-
周细胞,是一种包绕微血管壁的间充质细胞,位于毛细血管前微动脉、毛细血管以及毛细血管后微静脉,在维持血管形态、调节血流量以及血管生成中具有重要作用。它们包围内皮细胞,共同位于微血管壁的基底膜内,两者在位置和功能上联系密切,成为神经血管单元(neurovascular unit,NVU)、血脑屏障、血⁃视网膜屏障等的组成部分[1]。
-
炎症是由外伤、感染、中毒等引起的机体免疫系统对组织损伤的防御反应,有助于受损组织的修复以及有害物质的清除[2],但过度的炎症反应也会对机体产生破坏作用,引起疾病。
-
近年来,周细胞在炎症中所起的作用逐渐受到重视。在炎症血管反应中,周细胞主要调节中性粒细胞渗出,并与内皮细胞相互作用影响血管通透性。此外,炎症刺激不仅造成周细胞变性、丢失等病理改变,而且能诱导周细胞表达相关因子,继续加重炎症,形成恶性循环。这些变化将直接影响相关疾病的发展与预后,同时也提示了靶向周细胞治疗的可能性。本文回顾周细胞参与炎症反应的机制及其在炎症性疾病中的调节作用,并对相关治疗的研究进展进行综述。
-
1 周细胞参与炎症反应的作用机制
-
1.1 周细胞的转录调节
-
周细胞对炎症刺激能迅速做出反应。例如,周细胞表达的血小板衍生生长因子受体β(platelet⁃ derived growth factor receptor β,PDGFRβ)可迅速识别炎症状态,诱导释放趋化因子C⁃C配体2[chemo⁃ kine(C⁃C motif)ligand,CCL⁃2][3]。内皮细胞与周细胞共培养,发现生理条件下内皮细胞抑制周细胞表达趋化因子,但转录组学分析却显示这些因子的 mRNA 增加,这种矛盾的现象与哺乳动物体内 miRNA抑制翻译过程有关[4],说明在生理状态下周细胞表达趋化因子的能力有一定储备,以便对炎症刺激迅速做出反应。
-
CCAAT/增强子结合蛋白 δ(CCAAT/enhancer binding protein delta,CEBPδ)最近被鉴定为周细胞内的抗炎效应物,能够下调白介素(interleukin,IL)⁃1β 诱导的趋化因子CCL⁃2和细胞间黏附分子⁃1(inter⁃ cellular cell adhesion molecule⁃1,ICAM⁃1)表达。相反,在 IL ⁃1α、肿瘤坏死因子(tumor necrosis factor, TNF)⁃α和脂多糖(lipopolysaccharide,LPS)的影响下,周细胞核因子(nuclear factor,NF)⁃κB 轻链增强子易位到细胞核,诱导促炎因子转录[5]。
-
1.2 周细胞调节中性粒细胞渗出过程
-
白细胞渗出是炎症血管反应的一部分,即白细胞经过附壁、黏附、游出和趋化等阶段,穿过静脉壁,从血管腔进入炎症组织[6]。相比位于毛细血管前小动脉、具有调节毛细血管血流量的周细胞来说[7],位于毛细血管和毛细血管后微静脉的周细胞呈星状,少量表达或不表达α⁃平滑肌肌动蛋白(α⁃smooth muscle actin,a⁃SMA)等,因此猜测位于此处的周细胞不具有收缩功能,而具有调节白细胞外渗的免疫功能[1]。中性粒细胞是最早响应炎症反应的细胞,且目前有关周细胞对其他免疫细胞的作用研究较少,故以下主要介绍周细胞调节中性粒细胞渗出过程的机制。
-
1.2.1 周细胞招募中性粒细胞
-
周细胞不仅自身能表达各种促炎因子,如黏附分子ICAM⁃1、血管细胞黏附分子⁃1(vascular cell ad⁃ hesion molecule⁃1,VCAM⁃1)、趋化因子 C⁃X⁃C 基序配体 1[chemokine(C ⁃X ⁃C motif)ligand 1,CXCL1]、 CXCL8 和巨噬细胞迁移抑制因子(macrophage migration inhibitory factor,MIF)[8] 等,还能诱导血管内皮细胞表达ICAM⁃1和VCAM⁃1,促进中性粒细胞的招募[9]。损伤相关分子模式(damage ⁃associated molecular pattern,DAMP)是由宿主中受损或死亡的细胞释放或暴露的内源性分子,经LPS刺激的周细胞与 DAMP 接触可诱导周细胞表达趋化因子,如 CXCL1、CXCL8/IL⁃8、CCL⁃2、MIF和IL⁃6 [10]。这些趋化因子对中性粒细胞有强烈的趋化作用。另外, IL⁃1β、LPS和TNF⁃α也能诱导周细胞分泌CXCL8。
-
1.2.2 周细胞调控中性粒细胞的渗出位点
-
炎症早期中性粒细胞渗出的途径为毛细血管后微静脉内皮细胞之间的细胞连接⁃基底膜细胞外基质蛋白低表达区⁃周细胞之间的间隙[6]。研究报道中性粒细胞外渗时首先经某些位点(hotspot I)穿过内皮细胞层,随后在基底膜中爬行,经基底膜和周细胞层中的 hotspot Ⅱ穿出血管壁[11]。在周细胞层中,中性粒细胞更倾向于经高表达 ICAM⁃1 和 CXCL1的周细胞间隙穿出。 ICAM⁃1与中性粒细胞上的整合素配体淋巴细胞功能相关抗原⁃1(lympho⁃ cyte function associated antigen⁃1,LFA⁃1)和巨噬细胞表面分子抗原(macrophage surface molecular anti⁃ gen⁃1,Mac⁃1)结合,决定中性粒细胞优先渗出的位置[12],而CXCL1不仅能引导中性粒细胞在周细胞突起上爬行,而且保证中性粒细胞由血管腔向血管外单向移动,即中性粒细胞首先与内皮细胞表达的 CXCL1结合,接着中性粒细胞表达的CXCL2与内皮细胞间隙的非典型趋化因子受体1(atypical chemo⁃ kine receptor 1,ACKR1)结合,穿过内皮细胞层进入基底膜,最后与周细胞表达的CXCL1结合,穿出血管壁[13]。
