-
目前,由于外伤、肿瘤、炎症等多种因素导致的临界大小骨缺损成为口腔修复的重大问题之一[1]。传统用于骨增量的手段,例如自体骨移植等,虽在临床上取得了一定的治疗效果,但仍存在着诸如取骨量有限、塑形困难等问题,从而导致供区产生较大损伤[2]。
-
骨组织工程可将负载有种子细胞及具有成骨诱导效应生物因子的生物支架植入骨缺损区,诱导新骨生成。与传统修复方法相比,骨组织工程有生物安全性好、损伤小、成骨诱导活性高等优点[3]。种子细胞与促成骨效应生物因子是骨组织工程的关键。既往研究表明,多来源的干细胞是骨组织工程的理想细胞来源[4]。具有成骨诱导效应的生物因子是近年来骨组织工程的研究重点,在众多具有诱导分化的物质中,天然小分子化合物颇受重视,其具有来源广、易获取且生物安全性佳等优势[5]。
-
人牙髓干细胞(human dental pulp stem cell, hDPSC)可以从拔除的正畸牙、脱落乳牙以及第三磨牙中提取[6-7]。hDPSC具有多系分化能力,诸多研究表明其在组织工程应用中有着巨大潜力。hDPSC 能够分化为成骨细胞样细胞并表达碱性磷酸酶 (alkaline phosphatase,ALP)、Ⅰ型胶原(collagen Ⅰ, COL1)、骨桥蛋白(osteopontin,OPN)和骨钙素(os⁃ teocalcin,OCN)等标志物,并且其增殖率高、免疫原性低、冷冻保存损伤小,因此 hDPSC 被作为组织工程理想的种子细胞之一[8]。
-
佛手柑内酯(bergapten,BP),化学式(C12H8O4),又名补骨脂素,是一种广泛存在于水果(如柠檬、葡萄)及药用植物(如佛手柑)中的天然呋喃香豆素类化合物[9]。既往研究表明BP有抗炎、抗菌及预防骨质疏松等多重作用,并且其在7.5~30.0 μmol/L浓度范围内可以促进大鼠骨髓干细胞的成骨分化[10-11]。研究表明,BP 可以有效抑制脂多糖诱导的破骨细胞产生,从而预防并治疗炎症性骨质吸收[12]。糖尿病相关的骨质疏松症研究发现,BP 会显著抑制 RANKL 信号转导,抑制 PI3K/AKT、JNK/MAPK 和 NF⁃κB 信号通路的激活,从而降低破骨细胞分化并保护小梁结构[13];另一项研究表明,BP在体外和体内均可促进小鼠骨髓基质细胞分化为成骨细胞,并且通过触发 WNT/β⁃catenin 信号通路增加成熟成骨细胞的 ALP[14]、Runt相关转录因子2(Runt⁃related transcrip⁃ tion factor 2,RUNX2)、OCN 和 COL1 的表达[15]。这些研究均表明BP可以通过调节骨稳态的方式促进骨组织再生。然而目前尚无BP对于人源干细胞生长分化影响的研究,这阻碍了其在组织工程中的应用。
-
本研究将从细胞层面入手,研究 BP 对 hDPSC 的体外增殖及成骨分化能力的影响,并探究其最佳体外作用浓度,为BP在骨组织工程中的应用提供研究基础。
-
1 材料和方法
-
1.1 材料
-
BP(M101152,上海 Aladdin 公司);二甲基亚砜溶液(dimethyl sulfoxide,DMSO)(北京 Solarbio 公司);α⁃MEM 培养基(32561037,Gibco 公司,美国); 胎牛血清(fetal bovine serum,FBS)(Invigentech 公司,美国);人相关干细胞成骨诱导分化培养基 (HUXXC90021,广州 Cyagen 公司);0.25%含 EDTA 胰蛋白酶(25200072,Gibco公司,美国)。 CCK⁃8试剂盒(EICK ⁃000208,南京 Enogenen Biotech 公司); BCIP/NBT ALP显色试剂盒(c3206,上海Beyotime公司);BCA蛋白质定量试剂盒(PT0001,北京Leagene 公司);ALP试剂盒(A059⁃2⁃2,南京建成公司);茜素红(alizarin red S,ARS)溶液(DS0072,北京 Leagene 公司);人相关干细胞表面标志检测试剂盒(HUX⁃ MX ⁃09011,广州 OriCell 公司)。RNA sample Total RNA kit(DP430,北京 TIANGEN 公司);Prime ScriptTM RT Master Mix(RR036A)、TB GreenTM premix EX TaqTMⅡ(RR820A)(Takara 公司,日本)。OCN抗体、RUNX2抗体、OPN抗体、ALP抗体(Abcam公司,英国)。荧光定量PCR仪(Quant studio 7,ABI公司,美国);BDFACSCalibur 流式细胞仪(BD Bioscience 公司,美国);超微量核酸蛋白检测仪(NanoVue,GE healthcare公司,美国);LIVE/DEAD细胞成像试剂盒(Thermofisher公司,美国)。
