-
在过去的几十年里,肥胖及其并发症正在全球范围内迅速增多[1]。截至2016年,全球有近40%的成年人和18%的儿童(5~19岁)伴有肥胖,中国的腹型肥胖率也高达 34%[2]。肥胖会导致一系列并发症,包括脂肪肝、高血压、2型糖尿病和心血管疾病等。2015 年全球约有 400 万人死于肥胖[3],给社会带来严重的医疗压力。肥胖是由于脂肪细胞体积增大和数量增生引起脂肪组织的异常或过度堆积导致。因此,提高对脂肪生成分子机制的理解具有重大的健康和科学意义。
-
脂肪生成受到多因素调节:在前期的研究报道中细胞外信号、转录级联和基因组的表观修饰等均能从不同层面调控脂肪细胞的分化[4-5]。近年来,科学家发现自噬能够调控脂肪细胞数量、脂肪生成和白色脂肪棕色化等过程[6]。自噬是一种基本的细胞降解途径,它从双层膜自噬小体的形成开始,最终与溶酶体融合降解细胞器和蛋白质以供机体重新循环利用[7]。脂肪组织中自噬主要存在3种不同的方式:非选择性的自噬、选择性的线粒体自噬和脂噬。在不同的营养状态下自噬、线粒体自噬和脂噬相互协调共同维持脂肪细胞的数量、生成、形态及功能。本文就近年来在脂肪组织中发生的自噬进行系统地回顾和总结,旨在阐明自噬对脂肪组织的功能和肥胖症的影响,为肥胖症的预防和治疗提供潜在的靶点。
-
1 脂肪组织和肥胖
-
1.1 脂肪细胞的分类
-
脂肪组织是机体重要的代谢器官,其中最主要的细胞是脂肪细胞和一些免疫细胞。脂肪细胞根据其特征不同可以分为3类:白色脂肪细胞、棕色脂肪细胞和米色脂肪细胞[8]。白色脂肪细胞含有单一的大脂滴(lipid droplets,LD)和少量线粒体,能够存储能量和分泌某些细胞因子;棕色脂肪细胞含有大量的小脂滴,具有丰富的线粒体,能通过解偶联蛋白 1(uncoupling protein 1,UCP1)将化学能转化为热能从而增加能量消耗并为机体提供热量;米色脂肪细胞分布于白色脂肪组织中并具有部分棕色脂肪细胞的特征,含有一定数量的线粒体,并能通过 UCP1 蛋白增加能量消耗[9]。白色脂肪棕色化是指在环境或激素的刺激下,白色脂肪细胞转变为米色脂肪细胞从而增加能量消耗和产热的过程。
-
1.2 脂肪生成
-
成人体内的脂肪细胞数目不会再变化,但每年会有 10%的细胞更新。脂肪生成特指脂肪细胞分化的过程,会在细胞质中产生含有甘油三酯和脂肪酸的脂滴[10]。脂肪细胞的分化包括两个阶段:第一个阶段是由脂肪组织中的间充质干细胞(mesenchy⁃ mal stem cell,MSC)或胚胎干细胞分化成脂肪祖细胞再进一步形成脂肪前体细胞;第二个阶段是指脂肪前体细胞分化为成熟的脂肪细胞。其中,第一阶段主要是由BMP⁃SMAD 信号通路调控促进脂肪前体细胞的生成[11];第二阶段的调控主要分为3个步骤:首先是 CCAAT 增强子结合蛋白(CCAAT ⁃ en⁃ hancer binding proteins,C/EBPs)的β和δ亚型表达,启动脂肪细胞的分化;其次是转录因子过氧化物酶体增殖物激活受体γ(peroxisome proliferator⁃activat⁃ ed receptor γ,PPARγ)和 CCAAT 增强子结合蛋白α (CCAAT⁃enhancer binding proteins α,C/EBPα)的大量表达,进一步诱导脂滴的形成和糖脂代谢相关基因的表达;最后是成熟脂肪细胞的形成,这个过程中脂肪细胞的标志蛋白大量表达,脂滴中的甘油三酯合成进一步增多并能分泌一些脂肪因子协同调控机体能量平衡。C/EBPβ、C/EBPα和 PPARγ是脂肪细胞分化过程中重要的调控因子。在分化的前期 C/EBPβ迅速表达并诱导 C/EBPα和 PPARγ的表达,而在分化的后期C/EBPβ的表达降低,研究表明 C/EBPβ或C/EBPα敲除的小鼠脂肪组织发育明显受损[12]。虽然C/EBPβ和C/EBPα对脂肪组织的发育至关重要,但却不是脂肪细胞发育所必需的,因为研究表明在任何一种敲除C/EBPs的小鼠中外源表达 PPARγ都能逆转其脂肪发育障碍。相反,敲除 PPARγ而外源表达C/EBPs 则不能逆转脂肪分化障碍,说明PPARγ而非C/EBPs是脂肪细胞分化的后期调控因子且是脂肪细胞分化所必需的[13]。
-
在机体摄入能量过多的情况下,多余能量会以甘油三酯等中性脂肪的形式储存在白色脂肪细胞中,导致白色脂肪细胞的过度扩张,进而引发肥胖症。而肥胖往往会导致一系列的代谢性并发症包括脂肪肝、心血管疾病和2型糖尿病等。
-
2 脂肪组织中的自噬
-
自噬通常是指巨自噬,是细胞降解细胞质中受损的细胞器和一些不需要的物质,再对降解产物重新循环利用的过程[14]。当细胞或组织的营养供应受限或处于恶劣环境、氧化应激或基因毒性等压力时,自噬可作为一种细胞存活和防御的机制而被激活[15]。当细胞能量来源不足时,能通过抑制雷帕霉素靶蛋白复合体 1(the mechanistic target of rapamy⁃ cin complex 1,mTORC1)和激活5′⁃AMP 活化蛋白激酶(AMP⁃activated protein kinase,AMPK)来激活自噬以完成细胞的能量循环供机体生存需要。相反,当细胞内能量过剩时则通过激活 mTORC1,抑制 AMPK信号通路来抑制自噬。当自噬被抑制时,如果机体长期处于高脂高糖饮食而导致营养过剩时, 过剩的能量会在脂肪、肝脏、肌肉等组织中堆积最终导致肥胖、脂肪肝和糖尿病等代谢性疾病[16-17]。但有趣的是,研究人员发现在肥胖人群中自噬是被过度激活的,目的是为了从脂肪细胞中获取更多的能量以生成更多的脂肪细胞[18]。
-
2.1 自噬的步骤
-