-
1.2.3 周细胞间的间隙是调节中性粒细胞渗出的关键因素
-
周细胞间的间隙大小受到炎症因子和细胞相互作用调节。MIF能降低周细胞收缩力,损害其屏障功能,促进中性粒细胞外渗[14];TNF⁃α、IL⁃1β可以直接刺激周细胞上相应的受体,诱导周细胞的细胞骨架松弛,细胞间隙扩大,还能增加 ICAM ⁃1 和 CXCL1的表达,增加中性粒细胞外渗[12]。
-
1.3 周细胞⁃内皮细胞相互作用
-
神经血管单元由神经元、内皮细胞、周细胞、胶质细胞、基底膜以及细胞外基质组成,这些细胞在结构和功能上联系密切,是组成血液与神经系统屏障的重要结构,也是保证其功能的基本单位[15]。其中,周细胞和内皮细胞的相互作用在维持 NVU 的稳定和功能中发挥最主要的作用。炎症环境中如 IL⁃1β、TNF⁃α、LPS、和 IL⁃4等的刺激可导致周细胞凋亡,扰乱内皮细胞与周细胞间的相互作用,引起生理屏障破坏,促进外周免疫细胞和毒性物质等进入神经系统,加剧神经损伤[16]。同时,这也表明维持周细胞和内皮细胞的相互作用是治疗微血管病变的可能靶点。
-
1.3.1 周细胞⁃内皮细胞相互作用的形式
-
周细胞通过直接接触和旁分泌的方式与内皮细胞相互作用。直接接触包括榫⁃穴连接、缝隙连接、黏着小带和黏着斑。这些物理连接不仅组成生理屏障,而且可以实现相邻细胞间的物质交换[7];周细胞还可通过旁分泌转化生长因子(transforming growth factor,TGF)⁃β、血管内皮生长因子(vascular endothelial growth factor,VEGF)、1 ⁃ 磷酸鞘氨醇 (sphingosine⁃1⁃phosphate,S1P)、血管生成素(angio⁃ poietin,Ang)⁃1、Ang⁃2 [17] 以及 miRNA[18] 等,上调内皮细胞黏附分子和紧密连接蛋白,维持内皮屏障。
-
对于NVU,炎症信号在周细胞和内皮细胞间依赖炎性小体的作用进行传递。内皮细胞和周细胞均表达模式识别受体(pattern recognition receptor, PRR),包括 Toll 样受体(Toll like receptor,TLR)和 Nod 样受体(NOD⁃like receptor,NLR),它们能够识别病原微生物的病原相关子模式(pathogen⁃associated molecular pattern,PAMP)和 DAMP,组装成炎性小体[19]。炎性小体是一种蛋白复合物,不仅能够刺激促炎细胞因子如IL⁃1β和IL⁃18的生成和分泌,引起强烈的炎症反应,还能诱导细胞凋亡[20]。
-
1.3.2 周细胞⁃内皮细胞信号转导的主要途径
-
血小板衍生生长因子 ⁃ BB(platelet derived growth factor⁃BB,PDGF⁃BB)/血小板衍生生长因子受体 β(platelet derived growth factor receptor β, PDGFRβ)信号通路调节周细胞生存、增殖和凋亡等过程。毛细血管壁内皮细胞表达的PDGF⁃BB 可招募表达PDGFRβ的周细胞,维持血管稳定。炎症环境中如干扰素(interferon γ,INF⁃γ)等的刺激可抑制该信号,使招募到血管的周细胞减少,导致血管渗漏[1],此时,PDGF能够通过激活PI3KAkt等途径减少细胞凋亡[2 0],起保护作用。
-
Ang1/酪氨酸蛋白激酶 2(tyrosine kinase recep⁃ tor 2,Tie2)信号通路主要维持血管稳态,控制血管通透性和血管生成。周细胞产生的Ang⁃1结合内皮细胞上的 Tie2,激活 PI3K/Akt 通路,使 FOXO1 失活,从而促进内皮细胞存活[21];Ang⁃1 还能增强内皮细胞连接蛋白的表达,稳定紧密连接,减少血管渗漏[22]。Ang⁃2 的作用则表现为无 Ang⁃1 时激动 Tie2,有Ang⁃1时拮抗Tie2 [23]。许多炎症性疾病中,如病毒或细菌感染、败血症和糖尿病等,Ang⁃2上调使Tie2失活,导致周细胞丢失,血管通透性增加,加剧炎症反应[24]。
-
1.4 周细胞的免疫功能
-
周细胞具有吞噬功能。周细胞表达多种白细胞标志物,如CD11b、补体受体3(complement recep⁃ tor 3,CR3)、清道夫受体 A(scavenger receptor A, SRA)和 Fc 受体(Fc fragment receptor,FcR),且周细胞内存在大量溶酶体,提示它们具有吞噬能力[25]。炎症状态下,周细胞可表现出具有吞噬能力的小胶质细胞表型[26],但能否发挥免疫作用尚存在争议[27]。研究证明,周细胞能够通过胞饮作用或受体介导的内吞作用清除穿过血脑屏障的可溶性小分子和神经毒物,并且TNF⁃α和INF⁃γ刺激可以增强这种吞噬能力[28]。
-
