-
胶质瘤是最常见的原发性颅内肿瘤,约占恶性脑肿瘤的 80%,主要起源于大脑的神经胶质细胞[1-2]。世界卫生组织根据病理学将胶质瘤分为Ⅰ~Ⅳ级。Ⅰ~Ⅱ级属于低级别胶质瘤,Ⅰ级主要是毛细胞型星形胶质瘤,Ⅱ级包括弥漫性星形细胞瘤、少突胶质瘤;Ⅲ~Ⅳ级属于高级别胶质瘤,其中Ⅲ级为间变性胶质瘤,Ⅳ级为胶质母细胞瘤(glioblastoma, GBM),是恶性程度最高的胶质瘤[3]。胶质瘤具有显著增殖和侵袭生长的能力,并最终形成颅内占位性病变,导致患者死亡。目前针对胶质瘤的治疗主要是手术切除,并辅以放疗和化疗,但患者5年生存率依然很低,尤其是 GBM 患者的平均生存时间不足 2 年[4-5]。因此探究GBM的发病机制或将有利于寻找新的干预方法。
-
锌指和 BTB 结构域蛋白 3(zinc finger and BTB domain containing3,ZBTB3)属于ZBTB家族成员,是一种转录因子,其蛋白包含 1 个锌指结构域和 1 个 BTB结构域,其锌指结构域通过与DNA特定元件结合,启动靶基因转录,而 BTB 结构域则可与其他转录调节因子相互作用,介导染色质重塑和基因激活[6]。研究表明,ZBTB3高表达可促进黑色素瘤、肺癌和乳腺癌细胞增殖,其分子机制涉及ZBTB3抑制 caspase⁃9、caspase⁃3 蛋白活化和 ROS 生成[7]。有文献报道,ZBTB3 可上调音猬因子(Sonic hedgehog, SHH)表达,诱发子宫内膜癌细胞增殖、迁移和侵袭[8]。提示,ZBTB3高表达能促进某些肿瘤的发生和发展。但有关GBM组织和细胞中ZBTB3表达及其对GBM的影响,目前尚不知晓。故本研究拟检测人GBM组织和细胞系中ZBTB3的表达情况,并探讨其对GBM细胞增殖的影响。
-
众所周知,在真核细胞中,基因表达会受到某些上游信号分子的调控,肿瘤细胞亦是如此,如 AMP 活化蛋白激酶(AMP ⁃activated protein kinase, AMPK)、p38丝裂原活化蛋白激酶(p38 mitogen⁃acti⁃ vated protein kinase,p38MAPK)、磷酸肌醇 3⁃激酶 (PI3K)/Akt1 等均可调控肿瘤细胞基因表达[9-10]。 AMPK 通过上调糖酵解和血管生成相关基因(如 GLUT1 和 VEGF)的表达以及诱导上皮间质转化 (epithelial mesenchymal transformation,EMT),促进肺癌和胰腺癌细胞的增殖或转移[11-12]。AMPK也可促进肾癌细胞增殖,其机制涉及 AMPK 募集 PKM2 和β⁃Catenin 形成复合物,促进细胞增殖相关基因 (CCND1 和 c⁃Myc)的表达[13]。而 p38MAPK 能增加 ZEB1和FOXC1基因的表达,从而促进GBM或结直肠癌细胞的侵袭和转移[14-15]。此外,Akt1 能上调 BCL⁃2基因表达或促进NF⁃κB活化,进而增加乳腺癌或GBM细胞的增殖水平[16-17]。综上所述,AMPK、 p38MAPK 和 Akt1 均能促进下游基因的表达,参与肿瘤病变,但有关AMPK、p38 MAPK及Akt1能否通过上调ZBTB3基因的表达促进GBM细胞增殖,目前尚不清楚。
-
1 材料和方法
-
1.1 材料
-
抗总p38MAPK(t⁃p38MAPK)、磷酸化p38MAPK (p⁃p38MAPK)、总 AMPK(t⁃AMPK)、磷酸化 AMPK (p⁃AMPK)、总 Akt1(t⁃Akt1)、磷酸化 Akt1(p⁃Akt1, Ser473)抗体(Cell Signaling Technology公司,美国); 抗 ZBTB3 抗体(成都正能生物公司);β⁃actin 抗体 (Affinity 公司,美国);HRP标记的山羊抗兔和山羊抗鼠二抗(Biosharp 公司,美国)。CCK⁃8 试剂盒、 Perifosine(Akt1 抑制剂)、SB203580(p38 抑制剂)和 Compound C(AMPK抑制剂)(MCE公司,美国)。胎牛血清(fetal bovine serum,FBS)(Wisent 公司,美国),DMEM培养基(Gibco公司,美国)。35 mm细胞培养皿(Thermo Fisher Scientific 公司,美国)。人 GBM 细胞系(U87、U373、U251)购自中科院上海细胞库。
-
1.2 方法
-
1.2.1 细胞培养
-
将 U87、U373、U251 细胞接种于 3 mL 含 10% FBS 的 DMEM 完全培养液中,置于 37℃、5%CO2孵箱中培养2 d。当细胞融合度为90%左右时,用1 mL 胰蛋白酶消化细胞,离心后重悬细胞,按1∶3比例接种于新的细胞培养皿中,进行传代,并继续置于孵箱中培养。
-
1.2.2 ZBTB3表达的检测
-