自噬包括几个连续的步骤:隔离、降解和氨基酸或多肽的产生和重新利用,每一步都在以不同的方式发挥着作用。自噬的第一步是自噬小体的形成,细胞质组分或细胞器被特殊的隔离膜结构包裹形成自噬小体,该膜结构也被称作自噬起始膜。自噬起始膜是一个扁平的具有双层膜结构的细胞器,其延伸之后可以包裹需要降解的细胞质或细胞器形成闭环的自噬小体,该过程不伴随物质的降解,只是形成隔离的自噬小体结构[19]。自噬小体的形成至少有3个步骤:起始、成核、伸长和关闭[20]。自噬的起始可以由unc⁃51样激酶1(unc⁃51⁃like kinase1, ULK1)复合体启动,这个复合体由丝氨酸/苏氨酸蛋白激酶 ULK1、自噬相关蛋白 13(autophagy ⁃ related protein 13,ATG13)、200 kDa的黏着斑激酶家族相互作用蛋白(focal adhesion kinase family interacting protein of 200 kDa,FIP200)和自噬相关蛋白101(au⁃ tophagy ⁃ related protein 101,ATG101)等蛋白构成。当自噬被诱导时,ULK1 复合体会转位到自噬起始位点并招募自噬的第二个激酶复合体:囊泡分选蛋白 34(vacuolar protein sorting34,VPS34)复合体[21]。该复合体由 Beclin⁃1、VPS15 和 ATG14L 蛋白组成,其作用是激活Ⅲ类磷脂酰肌醇⁃3⁃激酶(phosphati⁃ dylinositol⁃3⁃kinase,PI3K)以产生磷脂酰肌醇⁃3⁃磷酸(phosphatidylinositol⁃3⁃phosphate,PI3P),ULK1复合体转位到自噬起始位点并招募 VPS34 复合体产生 PI3P 的过程被称为成核作用。正常情况下,Be⁃ clin⁃1与其抑制物B淋巴细胞瘤⁃2(B⁃cell lymphoma⁃ 2,Bcl⁃2)或其同源物 B 淋巴细胞瘤⁃XL(B⁃cell lym⁃ phoma⁃XL,Bcl⁃XL)持续相互作用而被抑制;当自噬被激活时,Beclin⁃1 与 Bcl⁃2 或 Bcl⁃XL 分离而激活 VPS34 复合体的激酶活性[22],但 ULK1 复合物(起始)、Beclin⁃1 和Ⅲ类PI3K复合物(成核)之间的具体功能关系还需要进一步探究。自噬起始膜的延伸和闭合以形成成熟的自噬小体还需要两个共轭系统的参与:第一个系统是在ATG7和ATG10的辅助下,ATG12、ATG5和ATG16结合形成 ATG16⁃ATG5⁃ ATG12复合物[23];第二个系统是胞质中可溶的微管相关蛋白轻链 3(microtubule⁃associated protein light chain 3,LC3)依次在 ATG4、ATG7 和 ATG3 的作用下和磷脂酰乙醇胺(phosphatidylethanolamine,PE) 结合形成自噬膜上的LC3(LC3⁃Ⅱ),可与自噬接头蛋白 P62/SQSTM1 结合促进自噬起始膜的闭合形成完整的自噬小体[24]。降解过程是指自噬小体与溶酶体结合形成溶酶体自噬体,自噬小体中的物质在溶酶体中各种酶的帮助下完成降解,降解后的物质变成单体单位之后(如氨基酸或肽段)重新释放进入细胞质被机体利用,这个过程称为氨基酸或肽段的重利用,目前机体是如何重新利用自噬产物的机制尚不明确。
-
2.2 脂肪组织中自噬的分类
-
在脂肪细胞中发生的自噬可以分为非选择性的自噬和选择性的自噬:非选择性的自噬即巨自噬,选择性的自噬包括线粒体自噬和脂噬。自噬指无差别降解脂肪细胞中的物质,线粒体自噬是自噬小体和线粒体特异性结合降解线粒体的过程,而脂噬特指自噬小体和脂滴结合促进脂质的降解和重新利用。脂肪细胞中的3种自噬方式对脂肪细胞的生成、白色脂肪棕色化和脂肪代谢等过程具有重要的调控作用。
-
3 自噬和脂肪生成
-
脂肪细胞中的物质非选择性地通过和自噬小体或溶酶体结合而降解蛋白质和脂质的方式是脂肪细胞中主要的自噬方式之一。在过去的几十年里,自噬和脂肪生成之间是否具有密切的联系引起了人们的广泛关注,研究发现自噬是脂肪细胞发育所必需的,并且在脂肪生成的过程中自噬被激活[6,25]。最早的研究表明,提取 ATG5 全身敲除小鼠的胚胎成纤维细胞(embryonic fibroblast,MEF)分化,发现脂肪生成有障碍。而在小鼠中靶向敲除ATG5显著降低胚胎后期和新生小鼠中围脂滴蛋白A(perilipin A)阳性的白色脂肪细胞数[26]。同样,在3T3⁃L1细胞中敲降 ATG7 或在小鼠脂肪组织中特异性敲除 ATG7抑制自噬能明显抑制脂肪细胞的分化和脂滴的累积,在表达生肌因子5(myogenic factor 5,Myf5) 的棕色脂肪前体细胞中敲降ATG7也会影响棕色脂肪细胞的分化[6,27]。近年来,研究发现m6A去甲基化酶脂肪量和肥胖相关蛋白(fat mass and obesity⁃as⁃ sociated protein,FTO)能通过靶向 ATG5 和 ATG7 调节自噬和脂肪生成,敲降FTO会降低ATG5和ATG7 的表达,导致自噬小体形成减少,抑制自噬和脂肪生成进而抵抗高脂诱导的肥胖[28]。然而,在白色脂肪前体细胞3T3⁃L1中敲降ULK1抑制自噬后,虽然脂肪细胞分化的关键调控因子C/EBPs和PPARγ没有发生明显的改变,但却促进了脂肪生成,这可能是由于ULK1敲除之后降低了脂肪酸的β氧化而增加了脂肪酸的摄取。但是在3T3⁃L1细胞中敲降unc⁃51样激酶2(unc⁃51⁃like kinase2,ULK2)则得到与ULK1相反的结果,敲降ULK2之后抑制脂肪生成[29]。在脂肪组织中特异性敲除Beclin1会导致严重的脂肪萎缩、胰岛素抵抗和脂肪肝,这可能是由于敲除Beclin1抑制自噬之后引起严重的脂肪分化障碍而导致的脂肪异位堆积[30]。这些结果表明在脂肪细胞分化的过程中,自噬发挥着某种重要的作用,以促进脂肪细胞的正常分化和脂滴的形成。
-
分离肥胖人群或肥胖小鼠的脂肪组织发现,在肥胖的人群或小鼠中自噬的标志蛋白LC3⁃Ⅱ水平增加,而自噬接头蛋白P62水平降低,表明在肥胖的人群和小鼠中自噬被激活,目的是为了在营养过剩时通过激活自噬来促进脂肪细胞生成以储存更多的能量[31]。自噬在脂肪细胞分化的过程中是否被激活由脂肪细胞分化的类型和脂肪细胞所受的刺激所决定。研究表明,在白色脂肪细胞分化形成脂滴的过程中自噬被激活;而棕色脂肪细胞分化的过程中自噬和线粒体自噬则被抑制;环境或激素刺激如寒冷和 PPARγ激动剂TZD类药物促进白色脂肪棕色化的过程中自噬和线粒体自噬同样被抑制[32]。基于前期的研究,白色脂肪细胞分化过程中自噬被激活以获得更多的能量来完成白色脂肪细胞的生成,抑制自噬能够抵抗饮食诱导的肥胖,降低白色脂肪细胞中脂质的累积,促进棕色或米色脂肪细胞中能量的消耗[32-33]。
-
4 线粒体自噬和白色脂肪棕色化
-
4.1 线粒体自噬类型
-