周细胞具有抗原递呈作用。生理条件下,周细胞表达主要组织相容性复合体(major histocompati⁃ bility complex,MHC)Ⅰ类,但在炎症环境中,周细胞在TNF⁃α、IFN⁃γ的刺激下表达MHC Ⅱ类,将抗原递呈给T淋巴细胞[17]。
-
1.5 周细胞的炎症调节作用
-
周细胞在炎症反应中具有双重调节作用。多数研究证实周细胞具有促炎作用。除上述调节中性粒细胞和内皮细胞的作用外,炎症条件下,周细胞还能上调一氧化氮和前列腺素 E2(prostaglandin E2,PGE2)水平[29],促进血管舒张,增大血管通透性,促进外周白细胞穿透血脑屏障。IL⁃17 是一种由 Th17细胞分泌的促炎因子,其单独或与TNF⁃α协同作用,均能显著增加周细胞内粒细胞集落刺激因子 (granulocyte colony stimulating factor,G ⁃CSF)、粒细胞巨噬细胞集落刺激因子(granulocyte macrophage colony stimulating factor,GM ⁃CSF)、CXCL1、CXCL6 和 CXCL8 等促炎因子的表达。此外,经 IL⁃17刺激的周细胞不仅能够促进中性粒细胞合成TNF⁃α、 IL⁃1α、IL⁃1β和 CXCL8,还能增强其存活和吞噬能力[30]。神经炎症中,周细胞产生炎症介质 TNF⁃α、 IL ⁃1β、IFN ⁃γ、基质金属蛋白酶(matrix metallopro⁃ teinase,MMP)等,其中 MMP⁃2、MMP⁃9 以及活性氧 (reactive oxygen species,ROS)能够激活小胶质细胞和星形胶质细胞[31]。
-
相反,LPS促进小鼠和人神经系统的周细胞分泌IL⁃13、IL⁃10等抗炎因子[31]。在IFN⁃γ的刺激下,周细胞高度表达T细胞抑制剂程序死亡配体1和2 (T cell inhibitors program death ligands 1 and 2,PD ⁃L1 and PD⁃L2),减少T细胞活化,发挥抗炎作用[8]。
-
2 周细胞在炎症性疾病中的调节作用及相关治疗的研究进展
-
周细胞在炎症性疾病中的主要作用可概括为以下几点。①屏障破坏:作为NVU的主要成分,神经炎症中周细胞自身的损伤、变性和丢失不仅使其丧失与内皮细胞的正常通讯,而且导致生物屏障破坏,通透性增加,加速白细胞或有毒物质浸润;②信号通路:周细胞的活动受到一系列信号通路调节; ③炎症调节:周细胞产生炎症介质以及调节中性粒细胞趋化、渗出;④细胞转化:周细胞向其他细胞类型转分化。其中,靶向周细胞参与炎症反应的蛋白、分子或通路是目前临床治疗的主要潜在靶点,相关研究进展如表1所示。
-
3 小结与展望
-
综上所述,随着对周细胞研究的不断深入,不但揭示了其在炎症反应中的重要调节作用(图1),而且发现周细胞可以作为各类炎症性疾病的治疗靶点。
-
①周细胞的转录调节:在LPS、IL⁃1α、TNF⁃α的影响下,NF⁃κB 轻链增强子诱导促炎因子转录,而 CEBPδ下调CCL2和ICAM⁃1的表达。②周细胞调节中性粒细胞渗出过程:经 LPS 刺激的周细胞与 DAMP接触可诱导周细胞表达趋化因子MIF、IL⁃6、 CCL2、CXCL1和CXCL8/IL⁃8;周细胞表达的CXCL1 与中性粒细胞结合,介导其穿出血管壁;周细胞上的ICAM⁃1与中性粒细胞上的整合素配体LFA⁃1和 Mac⁃1结合,对中性粒细胞的渗出位置有决定作用。 ③周细胞⁃内皮细胞相互作用:PDGF⁃BB/PDGFRβ和 Ang⁃1/Tie2信号通路是二者相互作用的主要信号通路,周细胞通过旁分泌 TGF⁃β、VEGF、S1P、Ang⁃1、Ang⁃2和miRNA维持内皮屏障;炎症信号在二者之间以炎性小体的方式传递;周细胞上调内皮细胞 ICAM⁃1 和 VCAM⁃1 促进免疫细胞的招募。④周细胞的免疫功能:周细胞表达的白细胞标志物CD11b、 CR3、SRA和FcR,以及细胞内存在的大量溶酶体提示它们可能具有吞噬能力;周细胞表达MHC Ⅱ,将抗原提呈给T淋巴细胞;周细胞产生炎症介质TNF⁃α、IL⁃ 1β、IFN⁃γ、MMP等,其中MMP⁃2、MMP⁃9以及ROS激活小胶质细胞和星形胶质细胞。
-
表1(续)
-
图1 周细胞在炎症反应中的作用
-
Figure1 Role of pericytes in inflammation
-
但值得关注的是,周细胞的鉴别是当前的一大难点。目前的最佳方法是将位置、形态和生物标志物(如 PDGFR⁃β、α⁃SMA 和 CD146 等)相结合。然而,周细胞标志物的表达会随发育阶段和生理病理状态变化而变化,导致鉴别困难、可信度下降。因此,寻找周细胞的特异性标志物已迫在眉睫。
-
目前关于周细胞的相关研究仍尚存空白。周细胞在炎症反应中的调节机制亟待进一步深入研究:周细胞除介导中性粒细胞渗出外,与其他白细胞亚型的相互作用尚不明确;周细胞在生理屏障中位于“门户”位置,决定其在相关疾病中的关键作用,但目前研究资料仍然有限,致病因素如何改变周细胞与内皮细胞之间信号通路、周细胞标志物随病理状态的变化、周细胞在不同疾病中是否具有疾病相关表型等问题尚待解决。此外,关于周细胞的研究大多停留在动物阶段,其结果在人体环境中可能不完全相同,需要更多人源性细胞来确证周细胞在人体中的作用,提高研究结果的准确性,以增加周细胞研究的临床相关性。因此,靶向周细胞治疗相关炎症性疾病具有广阔的发展前景,需要继续深入研究,为周细胞的靶向治疗提供有力的实验依据和理论基础。