反转录 PCR(reverse transcription ⁃ PCR,RT ⁃PCR):通过NCBI数据库查找人ZBTB3和GAPDH基因CDS序列,并使用Primer Premier 5软件设计PCR 引物,由通用生物系统有限公司合成。引物序列如下:ZBTB3上游5′⁃CCACTGGTGGGGACCTTTTT ⁃3′,下游5′⁃AGCAGAGCCTTTCCATTCCC ⁃3′;GAPDH 上游5′⁃CAAGGTCATCCATGACAACTTTG⁃3′,下游5′⁃ GTCCACCACCCTGTTGCTGTAG ⁃ 3′。提取细胞总 RNA,逆转录为 cDNA,以 cDNA 为模板,用 Prime⁃ STAR@ Max DNA Polymerase 对 cDNA 进行 PCR 扩增反应,PCR 产物用 1.5%的琼脂糖凝胶进行电泳 (120 V,30 min),成像观察。使用 Quantity One 软件对电泳条带进行灰度扫描,同时行半定量分析。
-
实时定量PCR(quantitativereal⁃time PCR,qPCR):通过NCBI数据库查找人ZBTB3和β⁃actin基因CDS 序列,并使用 Primer Premier 5 软件设计 PCR 引物,由通用生物系统有限公司合成。引物序列如下: ZBTB3上游5′⁃TCCTTCGTGGGGTACTATGGA⁃3′,下游 5′⁃CCAATTCCCGCTCCTTGTAGAA⁃3′;β⁃actin 上游5′⁃CAGCCATGTACGTTGCTATCCAGG⁃3′,下游5′ ⁃AGGTCCAGACGCAGGATGGCATG ⁃3′。每个样本设置3个复孔,反应条件:使用ABI Step One Plus实时定量 PCR 仪进行扩增反应。①保温阶段:95℃ 5 min;②循环阶段:95℃ 10 s,60℃ 30 s,共 40 个循环;③熔解曲线阶段:95℃ 15 s,60℃ 30 s,95℃ 15 s。实验数据处理时,以β⁃actin作为内参,计算公式为2-ΔΔCT。
-
Western blot:将细胞裂解物煮沸后离心取上清,用10%预制混胶行SDS⁃PAGE电泳,先用50 V恒压浓缩,再用 120 V 恒压电泳分离 2 h,接着用 0.3A 湿转2 h,待蛋白转印到PVDF膜上后,再用5%脱脂奶粉室温封闭 2 h,加入抗 ZBTB3 抗体 4℃孵育过夜,1×TBST洗涤3次,每次30 min,再用HRP标记的二抗室温孵育 40 min,洗涤 3 次后行 ECL 化学发光试剂检测。使用Quantity One软件对电泳条带进行灰度扫描,同时行半定量分析。
-
1.2.3 细胞转染
-
取1.5 mL EP管,加入6 μL Lipofectamine2000和 94 μL无血清DMEM,吹打混匀,静置5 min;另取1个 1.5 mL EP管,加入2 μg质粒,再加入无血清DMEM至 100 μL;DMEM稀释后的Lipofectamine2000加入质粒中,吹打混匀,静置15 min;弃去细胞培养皿中的 DMEM,用 PBS 清洗,加入 1.8 mL 无血清 DMEM,将静置后的 Lipofectamine2000 和质粒混合溶液缓慢旋转加入细胞培养皿中。
-
1.2.4 ZBTB3短发卡质粒的构建和靶点的筛选
-
由南京科瑞斯生物科技有限公司设计并合成 3 个针对ZBTB3基因不同靶点的shRNA质粒,分别命名为 shZBTB3⁃1、shZBTB3⁃2 和 shZBTB3⁃3,并进行了 DNA 测序鉴定。靶点序列 shZBTB3 ⁃ 1:5′ ⁃ GCTTCTGGACTTTATGTATGC ⁃ 3′;shZBTB3 ⁃ 2:5′ ⁃ GGAAACCAACTCACAGCTTCC ⁃3′;shZBTB3⁃3:5′ ⁃ GCATCTCAGCAGTTTCATTGG ⁃3′。同时构建对照 shRNA 质粒(shCTR)。将 shCTR、shZBTB3 ⁃ 1、 shZBTB3⁃2和shZBTB3⁃3分别转染U87细胞48 h,并收集RNA 和蛋白,行RT⁃PCR、qPCR 和Western blot 筛选最佳沉默靶点,方法同前。
-
1.2.5 Western blot 检测 p38MAPK、AMPK、Akt1 的磷酸化水平
-
无血清培养 U87 细胞 12 h,再用 10 μmol/L 的 SB203580、Compound C 和Perifosine 分别处理细胞,收取蛋白样,用Western blot检测p38MAPK、AMPK、 Akt1的磷酸化水平,方法同前。
-
1.2.6 CCK⁃8实验检测细胞的增殖水平
-
U87细胞接种于96孔板,同时转染各shRNA质粒,培养48 h,每孔替换100 μL 10%的CCK⁃8溶液,放置培养箱避光孵育30~50 min,酶标仪测定450 nm 处的吸光度值。
-
1.2.7 克隆形成实验
-