线粒体自噬是一种选择性的自噬,由线粒体和自噬小体结合形成线粒体自噬体,最后与溶酶体结合促进线粒体的降解[34]。在脂肪细胞成熟或营养缺乏时能通过激活AMPK通路或抑制mTORC1通路而激活线粒体自噬。线粒体自噬主要通过泛素分子依赖的张力蛋白同源物(PTEN)诱导的激酶 1 (PTEN induced putative kinase1,PINK1)和 Parkin 介导的线粒体自噬途径,当线粒体受到损伤发生去极化时一些线粒体外膜蛋白能够被E3泛素连接酶 Parkin 泛素化,通过 P62 和自噬起始膜上的 LC3⁃Ⅱ 结合形成线粒体自噬体,线粒体自噬体和溶酶体结合后在溶酶体中的各种水解酶作用下完成线粒体的降解[35-37]。其次,一些含有LC3相互作用结构域 (LC3⁃interacting region,LIR)的线粒体外膜蛋白如 NIP3样蛋白X(NIP3⁃like protein X,NIX)、FUN14结构域包含蛋白1(FUN14 domain containingprotein 1, FUNDC1)和Bcl⁃2/腺病毒E1B 19 kDa相互作用蛋白 3(Bcl⁃2/adenovirus E1B 19 kDa⁃interacting protein 3, BNIP3)等能直接通过和LC3⁃Ⅱ相互作用与自噬起始膜结合,促进线粒体自噬的发生[38-40]。
-
4.2 线粒体自噬对白色脂肪棕色化的影响
-
在白色脂肪细胞分化过程中脂肪细胞能通过线粒体自噬减少线粒体数目,限制脂肪酸的氧化从而促进脂肪细胞中脂滴的形成;同样在米色脂肪细胞白色化的过程中线粒体自噬被激活,米色脂肪细胞通过线粒体自噬清除胞内多余的线粒体,从而完成从米色脂肪细胞向白色脂肪细胞转变的过程[37,41]。因此当白色脂肪细胞中的线粒体自噬被抑制,线粒体无法清除而累积之后会抑制脂肪生成,导致白色脂肪细胞呈现出棕色脂肪细胞的部分特征[35,42]。与细胞中结果一致,在小鼠中通过基因工程敲除自噬相关基因或注射药物抑制线粒体自噬后,小鼠的体脂率降低,白色脂肪组织中脂肪细胞减小,线粒体数目变多,呈现出棕色脂肪组织的特征[36-37]。Parkin 作为 E3 泛素连接酶能介导线粒体自噬,在 3T3⁃L1 细胞分化的过程中被诱导。罗格列酮处理3T3⁃L1细胞促使细胞向棕色脂肪细胞分化的同时会下调Par⁃ kin蛋白的表达;脂肪细胞中过表达Parkin蛋白会抑制白色脂肪细胞向米色脂肪细胞的转化。在小鼠中敲除Parkin虽然不会影响白色脂肪组织的棕色化,但是能激活棕色脂肪组织促进产热,增加能量消耗从而抵抗高脂饮食诱导的肥胖和胰岛素抵抗[36,43]。此外,Parkin敲除小鼠在撤除寒冷或β3受体激动剂CL 316,243等刺激因素之后能更久地维持米色脂肪细胞的形态,这是因为Parkin敲除之后线粒体自噬被抑制,棕色化过程中大量合成的线粒体不能被清除从而能更久地维持米色脂肪细胞的形态[37,41]。
-
BNIP3 是线粒体外膜蛋白,能介导线粒体自噬。在脂肪细胞分化的过程中,BNIP3 表达上调。 BNIP3敲除小鼠在高脂饮食后体重不会发生明显的改变,但是会有明显的脂肪发育障碍,脂肪组织不能储脂进而引起脂肪在肝脏和其他外周器官异位堆积形成脂肪肝和胰岛素抵抗[44]。在脂肪细胞中 PPARγ的激动剂罗格列酮类药物能促进BNIP3的表达,敲降BNIP3能够抑制罗格列酮诱导线粒体合成的作用并抑制线粒体功能,这说明BNIP3是脂肪细胞中线粒体合成所必需的[45]。在脂肪组织中特异性敲除丝氨酸和苏氨酸蛋白激酶3(serine/threonine⁃ protein kinase3,STK3)和STK4后通过抑制BNIP3的 88 位丝氨酸磷酸化,促进 BNIP3 的降解,进而抑制线粒体自噬促进白色脂肪组织棕色化,抵抗高脂饮食诱导的肥胖和胰岛素抵抗。同样,过表达 STK3/ STK4能促进 BNIP3 的 88 位丝氨酸磷酸化,从而抑制其降解,促进线粒体自噬,抑制白色脂肪组织棕色化[46]。这与BNIP3全身敲除鼠的表型不同,可能是由于BNIP3全身敲除之后引起了其他组织器官的代偿性变化,而脂肪组织特异性地降低BNIP3则可以抑制线粒体自噬而促进白色脂肪棕色化。 FUNDC1蛋白在缺氧条件下被诱导并介导线粒体自噬,FUNDC1敲除小鼠在面对高脂饮食时更容易发生肥胖、炎症和胰岛素抵抗,可能是由于线粒体自噬被抑制导致损伤的线粒体在体内累积进而引起代谢障碍[31]。在寒冷刺激过程中,核呼吸因子 1 (nuclear respiratory factors 1,NRF1)能够结合到 FUNDC1的启动子区域促进FUNDC1在棕色脂肪组织中的表达,棕色脂肪组织中特异性敲除FUNDC1 会造成线粒体损伤,影响棕色脂肪组织的产热和功能[47]。在肌肉组织中特异性敲除FUNDC1虽然降低肌肉中脂肪的利用和小鼠运动的耐力,但能促进白色脂肪棕色化从而抵抗高脂饮食诱导的肥胖和胰岛素抵抗[48]。FUNDC1在白色脂肪组织中的作用以及对白色脂肪棕色化过程的影响还有待进一步确认。NIX 蛋白在脂肪细胞的分化过程中持续性表达,因此由NIX蛋白介导的线粒体自噬在脂肪组织中的作用目前还没有相关报道。
-
4.3 线粒体自噬调控白色脂肪棕色化的复杂性
-
虽然线粒体自噬可以作为白色脂肪细胞生成的正调控因子,米色或棕色脂肪细胞生成的负调控因子,但由于营养状态的复杂性,线粒体自噬在人群或小鼠中调节白色、米色和棕色脂肪细胞之间的转化还取决于当时的营养状态。临床研究人员在肥胖患者体内观察到比正常对照人群更多的功能障碍和代谢受损的线粒体[31],这表明线粒体自噬可能受到肥胖患者体内积累的脂肪负调控。在营养过剩的条件下mTORC1信号通路被激活,线粒体自噬被抑制从而导致损伤线粒体的累积[35]。对高脂饮食喂养自噬相关基因敲除小鼠的研究表明,当体内营养过剩而自噬和线粒体自噬被抑制时,机体可以通过抑制脂肪生成和激活脂噬来代偿因自噬和线粒体自噬缺陷而导致的代谢障碍问题[35]。当营养过剩时,线粒体自噬被抑制可代偿性地引起脂噬增加,这种代偿可能是脂肪细胞用来维持线粒体的丰度和脂肪细胞数目的结果[37]。因此,线粒体自噬是否是调控白色脂肪组织功能和棕色化过程的必需因子还需进一步确认[49]。
-
5 脂噬和脂肪代谢
-
5.1 脂噬的过程
-