-
参考文献
-
[1] ALARCON ⁃ MARTINEZ L,YEMISCI M,DALKARA T.Pericyte morphology and function[J].Histol Histopathol,2021,36(6):633-643
-
[2] SINGH N,BABY D,RAJGURU J P,et al.Inflammation and cancer[J].Ann Afr Med,2019,18(3):121-126
-
[3] DUAN L H,ZHANG X D,MIAO W Y,et al.PDGFRβ cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2[J].Neuron,2018,100(1):183-200
-
[4] LISA K,MICHAL O,DUBEY R K.Transcryptomic analy⁃ sis of human brain ⁃microvascular endothelial cell driven changes in ⁃ vascular pericytes[J].Cells,2021,10(7):1784
-
[5] JANSSON D,DIERIKS V B,RUSTENHOVEN J,et al.Cardiac glycosides target barrier inflammation of the vas⁃ culature,meninges and choroid plexus[J].Commun Biol,2021,4(1):260
-
[6] RUDZIAK P,ELLIS C G,KOWALEWSKA P M.Role and molecular mechanisms of pericytes in regulation of leuko⁃cyte diapedesis in inflamed tissues[J].Mediators In⁃ flamm,2019,2019:4123605
-
[7] DESSALLES C A,AVIN B,BARAKAT A I.Pericyte me⁃ chanics and mechanobiology[J].J Cell Sci,2021,134(6):240226
-
[8] DOMEV H,MILKOV I,ITSKOVITZ⁃ELDOR J,et al.Im⁃ munoevasive pericytes from human pluripotent stem cells preferentially modulate induction of allogeneic regulatory T cells[J].Stem Cells Transl Med,2014,3(10):1169-1181
-
[9] PARK D Y,LEE J,KIM J,et al.Plastic roles of pericytes in the blood⁃retinal barrier[J].Nat Commun,2017,8:15296
-
[10] LEAF I A,NAKAGAWA S,JOHNSON B G,et al.Peri⁃ cyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury[J].J Clin Investig,2017,127(1):321-334
-
[11] HYUN Y M,CHOE Y H,PARK S A,et al.LFA ⁃ 1(CD11a/CD18)and Mac⁃1(CD11b/CD18)distinctly regu⁃ late neutrophil extravasation through hotspots I and Ⅱ [J].Exp Mol Med,2019,51(S5):1-13
-
[12] PROEBSTL D,VOISIN M B,WOODFIN A,et al.Peri⁃ cytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo[J].J Exp Med,2012,209(6):1219-1234
-
[13] GIRBL T,LENN T,PEREZ L,et al.Distinct compartmen⁃ talization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis[J].Immunity,2018,49(6):1062-1076
-
[14] PELLOWE A S,SAULER M,HOU Y,et al.Endothelial cell ⁃ secreted MIF reduces pericyte contractility and en⁃ hances neutrophil extravasation[J].FASEB J,2019,33(2):2171-2186
-
[15] HUANG H.Pericyte ⁃ endothelial interactions in the reti⁃ nal microvasculature[J].Int J Mol Sci,2020,21(19):7413