U87细胞接种于35 mm细胞培养皿中(300个/皿),放置培养箱孵育 2 周,每隔 2 d 换 1 次液。弃上清液,用 PBS 洗 3 次,加甲醇固定 15 min。去除甲醇, PBS洗3次,加入2 mL结晶紫染液孵育30 min,PBS洗 3次,空气干燥。当细胞克隆直径≥0.75 mm时,记为阳性。
-
1.3 统计学方法
-
采用 SPSS 19.0 软件进行统计学分析,使用 GraphPad Prism 5.01软件进行绘图。所有实验均独立重复3次,所得定量数据以均数±标准误()进行统计描述。多组间比较采用单因素方差分析, Bonfferoni 法进行两两比较;两组间差异比较采用 t 检验,P <0.05为差异有统计学意义。
-
2 结果
-
2.1 GBM肿瘤组织和细胞系中ZBTB3的表达情况
-
首先通过GEPIA2数据库分析GBM肿瘤组织中 ZBTB3 的表达情况,结果显示,GBM 组织中 ZBTB3 的表达显著高于正常组织(图1A),且与患者的不良预后呈正相关(图1B)。接着选用3种GBM细胞系(U251、U373、U87),检测其ZBTB3的表达情况,结果显示,U373 和 U87 细胞高表达 ZBTB3 的 mRNA(图1C、D)和蛋白(图1E、F),以U87细胞最为显著,故后续实验拟选用U87细胞开展相应的体外实验。
-
2.2 沉默ZBTB3基因抑制U87细胞增殖和克隆形成
-
构建针对人ZBTB3基因的shRNA质粒(shZBTB3⁃1、 shZBTB3⁃2、shZBTB3⁃3)和对照shRNA质粒(shCTR),将shCTR、shZBTB3⁃1、shZBTB3⁃2和shZBTB3⁃3分别转染U87细胞,进行靶点筛选。发现shZBTB3⁃2可明显降低ZBTB3的mRNA(图2A、B)和蛋白(图2C、 D)表达,故后续采用 shZBTB3⁃2 进行实验,并简称为 shZBTB3。将 shZBTB3 转染 U87 细胞,48 h 后行 CCK⁃8检测细胞增殖水平,结果发现,与shCTR转染组相比,转染shZBTB3后可显著抑制U87细胞的增殖水平(图2E),同时开展了克隆形成实验,2周后观察发现,转染shZBTB3能明显抑制U87细胞的克隆形成(图2F、G)。上述结果表明,ZBTB3基因的表达能增强GBM细胞的增殖和克隆形成能力。
-
图1 GBM组织和细胞中ZBTB3的表达情况
-
Figure1 ZBTB3 expression in glioma tissues and cells
-
2.3 抑制 p38MAPK、AMPK 和 Akt1 对 U87 细胞 ZBTB3表达的影响
-
为了进一步探究U87细胞中调控ZBTB3表达的上游信号分子,使用p38MAPK抑制剂(SB203580)、 AMPK抑制剂(Compound C)、Akt1抑制剂(Perifosine) 分别处理U87细胞,分别提取RNA 和蛋白样,检查 p38MAPK、AMPK、Akt1 的磷酸化水平以及 ZBTB3 的mRNA和蛋白表达量。结果表明,与DMSO溶剂对照组相比,SB203580、Compound C 和Perifosine 可分别阻断 p38MAPK、AMPK 和 Akt1 的磷酸化,但是对其本身蛋白的表达均没有影响(图3A、B)。此外,用 Compound C 处理 U87 细胞后,ZBTB3 的 mRNA (图3C、D)和蛋白(图3E、F)表达均明显降低,而 SB203580和Perifosine 对ZBTB3的表达均无显著影响。提示,AMPK 信号分子正向调控 GBM 细胞 ZBTB3基因的表达。
-
2.4 抑制AMPK对U87细胞增殖和克隆形成的影响
-
为了观察AMPK对U87细胞增殖和克隆形成的调控作用,使用AMPK抑制剂Compound C处理U87 细胞,同时设DMSO溶剂对照组,48 h后行CCK⁃8实验检测细胞的增殖水平,2周后开展结晶紫染色,并计数细胞克隆。结果表明,Compound C既可明显抑制U87细胞的增殖(图4A),又能显著抑制U87细胞的克隆形成(图4B、C)。提示AMPK信号分子的活化可增强U87细胞的增殖和克隆形成能力。
-
3 讨论
-
GBM属于胶质瘤Ⅳ级,是恶性程度最高的胶质瘤。迄今为止,GBM的发病机制尚未阐明。业已发现,转录因子的表达和信号分子的活化对于GBM发生、发展有重要作用。例如,McFarland等[18] 研究表明,转录因子NF⁃κB可上调IL⁃6基因的表达,产生的 IL⁃6再介导STAT3活化,从而促进GBM的增殖和侵袭。Nie等[19] 报道,STAT3可与SH3结构域结合富含谷氨酸的蛋白质样因子3(SH3BGRL3)基因的启动子结合,增加 SH3BGRL3 基因的转录与表达,上调的 SH3BGRL3 又能激活 STAT3,形成 STAT3 ⁃ SH3BGRL3 环路促进 GBM 细胞的增殖。另 Li 等[20] 发现,信号分子Akt1活化可以促进Wnt/β⁃catenin信号的转导,β⁃catenin 入细胞核后启动下游靶基因 (如c⁃myc、Cyclin D1等)的转录,从而增强了GBM细胞的增殖能力。