脂肪生成和脂肪水解之间的平衡在调节白色和棕色脂肪细胞的脂质代谢中起着至关重要的作用。脂噬是细胞内脂滴选择性和自噬小体结合促进脂滴降解的过程。在脂肪细胞中脂滴的消除是通过脂解和脂噬来完成的[50]。脂解主要是指甘油三酯在脂肪甘油三酯脂肪酶(adipose triglyceride li⁃pase,ATGL)、激素敏感脂肪酶(hormone⁃sensitive li⁃ pase,HSL)和单酰基甘油脂肪酶(monoglyceride li⁃ pase,MGL)3种酶的作用下水解生成甘油和游离脂肪酸的过程。在营养缺乏的情况下,由 ATG5、 ATG7、LC3 和 Ras 相关蛋白(ras ⁃ related proteins, Rab)家族共同组成自噬起始膜,包裹脂滴促进脂噬的发生[51]。脂噬起始于脂滴与自噬起始膜上LC3⁃ Ⅱ的识别和结合,并逐渐形成成熟的自噬小体。包裹着脂滴的自噬小体会进一步和溶酶体结合,在溶酶体中,脂滴被溶酶体中的酸性脂肪酶分解(在酸性条件下起作用,pH 4.5~5.0),可降解甘油三酯、甘油二酯、胆固醇酯和视黄酯[52]。
-
5.2 脂噬的分子调控
-
脂解过程中的关键酶ATGL在脂噬过程中也发挥着重要作用,LC3通过和ATGL的LIR结构域相互作用促进胞质中的ATGL向脂滴移动并诱导脂噬的发生[53]。在脂滴中也发现了小型调节性 GTP 酶 (Rab)分子开关家族 Rab7 和 Rab10 能够调控脂噬。Rab10主要被发现在某些条件下对肝细胞中的脂噬至关重要[54],而 Rab7 在调节脂肪细胞中由溶酶体介导的脂质降解中起着重要作用。此外,Rab7 在营养缺乏的情况下被激活,并在脂噬过程中促进多泡体和溶酶体向脂滴表面募集进而促进脂噬[55]。脂滴中存在的脂肪酶在脂噬过程中也发挥着重要作用,如含patatin 样磷脂酶结构域蛋白5(patatin⁃like phospholipase domain containing protein 5,PNPLA5) 已被证明有助于脂噬和自噬蛋白的水解[56]。这些脂肪酶除了在识别脂滴中发挥作用外,还能通过诱导甘油三酯和甾醇酯的募集直接促进自噬小体的形成,在启动脂噬中发挥重要作用[57]。PNPLA8 能通过与高脂饮食喂养小鼠肝细胞中的 LC3 相互作用来介导甾醇调节元件结合蛋白2(sterol regulatory element binding proteins 2,SREBP⁃2)驱动的脂噬[58], PNPLA3对饥饿的人类肝细胞脂噬过程中自噬小体的形成有重要作用[59]。
-
5.3 脂噬与机体的能量供应
-
脂噬的发生与否和细胞中的营养状态密切相关,如果细胞处于不需要游离脂肪酸作为能量来源的营养丰富状态时,脂噬水平被抑制。相反,在细胞处于饥饿状态的饮食限制情况下,脂肪细胞会通过脂噬分解脂滴中的甘油三酯以满足细胞对能量的需求[60]。在体实验表明,小鼠在面对冷刺激和注射雷帕霉素后,棕色脂肪组织和肝脏中的脂滴表面蛋白ATGL能和LC3结合而激活脂噬[61]。虽然肝脏和脂肪都是重要的脂质代谢器官,但是在肝脏和脂肪中抑制脂噬的结果却不相同:在肝脏中特异性敲除自噬相关基因ATG7抑制脂噬后会导致肝脏中脂质的堆积,引起脂肪肝,但是在脂肪组织中敲除 ATG7能够促进白色脂肪棕色化,降低脂滴含量,增加线粒体数目和β氧化。在人体中,当能量过剩时 mTORC1被激活,脂噬被抑制,脂滴会在肝脏和棕色脂肪组织中累积[62]。相反,当机体处于饥饿状态时,AMPK 被激活,mTORC1 被抑制,脂噬过程被激活,能降解白色脂肪细胞中的脂滴并以游离脂肪酸的形式释放,使其他代谢组织(如肝脏和肌肉)将它们用作能量来源[63]。因此,在不同的营养状态时机体会有不同的策略以满足机体正常的代谢需要。
-
6 总结和展望
-
发生肥胖症的主要原因是体内脂质的过度堆积导致脂肪细胞的扩张和增生。肥胖及肥胖引发的脂肪肝、糖尿病等并发症严重影响人们的正常生活水平。但是肥胖症的临床治疗十分困难,除减重代谢手术外,胰高血糖素样肽⁃1受体激动剂(gluca⁃ gon like peptide⁃1 receptor agonists,GLP⁃1RAs)类药物常被用于体重指数(body mass index,BMI)>30 kt/ m2 的肥胖症患者的临床治疗[64],该类药物主要作用于中枢神经和胃肠道的胰高血糖素样肽⁃1受体,从而抑制食欲增加饱腹感来减少能量的摄入,但往往伴随着恶心呕吐等不良反应[65]。至于作用于脂肪组织本身来增加能量消耗和控制体重的靶点药物目前在临床上还没有相关应用。自噬在肥胖的人群和小鼠中被过度激活以促进更多的脂肪细胞生成以用来储存能量,并且自噬在脂肪细胞的分化和肥胖的发生发展中发挥着重要作用。本文系统地回顾总结了脂肪组织中所发生的不同类型的自噬以及它们对脂肪细胞分化和功能的影响。在脂肪细胞分化过程中自噬和线粒体自噬被激活以获得更多的能量来完成白色脂肪细胞的生成,同时清除白色脂肪细胞中多余的线粒体来维持白色脂肪细胞的形态。抑制自噬和线粒体自噬降低白色脂肪细胞中脂质的累积,促进棕色或米色脂肪细胞中能量的消耗从而抵抗饮食诱导的肥胖。在营养过剩的条件下mTORC1被激活,自噬和脂噬过程被抑制增加脂滴在白色脂肪组织中的合成。相反,在饥饿或营养供应不足的情况下,mTORC1被抑制,AMPK 被激活,促进白色脂肪细胞中脂滴的降解,产生游离脂肪酸供机体利用。
-
机体的营养状态调控复杂多变,不同营养状态下机体会有不同的策略来调节自噬、线粒体自噬和脂噬以维持脂肪细胞的稳态和机体的能量供应。脂肪细胞中发生的自噬、线粒体自噬和脂噬对脂肪细胞生成、功能形态的维持以及能量代谢的平衡与稳态具有重要意义,因此探究脂肪细胞中所发生的自噬、线粒体自噬和脂噬之间的平衡和关系可为未来预防和治疗肥胖提供潜在靶点。
-
参考文献
-
[1] SUNG H,SIEGEL R L,TORRE L A,et al.Global pat⁃ terns in excess body weight and the associated cancer bur⁃ den[J].Ca Cancer J Clin,2019,69(2):88-112
-
[2] EZZATI M,BENTHAM J,DI CESARE M,et al.World⁃ wide trends in body⁃mass index,underweight,overweight,and obesity from 1975 to 2016:a pooled analysis of 2416 population ⁃ based measurement studies in 128.9 million children,adolescents,and adults[J].Lancet,2017,390(10113):2627-2642
-
