en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

田兆方,E-mail:lyh0729@163.com

中图分类号:R725.6

文献标识码:A

文章编号:1007-4368(2023)04-531-06

DOI:10.7655/NYDXBNS20230412

参考文献 1
YANG T T,SHEN Q Q,WANG S Y,et al.Risk factors that affect the degree of bronchopulmonary dysplasia in very preterm infants:a 5 ⁃ year retrospective study[J].BMC Pediatr,2022,22(1):200
参考文献 2
吴蝉桐,王维,王会芳,等.高氧肺损伤新生小鼠肺组织中GM15886和 HIPK1 的表达研究[J].南京医科大学学报(自然科学版),2020,40(7):969-974
参考文献 3
HAAGE V,ELMADANY N,ROLL L,et al.Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1[J].Brain Behav Immun,2019,81:470-483
参考文献 4
KAARTEENAHO⁃WIIK R,KINNULA V L,HERVA R,et al.Tenascin ⁃ C is highly expressed in respiratory dis⁃ tress syndrome and bronchopulmonary dysplasia[J].J Histochem Cytochem,2002,50(3):423-431
参考文献 5
BAO T P,WU R,CHENG H P,et al.Differential expres⁃ sion of long non⁃coding RNAs in hyperoxia⁃induced bron⁃chopulmonary dysplasia[J].Cell Biochem Funct,2016,34(5):299-309
参考文献 6
ZHU H,TIAN Y,CHENG H,et al.A clinical study on plasma biomarkers for deciding the use of adjuvant corti⁃ costeroid therapy in bronchopulmonary dysplasia of pre⁃ mature infants[J].Int J Med Sci,2021,18(12):2581-2588
参考文献 7
HIGGINS R D,JOBE A H,KOSO ⁃ THOMAS M,et al.Bronchopulmonary dysplasia:executive summary of a workshop[J].J Pediatr,2018,197:300-308
参考文献 8
邵肖梅,叶鸿瑁,丘小汕.实用新生儿学[M].5 版.北京:人民卫生出版社,2019:577,596-597,608,744,856-859,861,1028
参考文献 9
JENSEN E A,DYSART K,GANTZ M G,et al.The diag⁃ nosis of bronchopulmonary dysplasia in very preterm in⁃ fants:an evidencebased approach[J].Am J Respir Crit Care Med,2019,200(6):751-759
参考文献 10
JOBE A H,BANCALARI E.Bronchopulmonary dysplasia [J].Am J Respir Crit Care Med,2001,163(7):1723-1729
参考文献 11
ANDREA S A,SONIA P D,REBECA S S,et al.Epidemi⁃ ology and risk factors for bronchopulmonary dysplasia in preterm infants born at or less than 32 weeks of gestation [J].Anales De Pediatría Engl Ed,2022,96(3):242-251
参考文献 12
TURGAY C,SULTAN K.Bronchopulmonary dysplasia frequency and risk factors in very low birth weight in⁃ fants:a 3⁃ year retrospective study[J].North Clin Istan⁃ bul,2020,7(2):124-130
参考文献 13
黄昊,张兰,潘家华,等.极低出生体重儿支气管肺发育不良的危险因素分析[J].临床肺科杂志,2022,27(5):668-671
参考文献 14
YANG Y C,LI J,MAO J.Early diagnostic value of C⁃reac⁃ tive protein as an inflammatory marker for moderate⁃to⁃se⁃ vere bronchopulmonary dysplasia in premature infants with birth weight less than 1500 g[J].Int Immunopharma⁃ col,2022,103:108462
参考文献 15
KINDT A S D,FÖRSTER K M,COCHIUS⁃DEN OTTER S Z C M,et al.Validation of disease⁃specific biomarkers for the early detection of bronchopulmonary dysplasia[J].Pediatr Res,2023,93(3):625-632
参考文献 16
GREMLICH S,CREMONA T P,YAO E,et al.Tenascin⁃ C:friend or foe in lung aging?[J].Front Physiol,2021,12:749776
参考文献 17
CREMONA T P,ANDREA H,SCHITTNY J C.The devel⁃ opment of integrin alpha⁃8 deficient lungs shows reduced and altered branching and a correction of the phenotype during alveolarization[J].Front Physiol,2020,11:530635
参考文献 18
MUND S I,SCHITTNY J C.Tenascin ⁃ C deficiency im⁃ pairs alveolarization and microvascular maturation during postnatal lung development[J].J Appl Physiol(1985),2020,128(5):1287-1298
参考文献 19
LOFFREDO L F,CODEN M E,JEONG B M,et al.Eosin⁃ ophil accumulation in postnatal lung is specific to the pri⁃ mary septation phase of development[J].Sci Rep,2020,10(1):4425
参考文献 20
OLAVE N,LAL C V,HALLORAN B,et al.Regulation of alveolar septation by microRNA ⁃ 489[J].Am J Physiol Lung Cell Mol Physiol,2016,310(5):L476-L487
参考文献 21
ALEJANDRE ⁃ ALCÁZAR M A,KWAPISZEWSKA G,REISS I,et al.Hyperoxia modulates TGF ⁃beta/BMP sig⁃ naling in a mouse model of bronchopulmonary dysplasia [J].Am J Physiol Lung Cell Mol Physiol,2007,292(2):L537-L549
参考文献 22
朱海艳,胡晶晶,郑亚斐,等.血清肌腱蛋白C水平与早产儿支气管肺发育不良伴肺动脉高压的相关性研究 [J].中华新生儿科杂志(中英文),2022,37(3):245-249
目录contents