-
图2 沉默ZBTB3对U87细胞增殖和克隆形成的影响
-
Figure2 Effects of ZBTB3 silencing on U87 cell proliferation and clonal formation
-
图3 p38MAPK、AMPK和Akt1抑制剂对U87细胞ZBTB3表达的影响
-
Figure3 The effects of p38MAPK,AMPK and Akt1 inhibitors on ZBTB3 expression in U87 cells
-
图4 AMPK抑制剂对U87细胞增殖和克隆形成的影响
-
Figure4 The effects of AMPK inhibitor on proliferation and clonal formation of U87 cells
-
ZBTB3 属于锌指和 BTB/POZ 结构域转录因子家族成员。虽文献报道黑色素瘤、肺癌、乳腺癌和子宫内膜癌中 ZBTB3 高表达并促进肿瘤细胞的增殖、迁移和侵袭等生物学行为[7-8],但有关 GBM 中 ZBTB3的表达及其对GBM的影响,目前尚不清楚,因此本课题组开展了相关研究。结果发现,GBM组织中ZBTB3的表达显著高于正常组织,且与患者的不良预后呈正相关。而GBM细胞系U373和U87也高表达ZBTB3的mRNA和蛋白,且以U87细胞最为显著,故后续选用 U87 细胞开展相应的体外实验。沉默 ZBTB3 基因可显著抑制 U87 细胞的增殖和克隆形成。提示ZBTB3属于GBM增殖相关基因,与他人报道的 ZBTB3 促黑色素瘤、肺癌、乳腺癌和子宫内膜癌增殖功能基本一致。值得一提的是,ZBTB 家族其他成员也参与调控 GBM 增殖病变。例如, Xu 等[21] 报道,GBM 细胞中 ZBTB27 高表达,且与患者不良预后呈正相关,其机制包括 ZBTB27 调节下游基因 AXL 的表达以及抑制 p53 通路,从而促进 GBM 细胞的增殖。Wang 等[22] 研究也发现,GBM 细胞中miR⁃181a表达下调,削弱了miR⁃181a对其靶基因ZBTB33表达的抑制效应,导致上调的ZBTB33促进GBM细胞增殖。提示ZBTB基因家族的某些成员在GBM细胞增殖病变中扮演着重要角色。
-
已经发现AMPK调控肿瘤细胞的代谢、增殖、迁移和侵袭等生物学行为,促进包括GBM在内的多种肿瘤的发生和发展[23-25]。研究揭示,GBM 细胞中 AMPK明显活化,AMPK增加HRAS基因的表达,进而通过调控细胞周期进程促进GBM细胞的增殖[24]。另有文献报道,AMPK能促进HIF⁃1α和GABPA基因的表达,HIF⁃1α和 GABPA 再发挥转录因子的功能上调靶基因 PDK1 和 COX6A1 的表达,进而增强 GBM 细胞的增殖能力[25]。而关于 AMPK 对 ZBTB3 基因的调控作用,目前尚未见文献报道。本研究发现, AMPK活化后可上调ZBTB3基因的表达,促进GBM 细胞的增殖和克隆形成,提示AMPK或许可以通过上调ZBTB3的表达促进GBM细胞的增殖和克隆形成。综上推测:AMPK 调控 GBM 细胞增殖的过程中,可能涉及对诸多下游基因(如 HRAS、HIF⁃1α、 GABPA和ZBTB3等)的调控。而这些基因之间是否存在上下游关系或交互作用,也有待后续实验加以阐明。
-
综上所述,本研究表明:GBM肿瘤组织和GBM 细胞系中ZBTB3高表达;GBM细胞中AMPK活化并上调ZBTB3基因的转录与表达,进而促进GBM细胞的增殖和克隆形成。本研究为探究GBM的发病机制提供了新思路,也为GBM的治疗提供了潜在靶标。
-
参考文献
-
[1] GRITSCH S,BATCHELOR T T,GONZALEZ CASTRO L N.Diagnostic,therapeutic,and prognostic implications of the 2021 World Health Organization classification of tu⁃ mors of the central nervous system[J].Cancer,2022,128(1):47-58
-
[2] BI J,SUDHIR C,WU S,et al.Altered cellular metabolism in gliomas ⁃ an emerging landscape of actionable co ⁃ de⁃ pendency targets[J].Nat Rev Cancer,2020,20(1):57-70
-