[3] BOVET P,CHIOLERO A,GEDEON J.Health effects of overweight and obesity in 195 countries[J].N Engl J Med,2017,377(15):1495-1496
-
[4] 蔡丽娥,张许,季学涛,等.PNPLA7在脂肪组织中的表达及调控的初步研究[J].南京医科大学学报(自然科学版),2020,40(1):4-9
-
[5] 仲逢钰,秦振英,李婧,等.MiR⁃484通过靶向MAPK8抑制人前体脂肪细胞的增殖与分化[J].南京医科大学学报(自然科学版),2022,42(3):325-332
-
[6] SINGH R,XIANG Y Q,WANG Y J,et al.Autophagy reg⁃ ulates adipose mass and differentiation in mice[J].J Clin Invest,2009,119(11):3329-3339
-
[7] KLIONSKY D J.Autophagy:from phenomenology to mo⁃ lecular understanding in less than a decade[J].Nat Rev Mol Cell Bio,2007,8(11):931-937
-
[8] CZECH M P.Mechanisms of insulin resistance related to white,beige,and brown adipocytes[J].Mol Metabo,2020,3(4):27-42
-
[9] 朱晓蕾,杜苏苏,严琴慧,等.姜黄素诱导小鼠皮下前脂肪细胞棕色化的作用及机制[J].南京医科大学学报(自然科学版),2020,40(6):796-802
-
[10] BU S,YUAN C Y,XUE Q,et al.Bilobalide suppresses adi⁃ pogenesis in 3T3⁃ L1 adipocytes via the AMPK signaling pathway[J].Molecules,2019,24(19):3503-3517
-
[11] PENG Y,SHI X E,HUANG K L,et al.Knock⁃down Sox5 suppresses porcine adipogenesis through BMP R ⁃ Smads signal pathway[J].Biochem Bioph Res Co,2020,527(2):574-580
-
[12] TANAKA T,YOSHIDA N,KISHIMOTO T,et al.Defec⁃tive adipocyte differentiation in mice lacking the CEBPbe⁃ ta and or CEBPdelta gene[J].EMBO J,1997,16(24):7432-7443
-
[13] LINHART H G,ISHIMURA ⁃OKA K,DEMAYO F,et al.C/EBPalpha is required for differentiation of white,but not brown,adipose tissue[J].Proc Natl Acad Sci U S A,2001,98(22):12532-12537
-
[14] SAITO T,KUMA A,SUGIURA Y,et al.Autophagy regu⁃ lates lipid metabolism through selective turnover of NCoR1[J].Nat Commun,2019,10(1):1567-1583
-
[15] GIAMPIERI F,AFRIN S,FORBES ⁃HERNANDEZ T Y,et al.Autophagy in human health and disease:novel ther⁃ apeutic opportunities[J].Antioxid Redox Signal,2019,30(4):577-634
-
[16] 王雨竹,张许,李仲.成熟SVFs细胞与Hepa1⁃6细胞共培养模型的建立及对肝细胞脂代谢的影响[J].南京医科大学学报(自然科学版),2022,42(5):603-609
-
[17] WANG X Y,GUO M,WANG Q,et al.The patatin ⁃like phospholipase domain containing protein 7 facilitates VLDL secretion by modulating ApoE stability[J].Hepa⁃ tology,2020,72(5):1569-1585
-
[18] GHANDRIZ R,LERMAN L O.Renal cellular autophagy in obesity:boon or bane?[J].Semin Nephrol,2021,41(4):349-357
-
[19] CAO W Y,LI J H,YANG K P,et al.An overview of au⁃ tophagy:mechanism,regulation and research progress [J].B Cancer,2021,108(3):304-322
-
[20] RAUTOU P E,MANSOURI A,LEBREC D,et al.Autoph⁃ agy in liver diseases[J].J Hepatol,2010,53(6):1123-1134
-
[21] GRUNWALD D S,OTTO N M,PARK J M,et al.GAB⁃ ARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction[J].Autophagy,2020,16(4):600-614
-
[22] BOOTH L,ROBERTS J L,AVOGADRI⁃CONNORS F,et al.The irreversible ERBB1/2/4 inhibitor neratinib inter⁃ acts with the BCL⁃2 inhibitor venetoclax to kill mammary cancer cells[J].Cancer Biol Ther,2018,19(3):239-247