    摘要

    目的:探讨血清肌腱蛋白C(tenascin C,TNC)对早产儿支气管肺发育不良(bronchopulmonary dysplasia,BPD)的诊断价值。方法:选择 2018—2020 年南京医科大学附属淮安第一医院新生儿科 79 例极低出生体重早产儿,根据美国国家儿童健康和人类发育研究所诊断标准分为非BPD 组(n=48)和BPD 组(n=31)。ELISA 法检测血清TNC 水平;多因素Logistic 回归分析 BPD 发生的独立危险因素;Kendall相关分析血清TNC水平与BPD严重程度的相关性;绘制TNC诊断BPD的受试者工作特征(receiver operating characteristic,ROC)曲线。结果:①早产儿血清TNC水平在非BPD组与BPD组间差异有统计学意义[(95.03 ± 19.73)ng/mL vs.(125.40 ± 19.34)ng/mL,P < 0.001],不同级别BPD组间差异有统计学意义(P < 0.001);②早产儿发生BPD的独立危险因素包括出生体重、高浓度氧吸入时间及血清TNC水平(P < 0.05);③血清TNC水平与BPD严重程度呈正相关 (r =0.617,P < 0.001);④血清TNC诊断BPD的ROC曲线下面积为0.881(P < 0.001),灵敏度为96.8%,特异度为66.7%。结论:血清TNC水平在BPD中增高,诊断的灵敏度及特异度较高,可作为判断早产儿BPD的标志物之一。

    Abstract

    Objective:To explore the diagnostic value of serum tenascin C(TNC)in bronchopulmonary dysplasia(BPD)of the premature infants. Methods:Seventy-nine very low birth weight premature infants were enrolled from Department of Neonatology,the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University from 2018 to 2020. According to the 2018 NICHD diagnostic criteria,they were divided into the non -BPD group(n=48)and the BPD group(n=31). ELISA was used to detect serum TNC level; Multivariate logistic regression was conducted to analyze the independent risk factors of BPD;The correlation between serum TNC level and the severity of BPD was analyzed by Kendall correlation;Receiver operating characteristic(ROC)curve of TNC for diagnosis of BPD was made. Results:①The serum TNC level of preterm infants was statistically different between the non-BPD group and the BPD group[(95.03±19.73)ng/mL vs.(125.40±19.34)ng/mL,P < 0.001],and there was statistical difference between different levels of BPD groups(P < 0.001). ②The independent risk factors for BPD in premature infants included birth weigh,high concentration oxygen inhalation time and serum TNC level(P < 0.05). ③Serum TNC level was positively correlated with the severity of BPD(r =0.617, P < 0.001). ④The area under the curve for the diagnosis of BPD by serum TNC was 0.881(P < 0.001),the sensitivity was 96.8%, and the specificity was 66.7%. Conclusion:Serum TNC level increases in BPD,and the diagnostic sensitivity and specificity is high, which can be used as one of the biomarkers for diagnosis of premature BPD.