[3] BAI J,VARGHESE J,JAIN R.Adult glioma WHO classi⁃ fication update,genomics,and imaging:what the radiolo⁃ gists need to know[J].Top Magn Reson Imaging,2020,29(2):71-82
-
[4] MIYAUCHI J T,TSIKA S E.Advances in immunothera⁃peutic research for glioma therapy[J].J Neurol,2018,265(4):741-756
-
[5] GUSYATINER O,HEGI M E.Glioma epigenetics:from subclassification to novel treatment options[J].Semin Cancer Biol,2017,51:50-58
-
[6] YE B,LIU B,YANG L,et al.LncKdm2b controls self⁃re⁃ newal of embryonic stem cells via activating expression of transcription factor Zbtb3[J].EMBO J,2018,37(8):e97174
-
[7] LIM J H.Zinc finger and BTB domain⁃containing protein 3 is essential for the growth of cancer cells[J].BMB Rep,2014,47(7):405-410
-
[8] JIN X,WANG J,LI Q,et al.Erratum:SPOP targets onco⁃ genic protein ZBTB3 for destruction to suppress endome⁃ trial cancer[J].Am J Cancer Res,2021,11(4):1792-1794
-
[9] ROTWEIN P.Regulation of gene expression by growth hormone[J].Mol Cell Endocrinol,2020,507:110788
-
[10] PARK J H,PYUN W Y,PARK H W.Cancer metabolism:phenotype,signaling and therapeutic targets[J].Cells,2020,9(10):E2308
-
[11] ASHRAFIZADEH M,MIRZAEI S,HUSHMANDI K,et al.Therapeutic potential of AMPK signaling targeting in lung cancer:advances,challenges and future prospects [J].Life Sci,2021,278:119649
-
[12] NATSUIZAKA M,OZASA M,DARMANIN S,et al.Syner⁃ gistic up⁃regulation of Hexokinase⁃2,glucose transporters and angiogenic factors in pancreatic cancer cells by glu⁃ cose deprivation and hypoxia[J].Exp Cell Res,2007,313(15):3337-3348
-
[13] LIU M,ZHANG Z,WANG H,et al.Activation of AMPK by metformin promotes renal cancer cell proliferation un⁃ der glucose deprivation through its interaction with PKM2 [J].Int J Biol Sci,2019,15(3):617-627
-
[14] LIM E J,KIM S,OH Y,et al.Crosstalk between GBM cells and mesenchymal stemlike cells promotes the inva⁃ siveness of GBM through the C5a/p38/ZEB1 axis[J].Neuro Oncol,2020,22(10):1452-1462
-
[15] ZHANG Y,LIAO Y,CHEN C,et al.p38 ⁃ regulated FOXC1 stability is required for colorectal cancer metasta⁃ sis[J].J Pathol,2020,250(2):217-230