-
[23] KAROW M,FISCHER S,MESSLING S,et al.Functional characterisation of the autophagy ATG12~5/16 complex in dictyostelium discoideum[J].Cells,2020,9(5):1179-1202
-
[24] DELORME⁃AXFORD E,KLIONSKY D J.The LC3⁃con⁃ jugation machinery specifies cargo loading and secretion of extracellular vesicles[J].Autophagy,2020,16(7):1169-1171
-
[25] AHMED M,NGUYEN H Q,HWANG J S,et al.Systemat⁃ ic characterization of autophagy⁃related genes during[J].Oncotarget,2018,9(21):15526-15541
-
[26] PARRAY H A,YUN J W.Combined inhibition of autoph⁃ agy protein 5 and galectin⁃1 by thiodigalactoside reduces diet⁃induced obesity through induction of white fat brown⁃ ing[J].IUBMB Life,2017,69(7):510-521
-
[27] HEINITZ S,GEBHARDT C,PIAGGI P,et al.Atg7 knock⁃ down reduces chemerin secretion in murine adipocytes [J].J Clin Endocr Metab,2019,104(11):5715-5728
-
[28] WANG X,WU R,LIU Y,et al.m(6)A mRNA methyla⁃ tion controls autophagy and adipogenesis by targeting Atg5 and Atg7[J].Autophagy,2020,16(7):1221-1235
-
[29] RO S H,JUNG C H,HAHN W S,et al.Distinct functions of Ulk1 and Ulk2 in the regulation of lipid metabolism in adipocytes[J].Autophagy,2013,9(12):2103-2114
-
[30] JIN Y,JI Y,SONG Y,et al.Depletion of adipocyte becn1 leads to lipodystrophy and metabolic dysregulation[J].Di⁃ abetes,2021,70(1):182-195
-
[31] WU H,WANG Y,LI W H,et al.Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and ag⁃ gravates dietary ⁃induced obesity and metabolic syndrome [J].Autophagy,2019,15(11):1882-1898
-
[32] FERHAT M,FUNAI K,BOUDINA S.Autophagy in adi⁃ pose tissue physiology and pathophysiology[J].Antioxid Redox Signal,2019,31(6):487-501
-
[33] YAU W W,SINGH B K,LESMANA R,et al.Thyroid hor⁃ mone(T3)stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR⁃mediated mitophagy [J].Autophagy,2019,15(1):131-150
-
[34] KO M S,YUN J Y,BAEK I J,et al.Mitophagy deficiency increases NLRP3 to induce brown fat dysfunction in mice [J].Autophagy,2021,17(5):1205-1221
-
[35] ALTSHULER ⁃ KEYLIN S,KAJIMURA S.Mitochondrial homeostasis in adipose tissue remodeling[J].Sci Signal,2017,10(468):9248-9273
-
[36] TAYLOR D,GOTTLIEB R A.Parkin ⁃mediated mitopha⁃ gy is downregulated in browning of white adipose tissue [J].Obesity,2017,25(4):704-712
-
[37] LU X D,ALTSHULER ⁃KEYLIN S,WANG Q,et al.Mi⁃ tophagy controls beige adipocyte maintenance through a Parkin ⁃ dependent and UCP1 ⁃ independent mechanism [J].Sci Signal,2018,11(527):8526-8547
-
[38] LIU L,FENG D,CHEN G,et al.Mitochondrial outer ⁃ membrane protein FUNDC1 mediates hypoxia ⁃ induced mitophagy in mammalian cells[J].Nat Cell Biol,2012,14(2):177-185
-