  • 支气管肺发育不良(bronchopulmonary dysplasia, BPD)是一种常见于早产儿的慢性肺部疾病,极低出生体重儿中发病率约为 30%,极早产儿中可高达 40%~50%[1]。BPD 以肺生长停滞和基质重塑为特征,可能会导致终身肺功能异常,而由于发病原因和机制的复杂性,至今仍未发现有效的治疗方法[2]。寻找与发现新的生物标志物包括致病基因是推进临床定义更准确和应用偏差更少的重要基础。肌腱蛋白 C(tenascin C,TNC)是一种细胞外基质糖蛋白,器官发生、肿瘤、纤维化及炎症过程中在人体组织中表达[3]。Kaarteenaho ⁃Wiik 等[4]首先报道了 TNC 在新生儿呼吸窘迫综合征(neonatal respiratory distress syndrome,NRDS)和BPD患儿的肺泡和细支气管壁中高度表达,表明该蛋白的表达与这些疾病的存在相关。本课题组前期基础研究也发现在高氧诱导的新生小鼠 BPD 肺组织中 TNC mRNA 的表达高于对照组[5]。临床研究采用串联质谱数据非依赖采集技术对早产儿血浆标本进行差异蛋白筛查时发现,TNC 在 BPD 患儿中差异性高表达[6]。本研究即是在前期临床研究的基础上,通过对早产儿临床特征的分析,结合血清 TNC 水平检测,研究血清TNC在BPD诊断中的价值。

  • 1 对象和方法

  • 1.1 对象

  • 选择2018年1月—2020年12月于南京医科大学附属淮安第一医院新生儿科 NICU 实施临床路径管理的早产儿为研究对象,共纳入符合条件的患儿 79 例[极低出生体重儿中胎龄小于 32 周者共 101例,排除出生后2周内放弃治疗者5例,BPD ⅢA 级 8 例,矫正胎龄(postmenstrual age,PMA)36 周前转院4例,PMA 36周前出院5例]。按照美国国家儿童保健和人类发育研究院(National Institute of Child Health and Human Development,NICHD)通过的 2018 年 BPD 诊断标准[7] (即胎龄 <32 周的早产儿,有持续性肺实质疾病,在影像学证明为肺实质病变的前提下,PMA 36周时至少需要用氧3 d以维持动脉血氧饱和度达90%~95%。按照不同的吸氧方式及吸氧浓度:鼻导管 <1 L/min时,吸入氧浓度(fraction of inspiration oxygen,FiO2)22%~70%为Ⅰ级,>70% 为Ⅱ级;头罩吸氧时,FiO2 22%~29%为Ⅰ级,≥30% 为Ⅱ级;鼻导管1~3 L/min时,FiO2 22%~29%为Ⅰ级, ≥ 30%为Ⅱ级;经鼻持续气道正压通气、无创正压通气、鼻导管≥3 L/min时,FiO2 21%为Ⅰ级,22%~29%为Ⅱ级,≥30%为Ⅲ级;有创间歇正压通气时,FiO2 21%为Ⅱ级,>21%为Ⅲ级;出生后2周至PMA 36周由于持续的肺实质病变和呼吸衰竭所致的死亡且排除如新生儿坏死性小肠结肠炎、败血症等其他疾病时为ⅢA级。纳入标准:①出生体重 <1 500 g,胎龄 <32 周,出生后 24 h 内转入本院 NICU;②在院至 PMA 36 周,诊断明确,病例资料完整。排除标准:①患有严重先天性疾病、先天畸形、膈疝、遗传代谢病等;②PMA 36 周前放弃、死亡、转院或出院者。研究经南京医科大学附属淮安第一医院伦理委员会批准(伦理号YX⁃P⁃2020⁃059⁃01,临床试验注册号 ChiCTR2000033796),研究取得家属同意并签署知情同意书。

  • 1.2 方法

  • 1.2.1 研究对象分组

  • 所有纳入研究的早产儿分为非 BPD 组与 BPD 组,收集临床资料,包括妊娠期高血压、妊娠期糖尿病、产前激素使用情况等母孕期因素,出生体重、胎龄、性别、剖宫产、多胞胎、1 min Apgar评分等出生情况,高浓度氧(FiO2≥40%)吸入时间、使用机械通气、机械通气时间、总住院时间等治疗情况,重要的合并症与并发症[包括 NRDS、肺动脉高压(pulmonary hypertension,PH)、动脉导管未闭(patent ductus arteriosus,PDA)、早产儿视网膜病(retinopathy of prematurity,ROP)、脑室内出血(intraventricular hemorrhage,IVH)、脑室周围白质软化(periventricular leukomalacia,PVL)]。相关并发症及合并症的诊断标准参照《实用新生儿学》第5版[8]