-
[16] BRATTON M R,DUONG B N,ELLIOTT S,et al.Regula⁃ tion of ERalpha⁃mediated transcription of Bcl⁃2 by PI3K⁃ AKT crosstalk:implications for breast cancer cell survival [J].Int J Oncol,2010,37(3):541-550
-
[17] WANG B,ZHAO C H,SUN G,et al.IL ⁃17 induces the proliferation and migration of glioma cells through the ac⁃ tivation of PI3K/Akt1/NF⁃κB⁃p65[J].Cancer Lett,2019,447:93-104
-
[18] MCFARLAND B C,HONG S W,RAJBHANDARI R,et al.NF ⁃ κB ⁃induced IL ⁃6 ensures STAT3 activation and tumor aggressiveness in glioblastoma[J].PLoS One,2013,8(11):78728
-
[19] NIE Z,CHENG D,PAN C,et al.SH3BGRL3,transcribed by STAT3,facilitates glioblastoma tumorigenesis by acti⁃ vating STAT3 signaling[J].Biochem Biophys Res Com⁃ mun,2021,556:114-120
-
[20] LI C,YANG J,LEI S,et al.SKA3 promotes glioblastoma proliferation and invasion by enhancing the activation of Wnt/β⁃catenin signaling via modulation of the Akt/GSK ⁃ 3β axis[J].Brain Res,2021,1765:147500
-
[21] XU L,CHEN Y,DUTRA ⁃CLARKE M,et al.BCL6 pro⁃ motes glioma and serves as a therapeutic target[J].PNAS,2017,114(15):3981-3986
-
[22] WANG L,MA J,WANG X,et al.Kaiso(ZBTB33)down⁃ regulation by mirna⁃181a inhibits cell proliferation,inva⁃ sion,and the epithelial⁃mesenchymal transition in glioma cells[J].Cell Physiol Biochem,2018,48(3):947-958
-
[23] PARK H U,SUY S,DANNER M,et al.AMP ⁃ activated protein kinase promotes human prostate cancer cell growth and survival[J].Mol Cancer Ther,2009,8(4):733-741
-
[24] RÍOS M,FORETZ M,VIOLLET B,et al.AMPK activa⁃ tion by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors[J].Cancer Res,2013,73(8):2628-2638
-
[25] RAJ C R,FAN Q,JANE A,et al.AMP kinase promotes glioblastoma bioenergetics and tumour growth[J].Nat Cell Biol,2018,20(7):823-835
-
摘要
目的:检查人胶质母细胞瘤(glioblastoma,GBM)组织和细胞系中ZBTB3的表达,并探讨ZBTB3对GBM细胞增殖和克隆形成的影响及其调控机制。方法:通过GEPIA2数据库分析GBM患者肿瘤组织中ZBTB3的表达情况。RT-PCR、qPCR和 Western blot 检测 GBM 细胞系(U251、U373、U87)中 ZBTB3 的 mRNA 和蛋白表达水平,筛选出 ZBTB3 表达最高的 U87 细胞。 CCK-8和克隆形成实验检测沉默ZBTB3基因对U87细胞增殖和克隆形成的影响。用p38MAPK、AMPK、Akt1抑制剂处理U87 细胞后,Western blot检测p38MAPK、AMPK、Akt1的磷酸化水平,RT-PCR、qPCR和Western blot测定ZBTB3的mRNA和蛋白表达水平,CCK-8和克隆形成实验检测细胞增殖和克隆形成。结果:GBM 患者肿瘤组织中ZBTB3的表达显著高于正常组织。 U251、U373和U87细胞中均可见ZBTB3的表达,其中U87细胞表达最高。沉默ZBTB3基因能明显抑制U87细胞的增殖和克隆形成。抑制AMPK既能显著降低U87细胞ZBTB3的表达水平,又可明显减弱U87细胞增殖和克隆形成。结论:GBM组织和细胞系中ZBTB3的表达显著上调,GBM细胞中AMPK活化并上调ZBTB3基因的表达,促进GBM细胞的增殖和克隆形成。