-
[16] SMYTH L C D,RUSTENHOVEN J,PARK T I H,et al.Unique and shared inflammatory profiles of human brain endothelia and pericytes[J].J Neuroinflammation,2018,15(1):138
-
[17] ZHANG Z S,ZHOU H N,HE S S,et al.Research advances in pericyte function and their roles in diseases[J].Chin J Traumatol,2020,23(2):89-95
-
[18] LIU C,GE H M,LIU B H,et al.Targeting pericyte⁃endo⁃ thelial cell crosstalk by circular RNA⁃cPWWP2A inhibi⁃ tion aggravates diabetes ⁃induced microvascular dysfunc⁃ tion[J].PNAS,2019,116(15):7455-7464
-
[19] MIHÁLY K,ÁDÁM M,ÁDÁM N,et al.Cerebral peri⁃ cytes and endothelial cells communicate through inflam⁃ masome ⁃ dependent signals[J].Int J Mol Sci,2021,22(11):6122
-
[20] 胡颖超,杨硕.细胞焦亡的研究进展[J].南京医科大学学报(自然科学版),2021,41(8):1245-1251
-
[21] FUNA K,SASAHARA M.The roles of PDGF in develop⁃ ment and during neurogenesis in the normal and diseased nervous system[J].J Neuroimmune Pharmacol,2014,9(2):168-181
-
[22] OGURA S,KURATA K,HATTORI Y,et al.Sustained in⁃ flammation after pericyte depletion induces irreversible blood⁃retina barrier breakdown[J].JCI Insight,2017,2(3):90905
-
[23] HU X M,DE SILVA T M,CHEN J,et al.Cerebral vascu⁃ lar disease and neurovascular injury in ischemic stroke [J].Circ Res,2017,120(3):449-471
-
[24] SAHARINEN P,EKLUND L,ALITALO K.Therapeutic targeting of the angiopoietin ⁃ TIE pathway[J].Nat Rev Drug Discov,2017,16(9):635-661
-
[25] KHAN M,AZIZ A A,SHAFI N A,et al.Targeting angio⁃ poietin in retinal vascular diseases:a literature review and summary of clinical trials involving faricimab[J].Cells,2020,9(8):1869
-
[26] THOMAS H M,AHANGAR P,HOFMA B R,et al.Attenua⁃ tion of flightless I increases human pericyte proliferation,migration and angiogenic functions and improves healing in murine diabetic wounds[J].Int J Mol Sci,2020,21(16):5599
-
[27] THURGUR H,PINTEAUX E.Microglia in the neurovas⁃ cular unit:blood⁃brain barrier⁃microglia interactions after central nervous system disorders[J].Neuroscience,2019,405:55-67
-
[28] QIU Y M,ZHANG C L,CHEN A Q,et al.Immune cells in the BBB disruption after acute ischemic stroke:targets for immune therapy?[J].Front Immunol,2021,12:678744
-
[29] PIEPER C,MAREK J J,UNTERBERG M,et al.Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro[J].Brain Res,2014,1550:1-8