  • 1.2.2 标本留取及TNC浓度检测

  • 留取早产儿 PMA 36 周时的外周静脉血 2 mL, 4℃ 1 000 r/min 离心 15 min,留取上清液于干燥 EP 管中,标记后置于-80℃低温冰箱密封保存待检。按照人 TNC ELISA 试剂盒(ab213831,Abcam 公司提供,检测范围 93.7~6 000.0 pg/mL)步骤测定 450 nm 波长处吸光度值,应用 cvxpt32 计算血清 TNC 浓度。

  • 1.3 统计学方法

  • 利用 SPSS26.0 对数据进行统计学分析。符合正态分布的计量资料以均数±标准差(x-± s)表示,两组间比较采用(t t′)检验,多组间比较采用单因素方差分析,并进行LSD多重t检验;不符合正态分布的计量资料用中位数(四分位数)[MP25P75)]表示,采用非参数秩和检验;计数资料以百分数(%)表示,采用χ2 检验;独立危险因素分析采用 Logistic 回归分析;参数间采用Kendall相关性分析;绘制受试者工作特征(receiver operating characteristic,ROC)曲线,计算曲线下面积(area under curve,AUC)。P <0.05 为差异有统计学意义。

  • 2 结果

  • 2.1 临床资料分析

  • 研究共纳入早产儿 79 例,男 40 例,女 39 例; BPD 组 31 例,发生率 39.24%,其中Ⅰ级 13 例,Ⅱ级 8例,Ⅲ级10例。非BPD组与BPD组早产儿在产前激素使用率、出生体重、男性比例、1 min Apgar 评分、高浓度氧吸入时间、机械通气使用率、机械通气时间、总住院时间、血清 TNC 水平等方面差异具有统计学意义(P <0.05,表1)。

  • 2.2 多因素Logistic回归

  • 对可能影响BPD发生的因素进行多因素Logistic 回归分析示,出生体重、高浓度氧吸入时间、血清 TNC水平等为BPD发生的独立危险因素(P <0.05,表2)。

  • 2.3 血清TNC水平

  • 血清 TNC 水平在非 BPD 组与 BPD 组间差异有统计学意义(P <0.001,表1);BPDⅠ级、Ⅱ级、Ⅲ级组间差异有统计学意义(P <0.001),进行 LSD 多重 t 检验,Ⅰ级与Ⅱ级BPD组间差异有统计学意义 (P =0.001),Ⅰ级与Ⅲ级 BPD 组间差异有统计学意义(P <0.001),Ⅱ级与Ⅲ级BPD组间差异无统计学意义(P >0.05,表3)。

  • 2.4 血清TNC与BPD严重程度的相关性分析

  • 早产儿血清TNC水平与BPD的严重程度呈正相关(r =0.617,P <0.001,图1)。

  • 表1 早产儿发生BPD的单因素分析

  • Table1 Univariate analysis of BPD in premature infants

  • 表2 多因素Logistic回归分析

  • Table2 Multivariate logistic regression analysis

  • 表3 不同级别BPD血清TNC水平

  • Table3 Serum TNC levels of different levels of BPD

  • 图1 血清TNC水平与BPD严重程度的相关性

  • Figure1 Correlation between serum TNC level and BPD severity

  • 2.5 血清TNC诊断BPD的ROC曲线

  • 早产儿血清 TNC 水平诊断 BPD 的 ROC 曲线示,AUC 为 0.881(P <0.001,图2),95%CI 为 0.810~0.952。约登指数最大值为 0.635,此时诊断的最佳截断值为 99.87 ng/mL,灵敏度为 96.8%,特异度为 66.7%。

  • 3 讨论

  • BPD最早在1967年由Northway等提出,自提出以来,其定义或临床诊断标准不断被修改更新, 2018和2019年分别发表了NICHD共识研讨会[7] 和 Jensen等[9] 新的 BPD 诊断标准,对以往沿用的特别是 2001 年的 NICHD 标准[10] 做了修改和完善,目前国内常用2018年的NICHD标准。BPD源于未成熟的肺暴露于各种产前及产后因素,患病婴儿死亡率更高,存活者患肺部和心血管疾病以及遗留神经发育后遗症的风险更高,更好地了解 BPD 的风险因素是迈向预防和充分管理该疾病的关键一步[11]。本研究组采用 2018 NICHD 诊断标准进行分组,对临床资料进行单因素分析发现,BPD组早产儿产前激素使用率、出生体重低于非 BPD 组,男性、1 min Apgar≤7 分等所占的比例及高浓度氧吸入时间、机械通气使用率、机械通气时间、总住院时间等高于非 BPD 组,差异均具有统计学意义,与国内外研究结论相符[12-13]。Logistic回归分析显示,出生体重、高浓度氧吸入时间是BPD发生的独立危险因素,现有研究表明,出生体重越低,BPD发病率越高[8],早产儿肺部发育不成熟,肺泡毛细血管通透性增加,暴露在高浓度氧环境中,大量炎症介质释放引起肺损伤,最终导致肺纤维化,诱发早产儿 BPD[14]。胎龄在两组间差异无统计学意义,机械通气并非BPD发生的独立危险因素,这些结果与文献不符,考虑与采用2018年BPD诊断标准,胎龄均较小(<32周)有关;而由于评估时间点选择PMA 36周,不可避免地遗漏了ⅢA级的BPD病例资料,这部分病例恰好均为机械通气患儿,可能影响机械通气这一因素的统计结果。