Abstract
Objective:This study aims to examine the expression of ZBTB3 in human glioblastoma(GBM)tissues and cell lines,and to explore the effects of ZBTB3 on the proliferation and clonal formation of GBM cells and their regulatory mechanism. Methods:The expression of ZBTB3 in tumor tissues of GBM patients was analyzed by GEPIA2 database. The mRNA and protein expression levels of ZBTB3 in GBM cell lines(U251,U373,U87)were detected by RT-PCR,qPCR and Western blot,and U87 cell line was identified with the highest expression of ZBTB3. CCK - 8 and clonal formation assay were used to examine the effects of silencing ZBTB3 on the proliferation and clonal formation of U87 cells. U87 cells were treated with p38MAPK,AMPK and Akt1 inhibitors,and the phosphorylation levels of p38MAPK,AMPK and Akt1 were detected by Western blot. ZBTB3 mRNA and protein levels were detected by RT - PCR,qPCR and Western blot. Cell proliferation and clone formation were examined by CCK - 8 and clone formation assay. Results:The expression of ZBTB3 in tumor tissues of GBM patients was significantly higher than that in normal tissues. The expression levels of ZBTB3 in U251,U373 and U87 cell lines were examined,and the highest expression in U87 cells was observed. Silencing ZBTB3 markedly inhibited the proliferation and clonal formation of U87 cells. AMPK inhibition could not only obviously reduce the expression level of ZBTB3 in U87 cells,but also markedly attenuate the proliferation and clonal formation of U87 cells. Conclusion:The expression of ZBTB3 is obviously increased in GBM tissues and cells,and the AMPK - up - regulated ZBTB3 expression promotes the proliferation and clonal formation of GBM cells.
Keywords
glioblastoma ; ZBTB3 ; AMPK ; proliferation ; clone formation