-
[30] MATSUMOTO J,TAKATA F,MACHIDA T,et al.Tumor necrosis factor ⁃ α ⁃ stimulated brain pericytes possess a unique cytokine and chemokine release profile and en⁃ hance microglial activation[J].Neurosci Lett,2014,578:133-138
-
[31] LIU R,LAURIDSEN H M,AMEZQUITA R A,et al.IL⁃17 promotes neutrophil⁃mediated immunity by activating mi⁃ crovascular pericytes and not endothelium[J].J Immu⁃ nol,2016,197(6):2400-2408
-
[32] BHATTACHARYA A,KAUSHIK D K,LOZINSKI B M,et al.Beyond barrier functions:roles of pericytes in ho⁃ meostasis and regulation of neuroinflammation[J].J Neu⁃rosci Res,2020,98(12):2390-2405
-
[33] GAKU Y,FUYUKO T,YASUFUMI K,et al.The neuroin⁃ flammatory role of pericytes in epilepsy[J].Biomedi⁃ cines,2021,9(7):759
-
[34] DILENA R,MAURI E,ARONICA E,et al.Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection⁃related epilepsy syndrome[J].Epilepsia Open,2019,4(2):344-350
-
[35] REMPE R G,HARTZ A M S,SOLDNER E L B,et al.Matrix metalloproteinase ⁃ mediated blood ⁃ brain barrier dysfunction in epilepsy[J].J Neurosci,2018,38(18):4301-4315
-
[36] WM B D,ALEXANDRA B,JIA S B,et al.The matrix me⁃ talloproteinase inhibitor IPR⁃179 has antiseizure and anti⁃ epileptogenic effects[J].J Clin Investig,2021,131(1):138332
-
[37] GUY B K,CACHEAUX L P,LYN K,et al.Losartan pre⁃ vents acquired epilepsy via TGF ⁃β signaling suppression [J].Ann Neurol,2014,75(6):864-875
-
[38] RICARDO A,SOTOROJAS L O,BERENICE C B,et al.Neurovascular dysfunction and vascular amyloid accumu⁃ lation as early events in Alzheimer’s disease[J].Metab Brain Dis,2021,37(1):1-12
-
[39] MA Q Y,ZHAO Z,SAGARE A P,et al.Blood⁃brain barri⁃ er ⁃ associated pericytes internalize and clear aggregated amyloid ⁃ β42 by LRP1 ⁃ dependent apolipoprotein E iso⁃ form⁃specific mechanism[J].Mol Neurodegener,2018,13(1):57
-
[40] TACHIBANA M,YAMAZAKI Y,LIU C C,et al.Pericyte implantation in the brain enhances cerebral blood flow and reduces amyloid ⁃β pathology in amyloid model mice [J].Exp Neurol,2018,300:13-21
-
[41] ABHISHEK S,DEEPAK S,BRIJESH T,et al.Inflamma⁃ tory mediators in diabetic retinopathy:deriving clinico⁃ pathological correlations for potential targeted therapy [J].Indian J Ophthalmol,2021,69(11):3035-3049