-
1.2 方法
-
1.2.1 细胞培养
-
收集从南京医科大学附属口腔医院治疗的年轻患者(18~25岁)处拔除的健康第三磨牙并从中提取牙髓组织。本研究已获南京医科大学附属口腔医院伦理委员会批准(伦理审批号:PJ2021⁃125⁃ 001),所有患者知情同意。用含1%双抗的PBS冲洗牙齿表面后,于超净工作台中取出牙髓组织,眼科剪剪碎,然后将组织碎块置于3 mg/mL Ⅰ型胶原酶溶液中,37℃消化20~30 min后,1 000 r/min 离心5 min,弃上清,将沉淀吹打混匀后接入培养皿中,用含 20% FBS和1%双抗的α⁃MEM培养基培养。待细胞爬出后,弃组织块,继续培养,记为 P0,每 3 d 换液 1 次,当细胞汇合度为70%~80%后,胰酶消化传代。选取第2~6代细胞进行后续实验。后续成骨指标检测实验使用人相关干细胞成骨诱导培养基进行。
-
1.2.2 细胞鉴定
-
采用流式细胞仪检测 hDPSC 的表面标志物。第 2 代 hDPSC 用于流式表型检测。将细胞接种于 2 个T25培养瓶中,待细胞融合达80%时,用胰酶消化,1 000 r/min 离心5 min后弃上清,用流式细胞缓冲液重悬,调节细胞浓度为3×106 个/孔,取100 μL细胞悬液至1.5 mL EP管中,每管约3×105 个细胞。对EP 管进行标记,每管加入对应的3 μL一抗,混匀;4℃过夜,冲洗;加入荧光二抗,孵育;冲洗,过筛;使用流式细胞仪定量细胞荧光,数据使用FlowJo10.4分析。
-
1.2.3 细胞毒性及生物安全性检测
-
CCK ⁃8 检测 BP 对 hDPSC 的毒性及生物安全性。在细胞毒性检测实验中,hDPSC 以 3×104 个/孔的密度接于96孔板。每孔加入200 μL含10% FBS 的α⁃MEM 培养基,4 h 后用含不同浓度 BP(7.5~240.0 μmol/L)的培养基替换原培养基,对照组加入等体积的 DMSO。3 d 后吸弃孔内培养基,加入 150 μL 按1∶10用α⁃MEM培养基稀释后的CCK⁃8工作液,于37℃、5% CO2培养箱中孵育2 h后,每孔吸出 100 μL液体至另一96孔板中,微孔板分光光度计在 450 nm处读取吸光度值。生物安全性检测实验中, hDPSC以 5×103 个/孔的密度接种于96孔板中,4 h后用含不同浓度BP(7.5、15.0、30.0 μmol/L)的培养基替换原培养基,于0、1、3、5、7 d用CCK⁃8法进行检测。
-
1.2.4 细胞形态检测
-
将 hDPSC 以 5×103 个/孔的密度接种于 96 孔板中。4 h后用含不同浓度BP(7.5、15.0、30.0 μmol/L)的培养基替换原培养基,对照组加入等体积的 DMSO。于第 3 天加入 LIVE/DEAD 细胞成像试剂, 37℃孵育15 min后于倒置荧光显微镜下观察。
-
1.2.5 BCIP/NBT ALP显色及ALP定量检测
-
将 hDPSC 以 2×105 个/孔的密度接种于 12 孔板中,每孔加入 1 mL 含 10% FBS α⁃MEM 培养基。待其融合度达 60%时,用含不同浓度 BP(7.5、15.0、 30.0 μmol/L)的成骨诱导培养基替换原培养基,对照组使用含等体积DMSO的成骨诱导培养基。每2~3 d 换 1 次液。成骨诱导 7 d 后,吸弃诱导培养基,PBS 冲洗2次,每孔加入4%多聚甲醛固定30 min,吸弃, PBS冲洗2次,按BCIP/NBT ALP显色试剂盒说明书所示方法配置染色液,每孔加入 500 μL,室温下避光染色 15 min后,去离子水轻洗去除非特异性染色并中止染色反应,于扫描仪拍照观察,并于镜下观察。取同样方式培养至7 d的hDPSC,吸弃培养基, PBS冲洗2次后每孔加入0.5% TritonX⁃100,冰上裂解 20 min,超声破碎,12 000 r/min离心15 min后取上清液进行ALP活性和总蛋白浓度检测,检测按ALP试剂盒与BCA总蛋白定量试剂盒所示方法进行。
-
1.2.6 ARS检测
-
细胞培养方法同1.2.5。成骨诱导至21 d时,吸弃原培养基,PBS 冲洗 2 次,每孔加入 4%多聚甲醛固定 30 min,吸弃,PBS 冲洗 2 次,每孔加入 500 μL ARS 染色液,室温染色 10 min,吸弃染液,PBS 漂洗后扫描仪拍照,并于镜下观察钙结节形成情况。取同样方法诱导及ARS染色的细胞,加入10%氯化十六烷基砒啶溶液,反应 15 min 后,微孔板分光光度计于562 nm处测定吸光度。