  • 图2 血清TNC诊断BPD的ROC曲线

  • Figure2 Receiver operating characteristic curve of serum TNC in the diagnosis of BPD

  • BPD 的诊断标准不断演变,目前为止,其诊断过程仅依赖于 PMA 36 周时的临床标准,需要新的生物学指标进行病情评估[15],因而对BPD相关血清标志物的研究显得尤为重要。本研究发现,早产儿血清 TNC 的水平,BPD 组显著高于非 BPD 组,不同级别 BPD 组间差异有统计学意义,其中 BPDⅡ级、 Ⅲ级组高于Ⅰ级组,血清TNC是BPD发生的独立危险因素,血清TNC 水平与BPD 严重程度呈正相关,这些均提示 TNC 在 BPD 中具有重要意义。TNC 是早期发现的肌腱蛋白家族成员,在胚胎发育期间高表达,在成体组织中表达低下,损伤、炎症、组织重塑等特定条件下表达增加[16]。TNC 参与分支形态发生及肺泡形成,有助于新肺泡间隔的形成、微血管的成熟以及细胞的增殖和迁移,还参与先天免疫形成及肺组织稳态的维持[17-19]。对 BPD 的研究发现,高氧可降低微小 RNA⁃489(一种肺泡隔发育的抑制基因),同时其保守靶点TNC升高,对肺发育起到一定代偿作用[20]。暴露于高氧环境时,在转化生长因子⁃β刺激下,成纤维细胞上调TNC mRNA的表达,与高氧诱导的肺泡化阻滞和BPD有关[21]。Olave 等[20]发现,PMA 36~40 周时,BPD 患儿肺部 TNC mRNA 的表达升高。TNC 可能受长链非编码 RNA AK033210 的调控进而参与 BPD 的发展[5]。有关 TNC 与 BPD 关系的研究对 BPD 发病机制的探讨具有重要意义。

  • 本研究绘制了血清 TNC 对早产儿 BPD 发生的 ROC曲线,AUC达0.881,血清TNC诊断BPD的最佳截断值为 99.87 ng/mL,灵敏度为 96.8%,特异度为 66.7%,表明 PMA 36 周时,血清 TNC 对 BPD 具有较高的诊断价值。本课题组近期研究还发现,重度 BPD患儿PH发生率较高,重度BPD伴PH患儿血清 TNC水平升高,与肺动脉收缩压呈正相关,血清TNC 对BPD合并PH的预测及严重程度评估具有一定临床价值[22]。这些提示血清 TNC 水平检测对 BPD 临床也具有重要意义。

  • 综上所述,本组研究发现血清TNC水平对临床 BPD 的诊断具有一定的价值。本组仅为单中心研究,样本量偏小,且选择的病例具有一定的特殊性,有必要进行大样本多中心的研究来证实其对 BPD 的诊断价值;而如能早期动态监测 TNC 的水平,研究其对 BPD 的早期诊断和预测价值可能更具临床意义。

  • 参考文献

    • [1] YANG T T,SHEN Q Q,WANG S Y,et al.Risk factors that affect the degree of bronchopulmonary dysplasia in very preterm infants:a 5 ⁃ year retrospective study[J].BMC Pediatr,2022,22(1):200

    • [2] 吴蝉桐,王维,王会芳,等.高氧肺损伤新生小鼠肺组织中GM15886和 HIPK1 的表达研究[J].南京医科大学学报(自然科学版),2020,40(7):969-974

    • [3] HAAGE V,ELMADANY N,ROLL L,et al.Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1[J].Brain Behav Immun,2019,81:470-483

