoxigenic Escherichia coli,ETEC)诱导肠道菌群失调性腹泻模型,分析益生菌嗜黏蛋白阿克曼氏菌(Akkermansia muciniphila,A. muciniphila)对 ETEC 诱导腹泻的改善效果。方法:用 ETEC 诱导小鼠腹泻模型。实验小鼠随机分为PBS组、模型组、干预组。干预组给予灌服A. muciniphila 菌液(浓度为1×109 CFU/mL)0.2 mL/d,连续 5 d,模型组口腔灌服ETEC菌液(浓度为1×109 CFU/mL)0.5 mL/d。记录小鼠身体状况、体重、腹泻率和死亡率的变化;HE染色观察结肠组织病理变化;ELISA 检测血清白细胞介素(interleukin,IL)IL-1β、IL-6、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)的含量;RT-PCR检测结肠组织IL-1、TNF-α、IL-6 mRNA的表达;收取小鼠粪便进行16S rRNA高通量测序并进行统计分析。结果:干预组与模型组相比,身体状况明显改善,腹泻率降低了66%,死亡率降低了30%;血清IL-1β、IL-6和TNF-α含量明显降低(P < 0.05)。结肠组织IL-1、IL-6、TNF-α mRNA含量明显降低(P < 0.05)。结肠组织病理变化显著改善。16S rRNA 测序显示干预组物种相对丰度明显增加,肠道菌群α多样性与菌群组成发生明显改变,在干预组中,多种益生菌丰度增加。结论:益生菌A. muciniphila通过增加肠道菌群多样性、保护结肠黏膜组织和降低炎症因子的表达,减轻ETEC引起的腹泻。
Abstract
Objective:We used enterotoxigeni Escherichia coli(ETEC)to build the diarrhea model induced by intestinal flora dysfunction. Then the probiotics Akkermansia muciniphila(A. muciniphila)was used to analyze the protective effect in the diarrhea. Methods:The diarrhea model of mice was induced by ETEC. The experimental mice were randomly divided into PBS group,ETEC model group and A. muciniphila treatment group. Each mouse of the A. muciniphila treatment group was treated with A. muciniphila solution(1×109 CFU/mL)0.2 mL/d for 5 days,and the model group was gavaged with ETEC solution(concentration 1×109 CFU/mL) 0.5 mL/d for 5 days. The changes of physical condition,body weight,diarrhea rate and mortality of mice were recorded;the pathological changes of colon tissue were observed using HE staining;the contents of serum interleukin(IL)-1β,IL-6 and tumor necrosis factor-α (TNF-α)were detected using ELISA method;the expression of IL-1,TNF-α and IL-6 mRNA in colon tissue were detected by RT-PCR; and the feces of mice were collected for 16S rRNA high-throughput sequencing and statistical analysis. Results:Compared with the ETEC model group,the physical condition of the A. muciniphila treatment group was significantly improved,the diarrhea rate was reduced by 66%,the mortality rate was reduced by 30%,and the contents of serum IL - 1β,IL - 6 and TNF - α were significantly decreased. The contents of IL-1 mRNA,IL-6 mRNA and TNF-α mRNA in colon tissue were significantly decreased. The pathological changes of colon tissue were significantly improved. 16S rRNA sequencing showed that the relative abundance of species increased significantly,the α diversity and the composition of intestinal microflora changed significantly in the A. muciniphila treatment group. In the A. muciniphila treatment group,the abundance of multiple probiotics increased. Conclusion:Probiotics A. muciniphila can relieve diarrhea caused by ETEC through increasing intestinal flora diversity,protecting colonic mucosa and reducing the expression of inflammatory factors.