-
1.2.7 实时荧光定量PCR
-
细胞培养方法同 1.2.5。成骨诱导至 7 d 时,吸弃培养基,按照RNA提取试剂盒所示方法收集细胞并分离提取总 RNA,逆转录成 cDNA 后,采用 TB GreenTM premix EX TaqTMⅡ试剂盒所示方法配置10 μL 反应体系,在Quant studio7荧光定量PCR仪上进行实时荧光定量分析。引物由上海生工生物工程有限公司合成(表1),GAPDH 管家基因作为内参,用比较阈值循环法分析。
-
1.2.8 免疫印迹分析
-
细胞培养方法同 1.2.5。成骨诱导至 7 d 时,用含1%蛋白酶抑制剂的RIPA裂解液冰上裂解细胞,超声破碎后12 000 r/min 离心15 min,收集上清液,加入5×SDS蛋白上样缓冲液后100℃煮8 min,冷却后于-20℃储存。蛋白样品通过十二烷基硫酸钠聚丙烯酰胺凝胶电泳在90 V电压下分离,经300 mA恒流转膜,蛋白转移至PVDF膜上,室温下用快速封闭液封闭15 min,4℃下一抗孵育过夜,室温下用TBST 洗涤5次,每次6 min,与对应二抗孵育50 min,将膜转移至暗盒中,滴加化学发光底物混合物,在化学凝胶发光成像系统下显影拍摄。灰度值数据用 Image J进行测算。
-
1.3 统计学方法
-
所有实验至少进行3次重复,实验数据用均值± 标准差()表示,使用GraphPad Prism9进行数据分析,组间比较采用单因素方差分析和新复极差法检验,P <0.01为差异有统计学意义。
-
2 结果
-
2.1 hDPSC的分离与鉴定
-
胶原酶消化法提取的细胞在第7天时从组织块中爬出,细胞呈类成纤维细胞样的梭形(图1 A)。流式细胞仪鉴定结果显示,所提取的细胞表面表达的标志物中,CD34及CD45表达呈阴性,而CD105、 CD29、CD73和CD166表达阳性(图1 B~H)。这说明所提取的hDPSC有干细胞特性,可以用于后续实验。
-
2.2 BP对hDPSC增殖的影响
-
为了评估 BP 对 hDPSC 增殖的影响,将细胞培养于含不同BP浓度的完全培养基中。细胞毒性实验结果显示,当 BP 浓度超过 60.0 μmol/L 后,其对 hDPSC的毒性显著上升,差异有统计学意义(图2 A, P <0.01)。而 7.5~30.0 μmol/L 范围内 BP 对 hDPSC 的增殖未见明显抑制作用。生物安全性结果显示,与对照组相比,在5 d时7.5、15.0、30.0 μmol/L BP 对细胞增殖有一定促进作用(图2B,P <0.01),第7天时 BP 组间无明显差异。后续成骨诱导实验采用7.5、 15.0、30.0 μmol/L作为BP的实验浓度。
-
2.3 细胞形态观察
-
荧光显微镜下观察各组细胞均未见显示死细胞的红色荧光,表明所选的实验浓度对细胞无毒性 (图3)。
-
图1 原代hDPSC形态及流式细胞术检测干细胞表面标志
-
Figure1 Morphology of the primary hDPSC and flow cytometry analysis of surface antigen markers of stem cells
-
2.4 BP对hDPSC的ALP活性的影响
-
ALP 染色评价 BP 对 hDPSC 成骨分化早期 ALP 表达的影响。结果表明,在7 d成骨诱导后,BP组与对照组均有ALP的深蓝色着色团块且BP组染色较深(图4 A)。ALP活性定量结果显示,BP组ALP活性高于对照组(图4 B,P <0.01)。15.0 μmol/L BP组 ALP活力较7.5 μmol/L BP组与30.0 μmol/L BP组稍高,差异有统计学意义(图4B,P <0.01)。
-
2.5 BP对hDPSC细胞外基质矿化的影响
-
ARS染色检测细胞外基质钙结节来评价BP对 hDPSC 成骨分化晚期外基质矿化的影响。结果表明,在21 d连续成骨诱导后,BP组与对照组均显示矿化物沉积,BP组结节数目多于对照组,且染色较深,其中 15.0 μmol/L BP 组染色较 7.5 μmol/L BP 组与 30.0 μmol/L BP 组更深(图5 A)。ARS 半定量结果与染色结果相符(图5B,P <0.01)。
-
2.6 BP对hDPSC成骨相关基因表达的影响
-