-
[42] SPENCER B G,ESTEVEZ J J,LIU E,et al.Pericytes,in⁃ flammation,and diabetic retinopathy[J].Inflammophar⁃ macology,2020,28(3):697-709
-
[43] YUN J H.Interleukin ⁃ 1β induces pericyte apoptosis via the NF ⁃κB pathway in diabetic retinopathy[J].Biochem Biophys Res Commun,2021,546:46-53
-
[44] TANG L,ZHANG C Y,LU L X,et al.Melatonin main⁃ tains inner blood ⁃ retinal barrier by regulating microglia via inhibition of PI3K/Akt/Stat3/NF ⁃ κB signaling path⁃ ways in experimental diabetic retinopathy[J].Front Im⁃ munol,2022,13:831660
-
[45] WIMMER R A,LEOPOLDI A,AICHINGER M,et al.Hu⁃ man blood vessel organoids as a model of diabetic vascu⁃ lopathy[J].Nature,2019,565(7740):505-510
-
[46] VENKAT P,YAN T,CHOPP M,et al.Angiopoietin⁃1 mi⁃ metic peptide promotes neuroprotection after stroke in type 1 diabetic rats[J].Cell Transplant,2018,27(12):1744-1752
-
[47] CHEN Y T,CHANG F C,WU C F,et al.Platelet⁃derived growth factor receptor signaling activates pericyte ⁃myofi⁃ broblast transition in obstructive and post ⁃ischemic kid⁃ ney fibrosis[J].Kidney Int,2011,80(11):1170-1181
-
[48] PERRY H M,GORLDT N,SUNG S J,et al.Perivascular CD73(+)cells attenuate inflammation and interstitial fi⁃ brosis in the kidney microenvironment[J].Am J Physiol Renal Physiol,2019,317(3):658-669
-
[49] JEONGHOON L,JUMIN Y,SEHYUN O,et al.Paricalcitol improves hypoxia⁃induced and TGF⁃β1⁃induced injury in kidney pericytes[J].Int J Mol Sci,2021,22(18):9751
-
[50] CASTELLANO G,STASI A,FRANZIN R,et al.LPS⁃bind⁃ ing protein modulates acute renal fibrosis by inducing pericyte ⁃ to ⁃ myofibroblast trans ⁃ differentiation through TLR⁃4 signaling[J].Int J Mol Sci,2019,20(15):3682
-
[51] 封怡多,刁宗礼,刘文虎.周细胞在肾间质纤维化中的研究进展[J].临床肾脏病杂志,2022,22(1):67-71
-
[52] ABDEL RAHMAN F,D’ALMEIDA S,ZHANG T,et al.Sphingosine ⁃ 1 ⁃ phosphate attenuates lipopolysaccharide ⁃ induced pericyte loss via activation of Rho⁃A and MRTF⁃ A[J].Thromb Haemost,2021,121(3):341-350
-
[53] ZENG H,HE X C,TUO Q H,et al.LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie⁃2 and HIF⁃2α/Notch3 pathways[J].Sci Rep,2016,6:20931
-
[54] WU Y,LI P,GOODWIN A J,et al.MiR⁃145a regulation of pericyte dysfunction in a murine model of sepsis[J].J Infect Dis,2020,222(6):1037-1045
-