[39] ROSA S C D,MARTENS M D,FIELD J T,et al.BNIP3L/Nix ⁃ induced mitochondrial fission,mitophagy,and im⁃ paired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation[J].Autophagy,2021,17(9):2257-2272
-
[40] LIN Q S,LI S,JIANG N,et al.Inhibiting NLRP3 inflam⁃ masome attenuates apoptosis in contrast ⁃ induced acute kidney injury through the upregulation of HIF1A and BNIP3 ⁃ mediated mitophagy[J].Autophagy,2021,17(10):2975-2990
-
[41] ALTSHULER⁃KEYLIN S,SHINODA K,HASEGAWA Y,et al.Beige adipocyte maintenance is regulated by autoph⁃ agy ⁃ induced mitochondrial clearance[J].Cell Metabo⁃ lism,2016,24(3):402-419
-
[42] RAHMAN M S,KIM Y S.PINK1⁃PRKN mitophagy sup⁃ pression by mangiferin promotes a brown ⁃ fat ⁃ phenotype via PKA ⁃ p38 MAPK signalling in murine C3H10T1/2 mesenchymal stem cells[J].Metabolism,2020,10(7):154228-154239
-
[43] CAIRO M,CAMPDERROS L,GAVALDA⁃NAVARRO A,et al.Parkin controls brown adipose tissue plasticity in re⁃ sponse to adaptive thermogenesis[J].EMBO Rep,2019,20(5):46832-46847
-
[44] TOL M J,OTTENHOFF R,VAN EIJK M,et al.A PPARγ⁃Bnip3 axis couples adipose mitochondrial fusion⁃ fission balance to systemic insulin sensitivity[J].Diabe⁃ tes,2016,65:2591-2605
-
[45] CHOI J W,JO A,KIM M,et al.BNIP3 is essential for mi⁃ tochondrial bioenergetics during adipocyte remodelling in mice[J].Diabetologia,2016,59(3):571-581
-
[46] CHO Y K,SON Y,SAHA A,et al.STK3/STK4 signalling in adipocytes regulates mitophagy and energy expenditure [J].Nat Metab,2021,3(3):428-U248
-
[47] LIU L,LI Y,WANG J,et al.Mitophagy receptor FUNDC1 is regulated by PGC⁃1alpha/NRF1 to fine tune mitochon⁃ drial homeostasis[J].EMBO Rep,2021,22(3):50629-50649
-
[48] FU T T,XU Z S,LIU L,et al.Mitophagy directs muscle⁃ adipose crosstalk to alleviate dietary obesity[J].Cell Rep,2018,23(5):1357-1372
-
[49] LU Y,FUJIOKA H,JOSHI D,et al.Mitophagy is required for brown adipose tissue mitochondrial homeostasis dur⁃ ing cold challenge[J].Sci Rep,2018,8(1):8251-8264
-
[50] SCHOTT M B,WELLER S G,SCHULZE R J,et al.Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes[J].J Cell Biol,2019,218(10):3320-3335
-
[51] SHIN D W.Lipophagy:molecular mechanisms and impli⁃ cations in metabolic disorders[J].Mol Cells,2020,43(8):686-693
-
[52] ZECHNER R,MADEO F,KRATKY D.Cytosolic lipoly⁃ sis and lipophagy:two sides of the same coin[J].Nat Rev Mol Cell Bio,2017,18(11):671-684
-
[53] SATHYANARAYAN A,MASHEK M T,MASHEK D G.ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism[J].Cell Rep,2017,19(1):1-9
-
[54] LI Z P,WELLER S G,DRIZYTE⁃MILLER K,et al.Matu⁃ ration of lipophagic organelles in hepatocytes is depen⁃ dent upon a Rab10/dynamin ⁃2 complex[J].Hepatology,2020,72(2):486-502
-
[55] XING R X,ZHOU H J,JIAN Y L,et al.The Rab7 effec⁃ tor WDR91 promotes autophagy ⁃lysosome degradation in neurons by regulating lysosome fusion[J].J Cell Biol,2021,220(8):7061-7077