qRT⁃PCR分析探究BP对hDPSC成骨基因表达的影响。成骨诱导 7 d 后的结果显示,在不同浓度 BP作用下,BP组ALP、RUNX2的表达均高于对照组 (图6,P <0.01),15.0 μmol/L BP组及30.0 μmol/L BP 组的OPN及OCN表达高于对照组,差异均有统计学意义(P <0.01)。在BP组中,15.0 μmol/L BP组ALP、OCN 表达高于7.5 μmol/L BP组(P <0.01),且15.0 μmol/L BP组OPN、RUNX2表达高于其余两组(P <0.01)。
-
图2 细胞毒性及生物安全性检测
-
Figure2 Cytotoxicity and biosafety detection
-
图3 活死细胞荧光染色(×100)
-
Figure3 Cell live/dead fluorescence staining(×100)
-
图4 BP对hDPSC ALP 活性的影响
-
Figure4 Effects of BP on the ALP activity of hDPSC
-
2.7 BP对hDPSC成骨相关蛋白表达的影响
-
免疫印迹法分析各组成骨分化相关蛋白的表达水平(图7 A)。以β⁃ACTIN作为内参,以其灰度值与各组进行比对,BP组的OCN、ALP、OPN、RUNX2表达均高于对照组(图7 B,P <0.01),且15.0 μmol/L组 ALP、OCN、RUNX2表达均高于其余两组(P <0.01)。
-
图5 BP对hDPSC细胞外基质矿化的影响
-
Figure5 Influence of BP on the extracellular matrix mineralization of hDPSC
-
3 讨论
-
BP是一种呋喃香豆素类天然小分子化合物,有着类雌激素的生物效应。既往研究表明BP有抗炎、抑菌、调节免疫、防治骨质疏松等作用[16]。研究显示BP通过抑制破骨细胞生成,促进成骨细胞增殖分化,以调节骨稳态的方式促进骨折愈合,减缓骨质疏松以及炎症导致的骨丧失[17]。
-
图6 BP对hDPSC成骨相关基因表达的影响
-
Figure6 Effects of BP on the expression of osteogenic re⁃ lated genes in hDPSC
-
hDPSC与胚胎干细胞及诱导多能干细胞相比,有着取材方便、伦理问题少、冷冻损伤低等优点,并且拥有较高的分化潜能以及低免疫原性,被视为理想的种子细胞[18-19]。本研究通过设置不同浓度的 BP 研究其对 hDPSC 成骨分化的影响,以期评估 BP 促 hDPSC 成骨分化能力并探究其促成骨细胞分化的最佳浓度。
-
本研究采用胶原酶消化法从人第三磨牙中提取 hDPSC,流式鉴定结果显示表面标志 CD45 和 CD34 均为阴性,间充质干细胞表面标志 CD29、 CD105、CD73 和 CD166 为阳性,符合国际细胞治疗协会(ISCT)的间充质干细胞鉴定标准,证明此法所提取的细胞具有干细胞特征[20]。干细胞的增殖与成骨分化是骨再生修复的重要环节。首先通过对 0~240.0 μmol/L BP的生物毒性进行检测,发现当BP 浓度超过 60.0 μmol/L 后,BP 表现出对 hDPSC 增殖的抑制作用,因此在后续实验中使用 7.5、15.0、 30.0 μmol/L 浓度的 BP。生物安全性实验发现 7.5、 15.0、30.0 μmol/L BP对hDPSC的增殖无明显抑制作用,这些结果证实了对于hDPSC,7.5、15.0、30.0 μmol/L BP具有良好的安全性。
-
图7 BP对hDPSC成骨相关蛋白的影响
-
Figure7 Effects of BP on the expression of osteogenic re⁃ lated proteins in hDPSC
-
ALP表达于大部分矿化组织中,在成骨分化早期细胞的表面及基质小泡内呈现高表达[21]。ALP可以增强无机磷酸盐在细胞外基质的局部沉积[22],同时减少焦磷酸盐的矿化抑制作用[23]。ALP染色实验证实了一定浓度的BP可以促进hDPSC的ALP表达,之后的定量实验也印证了染色结果,并且15.0 μmol/L BP组的ALP活性增强最为明显。
-
ARS 染色来评估成骨后期细胞外基质的矿化程度。ARS 染液可以与钙结节结合形成红色复合物,其染色的深浅可以用来比较矿化程度高低。 ARS染色结果显示,与对照组相比,BP组染色明显更深,矿化结节数目也更多,其中 15.0 μmol/L BP 组稍显优势。
-