[55] ÖZEN I,ROTH M,BARBARIGA M,et al.Loss of regula⁃ tor of G⁃protein signaling 5 leads to neurovascular protec⁃ tion in stroke[J].Stroke,2018,49(9):2182-2190
-
[56] NOËMIE J L,REVATHY G,AYMAN E.Vascular endo⁃ thelial growth factor isoform ⁃ B stimulates neurovascular repair after ischemic stroke by promoting the function of pericytes via vascular endothelial growth factor receptor⁃1 [J].Mol Neurobiol,2018,55(5):3611-3626
-
[57] 王众,李可心,孙妍玉,等.miR⁃124在卒中后脑缺血损伤与修复中的作用及机制研究进展[J].南京医科大学学报(自然科学版),2022,42(3):443-447
-
[58] 朱海燕,赵晓晶,宋晶晶,等.紫草素通过抑制氧化应激和神经炎症在脑外伤后发挥神经保护作用[J].南京医科大学学报(自然科学版),2022,42(8):1055-1064
-
摘要
周细胞是一种包绕微血管壁的间充质细胞。炎症是机体对组织损伤的防御反应,有助于受损组织的修复以及有害物质的清除,但过度的炎症反应也会对机体产生破坏作用,引起疾病。近年来周细胞在炎症中所起的作用逐渐受到重视,周细胞能迅速响应炎症刺激,参与中性粒细胞渗出过程,并通过直接接触、旁分泌以及一系列信号转导途径与内皮细胞相互作用,对维持神经血管单元和生理屏障的稳定极为重要。此外,周细胞自身具有吞噬和抗原递呈的免疫功能,在炎症调节中具有抗炎和促炎的双重作用。因此,周细胞在炎症性疾病中扮演重要角色,同时也为靶向周细胞的治疗提供可能的研究方向。本文回顾周细胞参与炎症反应的机制及其在炎症性疾病中的作用,并对相关治疗的研究进展进行综述。
Abstract
Pericyte,a kind of mesenchymal cell,surrounds the wall of microvessels. Inflammation is the body’s defense response to tissue damage,which is helpful to the proliferation and repair of damaged tissues and the removal of harmful substances. However, excessive inflammatory reaction will also cause damage to the body and cause diseases. Studies in recent years have paid more and more attention to the role of pericytes in inflammation. Pericytes can quickly respond to inflammatory stimulation,regulate neutrophilic infiltration in process,and exert the interaction of endothelial cells through direct contact,paracrine and a series of signal transduction pathways,to maintain stable neurovascular unit and physiological barrier. In addition,pericytes themselves have the immune function of phagocytosis and antigen presentation,and have the dual role of anti - inflammatory and proinflammatory in the regulation of inflammation. These effects make pericytes play an important role in inflammatory diseases,and provide a possible research direction for the treatment of pericytes. This article will review how the pericytes function in inflammation and their role in inflammatory diseases,and review the research progress of related therapies.
Keywords
pericytes ; inflammation ; neutrophils ; endothelium ; diabetic retinopathy ; stroke ; renal fibrosis