-
[56] DUPONT N,CHAUHAN S,ARKO ⁃ MENSAH J,et al.Neutral lipid stores and lipase PNPLA5 contribute to au⁃ tophagosome biogenesis[J].Curr Biol,2014,24(6):609-620
-
[57] MOREL E,CODOGNO P.A novel regulator of autophago⁃ some biogenesis and lipid droplet dynamics[J].EMBO Rep,2018,19(9):46858-46860
-
[58] KIM K Y,JANG H J,YANG Y R,et al.SREBP ⁃ 2/PNPLA8 axis improves non ⁃ alcoholic fatty liver disease through activation of autophagy[J].Sci Rep,2016,21(6):35732-35745
-
[59] NEGOITA F,BLOMDAHL J,WASSERSTROM S,et al.PNPLA3 variant M148 causes resistance to starvation⁃me⁃ diated lipid droplet autophagy in human hepatocytes[J].J Cell Biochem,2019,120(1):343-356
-
[60] KIM S,KIM N,PARK S,et al.Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and im⁃ prove energy balance[J].Autophagy,2020,16(7):1200-1220
-
[61] MARTINEZ⁃LOPEZ N,GARCIA⁃MACIA M,SAHU S,et al.Autophagy in the CNS and periphery coordinate lipo⁃ phagy and lipolysis in the brown adipose tissue and liver [J].Cell Metab,2016,23(1):113-127
-
[62] HOFFMANN A,EBERT T,HANKIR M K,et al.Leptin improves parameters of brown adipose tissue thermogene⁃ sis in lipodystrophic mice[J].Nutrients,2021,13(8):2499-2509
-
[63] HU Y Q,CHEN H,ZHANG L Y,et al.The AMPK⁃MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses[J].Autophagy,2021,17(5):1142-1156
-
[64] KADOUH H,CHEDID V,HALAWI H,et al.GLP⁃1 ana⁃ log modulates appetite,taste preference,gut hormones,and regional body fat stores in adults with obesity[J].J Clin Endocr Metab,2020,105(5):1552-1563
-
[65] DRUCKER D J.Mechanisms of action and therapeutic ap⁃ plication of glucagon ⁃ like peptide ⁃ 1[J].Cell Metab,2018,27(4):740-756
-
摘要
肥胖是由于脂肪细胞体积增大和数量增生而引起的脂肪组织异常或过度堆积导致的一种慢性代谢性疾病,由环境因素和遗传因素共同决定。近年来,自噬在调控脂肪细胞数量、脂肪生成和白色脂肪棕色化等过程中的作用引起了广泛关注。文章就脂肪组织中3种不同类型的自噬对脂肪生成、白色脂肪棕色化和脂肪代谢等过程的影响进行系统性总结回顾,旨在阐明自噬对脂肪组织功能及肥胖的影响,进而为肥胖的预防和治疗提供潜在靶点。
Abstract
Obesity is a chronic metabolic disease characterized by abnormal or excessive accumulation of adipose tissue,which is caused by an increase in adipocyte volume(hypertrophy)and number(hyperplasia). It is determined by environmental factors and genetic factors. In recent years,the roles of autophagy in regulating adipocyte number,adipogenesis,and white fat browning process have attracted extensive attention. This article systematically reviewed the effects of three different types of autophagy in adipose tissue on processes such as adipogenesis,white fat browning,and fat metabolism,aiming to clarify the effect of autophagy on adipose tissue function and obesity,and then provide potential targets for obesity prevention and treatment.
Keywords
obesity ; adipose tissue ; autophagy ; mitophagy ; lipophagy