成骨活动是一种多因素共同调节的过程。 OCN,又称骨钙素,表达了骨基质中的大量无胶原蛋白[24],在成骨细胞增殖分化并与矿化基质结合的过程中发挥重要作用,是增强骨强度必须的[25]。 RUNX2 又称核心结合因子和成骨特异因子,属于 RUNX转录因子家族。RUNX2可以上调成骨相关基因,在成骨细胞的发育早期阶段十分关键[26-27],一旦成骨细胞开始表达 RUNX2,就会进入一个高表达 ALP、OCN等成骨相关蛋白的增殖阶段[28]。OPN基因可编码骨桥蛋白,在骨成熟的过程中该基因广泛表达于矿化组织内[29]。OPN的表达由RUNX2基因调控。在骨成熟的早期阶段,RUNX2、ALP、OPN表达较高[30],而在成骨分化晚期OCN表达量较高[31]。 qRT⁃PCR结果可见,BP组成骨指标较对照组显著升高,15.0 μmol/L BP 组在促进成骨分化方面较其他两组有更明显的效果。免疫印迹实验及灰度值分析结果证明,与对照组相比,BP组成骨相关基因及蛋白表达均有明显升高,与qRT⁃PCR 结果相印证。以上结果从分子水平证明了BP具有促进hDPSC成骨分化的作用。
-
文献报道,香豆素类化合物可以抑制受体激活因子 NF⁃κB 配体诱导的小鼠单核巨噬细胞向成熟的多核破骨细胞分化的能力,并通过与雌激素受体结合激活雌激素反应性 PI3K/Akt 轴,刺激下游 GSK3β/β⁃catenin 通路的激活,从而增强骨形成[32]。 BP作为植物雌激素的一种,其可能通过类似机制对成骨活动产生促进作用。Western blot及qRT⁃PCR结果均证明BP可致hDPSC 中RUNX2表达上调,说明 TCF7/LEF1通路可能也被激活并参与成骨活动[33]。
-
将天然小分子化合物与组织工程支架结合是近年来骨组织工程的研究重点之一。Sarkar等[34] 通过脂质体包裹的方式将姜黄素与3D打印磷酸钙多孔支架相结合,制造了一种具有生物活性的功能支架,且体外试验中该支架在抑制骨肉瘤细胞增殖的同时也促进了成骨细胞的增殖分化。在另一项研究中,试验人员通过使用3D低温快速成型技术将葫芦素B掺入聚乳酸⁃羟基乙酸和β磷酸三钙中,该支架具有良好的机械性能,且在大鼠骨缺损模型上显著促进血管与骨再生[35]。这些研究表明天然小分子化合物可以通过合适的方式与组织工程支架结合并产生生物学效应。本研究结果显示BP具有促 hDPSC成骨分化的作用,这证明BP是具有骨组织工程应用潜力的天然小分子,未来将进一步探索如何将其与合适的载体结合以实现体外应用。
-
综上所述,本研究证明了 15.0 μmol/L BP 对 hDPSC的成骨分化有促进作用。然而,BP有溶解度较低、易析出的缺点,骨组织吸收的药量有限,这限制了其在临床中的进一步应用,并且对其作用机制尚未有更明晰的认识。因此后续研究将进一步探究BP与合适载药体系的联合应用,使其更加高效地作用于骨组织缺损部位,促进骨组织再生,最终使缺损的骨组织得以修复。
-
参考文献
-
[1] KIM H D,AMIRTHALINGAM S,KIM S L,et al.Biomi⁃ metic materials and fabrication approaches for bone tis⁃ sue engineering[J/OL].Adv Healthc Mater,2017,6(23)[2022⁃10⁃18].doi:10.1002/adhm.201700612
-
[2] ZHAO R,YANG R,COOPER P R,et al.Bone grafts and substitutes in dentistry:a review of current trends and de⁃ velopments[J].Molecules,2021,26(10):3007
-
[3] HO⁃SHUI⁃LING A,BOLANDER J,RUSTOM L E,et al.Bone regeneration strategies:Engineered scaffolds,bioac⁃ tive molecules and stem cells current stage and future per⁃ spectives[J].Biomaterials,2018,180:143-162
-
[4] KANGARI P,TALAEI⁃KHOZANI T,RAZEGHIAN⁃JAH⁃ ROMI I,et al.Mesenchymal stem cells:amazing remedies for bone and cartilage defects[J].Stem Cell Res Ther,2020,11(1):492
-
[5] BOSE S,SARKAR N.Natural medicinal compounds in bone tissue engineering[J].Trends Biotechnol,2020,38(4):404-417
-
[6] AL MADHOUN A,SINDHU S,HADDAD D,et al.Dental pulp stem cells derived from adult human third molar tooth:a brief review[J].Front Cell Dev Biol,2021,9:717624
-
[7] RODAS ⁃ JUNCO B A,VILLICANA C.Dental pulp stem cells:current advances in isolation,expansion and preser⁃ vation[J].Tissue Eng Regen Med,2017,14(4):333-347
-
[8] MORSCZECK C,REICHERT T E.Dental stem cells in tooth regeneration and repair in the future[J].Expert Opin Biol Ther,2018,18(2):187-196
-
[9] LIANG Y,XIE L,LIU K,et al.Bergapten:a review of its pharmacology,pharmacokinetics,and toxicity[J].Phyto⁃ ther Res,2021,35(11):6131-6147
-
[10] WEI J,ZHANG X,LI Y,et al.Novel application of ber⁃ gapten and quercetin with anti⁃bacterial,osteogenesis⁃po⁃ tentiating,and anti⁃inflammation tri⁃effects[J].Acta Bio⁃ chim Biophys Sin(Shanghai),2021,53(6):683-696
-
[11] QUETGLAS ⁃ LLABRÉS M M,QUISPE C,HERRERA ⁃ BRAVO J,et al.Pharmacological properties of bergapten:mechanistic and therapeutic aspects[J].Oxid Med Cell Longev,2022,2022:8615242
-
[12] ZHENG M,GE Y,LI H,et al.Bergapten prevents lipo⁃ polysaccharide mediated osteoclast formation,bone re⁃ sorption and osteoclast survival[J].Int Orthop,2014,38(3):627-634
-
[13] CHEN G,XU Q,DAI M,et al.Bergapten suppresses RANKL ⁃induced osteoclastogenesis and ovariectomy ⁃in⁃ duced osteoporosis via suppression of NF ⁃ kappaB and JNK signaling pathways[J].Biochem Biophys Res Com⁃ mun,2019,509(2):329-334
-
[14] WHYTE M P.Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization[J].Endocr Rev,1994,15(4):439-461
-
[15] XIAO J J,ZHAO W J,ZHANG X T,et al.Bergapten pro⁃ motes bone marrow stromal cell differentiation into osteo⁃ blasts in vitro and in vivo[J].Mol Cell Biochem,2015,409(1⁃2):113-122
-
[16] AN J,YANG H,ZHANG Q,et al.Natural products for treatment of osteoporosis:the effects and mechanisms on promoting osteoblast ⁃ mediated bone formation[J].Life Sci,2016,147:46⁃58.
-
[17] THAKUR A,SHARMA R,JASWAL V S,et al.Psoralen:a biologically important coumarin with emerging applica⁃ tions[J].Mini Rev Med Chem,2020,20(18):1838-1845
-
[18] YAMADA Y,NAKAMURA⁃YAMADA S,KUSANO K,et al.Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine:a concise review[J].Int J Mol Sci,2019,20(5):1132
-
[19] SHI X,MAO J,LIU Y.Pulp stem cells derived from hu⁃ man permanent and deciduous teeth:biological character⁃ istics and therapeutic applications[J].Stem Cells Transl Med,2020,9(4):445-464
-
[20] ARIFFIN S H,MANOGARAN T,ABIDIN I Z,et al.A perspective on stem cells as biological systems that pro⁃ duce differentiated osteoblasts and odontoblasts[J].Curr Stem Cell Res Ther,2017,12(3):247-259
-
[21] VIMALRAJ S.Alkaline phosphatase:structure,expres⁃ sion and its function in bone mineralization[J].Gene,2020,754:144855
-
[22] NAGASAKI A,NAGASAKI K,KEAR B D,et al.Delivery of alkaline phosphatase promotes periodontal regenera⁃ tion in mice[J].J Dent Res,2021,100(9):993-1001
-
[23] HALLING LINDER C,EK ⁃ RYLANDER B,KRUMPEL M,et al.Bone alkaline phosphatase and tartrate⁃resistant acid phosphatase:potential co⁃regulators of bone mineral⁃ ization[J].Calcif Tissue Int,2017,101(1):92-101
-
[24] NIKOLOUDAKI G.Functions of matricellular proteins in dental tissues and their emerging roles in orofacial tissue development,maintenance,and disease[J].Int J Mol Sci,2021,22(12):6626
-
[25] CAPULLI M,PAONE R,RUCCI N.Osteoblast and osteo⁃cyte:games without frontiers[J].Arch Biochem Biophys,2014,561:3-12
-
[26] INMAN C K,SHORE P.The osteoblast transcription fac⁃ tor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression[J].J Biol Chem,2003,278(49):48684-48689
-
[27] KOMORI T.Regulation of proliferation,differentiation and functions of osteoblasts by Runx2[J].Int J Mol Sci,2019,20(7):1694
-
[28] DONG C,YANG H,WANG Y,et al.Anagliptin stimu⁃ lates osteoblastic cell differentiation and mineralization [J].Biomed Pharmacother,2020,129:109796
-
[29] ICER M A,GEZMEN⁃KARADAG M.The multiple func⁃ tions and mechanisms of osteopontin[J].Clin Biochem,2018,59:17-24
-
[30] GAVAZZO P,VITI F,DONNELLY H,et al.Biophysical phenotyping of mesenchymal stem cells along the osteo⁃ genic differentiation pathway[J].Cell Biol Toxicol,2021,37(6):915-933
-
[31] HAN Y,YOU X,XING W,et al.Paracrine and endocrine actions of bone⁃the functions of secretory proteins from os⁃ teoblasts,osteocytes,and osteoclasts[J].Bone Res,2018,6:16
-
[32] TU Y,YANG Y,LI Y,et al.Naturally occurring coumes⁃ tans from plants,their biological activities and therapeu⁃ tic effects on human diseases[J].Pharmacol Res,2021,169:105615
-
[33] YIN C,TIAN Y,YU Y,et al.MiR ⁃129⁃5p inhibits bone formation through TCF4[J].Front Cell Dev Biol,2020,8:600641
-
[34] SARKAR N,BOSE S.Liposome⁃encapsulated curcumin⁃ loaded 3D printed scaffold for bone tissue engineering [J].ACS Appl Mater Interfaces,2019,11(19):17184-17192
-
[35] CHENG W X,LIU Y Z,MENG X B,et al.PLGA/beta ⁃ TCP composite scaffold incorporating cucurbitacin B pro⁃ motes bone regeneration by inducing angiogenesis[J].J Orthop Translat,2021,31:41-51
-
摘要
目的:探究佛手柑内酯(bergapten,BP)对人牙髓干细胞(human dental pulp stem cell,hDPSC)成骨分化的影响。方法:流式鉴定hDPSC的表面特异性抗原;使用CCK-8法检测BP的生物毒性与生物安全性;将hDPSC随机分为对照组与BP组, BP组分别加入含7.5、15.0、30.0 μmol/L BP的完全培养基,对照组加入含等体积二甲基亚砜溶液(dimethyl sulfoxide,DMSO)的完全培养基,采用荧光显微镜观察各组细胞形态。使用BCIP/NBT碱性磷酸酶(alkaline phosphatase,ALP)显色及ALP定量检测法检测BP对hDPSC早期成骨分化的影响;使用茜素红(alizarin red S,ARS)染色法及半定量分析法评估成骨分化晚期细胞外基质矿化程度;利用实时荧光定量聚合酶链式反应(quantitative real-time PCR,qRT-PCR)检测 BP 对于 Runt 相关转录因子 2 (Runt-related transcription factor 2,RUNX2)、骨钙素(osteocalcin,OCN)、骨桥蛋白(osteopontin,OPN)、ALP等成骨标志基因表达水平的影响;使用免疫印迹分析检测成骨分化蛋白指标的变化。结果:CCK-8实验结果表明7.5、15.0、30.0 μmol/L BP生物安全性较好(P < 0.01);与对照组相比,BP组细胞ALP染色更明显,15.0 μmol/L组ALP活性水平更高(P < 0.01);与对照组相比,BP 组细胞外基质矿化水平更高,15.0 μmol/L BP处理后结节最多最深;与对照组相比,BP组成骨相关基因和蛋白的表达均明显增多且15.0 μmol/L处理略优(P < 0.01)。结论:一定浓度的BP具有良好的生物安全性,且能对hDPSC的成骨分化产生促进作用,15.0 μmol/L成骨诱导效果较优。
Abstract
Objective:The current study aims to explore the effect of bergapten(BP)on the osteogenic differentiation of human dental pulp stem cells(hDPSCs). Methods:Specific antigens of hDPSCs were identified by flow cytometry analysis. The cytotoxicity and biosafety of BP was detected by CCK - 8. The hDPSCs were randomly divided into the control and BP groups. Different concentrations of BP(7.5 μmol/L,15.0 μmol/L and 30.0 μmol/L)were added to complete medium in the BP groups,while an equal volume of DMSO was added to the complete medium in the control group. The morphology of hDPSCs in the BP and control groups was observed by fluorescent stain. The BCIP/NBT staining and alkaline phosphatase(ALP)quantitative detection were used to detect the effect of BP at the early stage of osteogenic differentiation of hDPSCs. The alizarin red S(ARS)staining and semi-quantitative analysis was used to assess the degree of extracellular matrix mineralization at the late stage of osteogenic differentiation. Expressions of osteogenic-related genes such as Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),osteopontin(OPN),and ALP were detected by quantitative real -time PCR(qRT - PCR). Expressions of osteogenic - related proteins were detected using Western blot. Results:BP of 7.5 μmol/L,15.0 μmol/L and 30.0 μmol/L showed better biosafety(P < 0.01). The ALP activities in the BP groups were higher than that in the control group,and the 15.0 μmol/L BP was the best(P < 0.01). The degrees of extracellular matrix mineralization of the BP groups were higher than that of the control group,and the number of calcium nodules in the 15.0 μmol/L BP treatment group was more and deeper. The expressions of osteogenic-related genes and proteins were significantly increased in the BP groups and the 15.0 μmol/L BP treatment was the best(P < 0.01). Conclusion:BP shows good biosafety and can promote the osteogenesis differentiation of hDPSCs with better effect at the 15.0 μmol/L concentration in vitro.