    • [4] KAARTEENAHO⁃WIIK R,KINNULA V L,HERVA R,et al.Tenascin ⁃ C is highly expressed in respiratory dis⁃ tress syndrome and bronchopulmonary dysplasia[J].J Histochem Cytochem,2002,50(3):423-431

    • [5] BAO T P,WU R,CHENG H P,et al.Differential expres⁃ sion of long non⁃coding RNAs in hyperoxia⁃induced bron⁃chopulmonary dysplasia[J].Cell Biochem Funct,2016,34(5):299-309

    • [6] ZHU H,TIAN Y,CHENG H,et al.A clinical study on plasma biomarkers for deciding the use of adjuvant corti⁃ costeroid therapy in bronchopulmonary dysplasia of pre⁃ mature infants[J].Int J Med Sci,2021,18(12):2581-2588

    • [7] HIGGINS R D,JOBE A H,KOSO ⁃ THOMAS M,et al.Bronchopulmonary dysplasia:executive summary of a workshop[J].J Pediatr,2018,197:300-308

    • [8] 邵肖梅,叶鸿瑁,丘小汕.实用新生儿学[M].5 版.北京:人民卫生出版社,2019:577,596-597,608,744,856-859,861,1028

    • [9] JENSEN E A,DYSART K,GANTZ M G,et al.The diag⁃ nosis of bronchopulmonary dysplasia in very preterm in⁃ fants:an evidencebased approach[J].Am J Respir Crit Care Med,2019,200(6):751-759

    • [10] JOBE A H,BANCALARI E.Bronchopulmonary dysplasia [J].Am J Respir Crit Care Med,2001,163(7):1723-1729

    • [11] ANDREA S A,SONIA P D,REBECA S S,et al.Epidemi⁃ ology and risk factors for bronchopulmonary dysplasia in preterm infants born at or less than 32 weeks of gestation [J].Anales De Pediatría Engl Ed,2022,96(3):242-251

    • [12] TURGAY C,SULTAN K.Bronchopulmonary dysplasia frequency and risk factors in very low birth weight in⁃ fants:a 3⁃ year retrospective study[J].North Clin Istan⁃ bul,2020,7(2):124-130

    • [13] 黄昊,张兰,潘家华,等.极低出生体重儿支气管肺发育不良的危险因素分析[J].临床肺科杂志,2022,27(5):668-671

    • [14] YANG Y C,LI J,MAO J.Early diagnostic value of C⁃reac⁃ tive protein as an inflammatory marker for moderate⁃to⁃se⁃ vere bronchopulmonary dysplasia in premature infants with birth weight less than 1500 g[J].Int Immunopharma⁃ col,2022,103:108462

    • [15] KINDT A S D,FÖRSTER K M,COCHIUS⁃DEN OTTER S Z C M,et al.Validation of disease⁃specific biomarkers for the early detection of bronchopulmonary dysplasia[J].Pediatr Res,2023,93(3):625-632

    • [16] GREMLICH S,CREMONA T P,YAO E,et al.Tenascin⁃ C:friend or foe in lung aging?[J].Front Physiol,2021,12:749776

    • [17] CREMONA T P,ANDREA H,SCHITTNY J C.The devel⁃ opment of integrin alpha⁃8 deficient lungs shows reduced and altered branching and a correction of the phenotype during alveolarization[J].Front Physiol,2020,11:530635

    • [18] MUND S I,SCHITTNY J C.Tenascin ⁃ C deficiency im⁃ pairs alveolarization and microvascular maturation during postnatal lung development[J].J Appl Physiol(1985),2020,128(5):1287-1298

    • [19] LOFFREDO L F,CODEN M E,JEONG B M,et al.Eosin⁃ ophil accumulation in postnatal lung is specific to the pri⁃ mary septation phase of development[J].Sci Rep,2020,10(1):4425

    • [20] OLAVE N,LAL C V,HALLORAN B,et al.Regulation of alveolar septation by microRNA ⁃ 489[J].Am J Physiol Lung Cell Mol Physiol,2016,310(5):L476-L487

    • [21] ALEJANDRE ⁃ ALCÁZAR M A,KWAPISZEWSKA G,REISS I,et al.Hyperoxia modulates TGF ⁃beta/BMP sig⁃ naling in a mouse model of bronchopulmonary dysplasia [J].Am J Physiol Lung Cell Mol Physiol,2007,292(2):L537-L549

    • [22] 朱海艳,胡晶晶,郑亚斐,等.血清肌腱蛋白C水平与早产儿支气管肺发育不良伴肺动脉高压的相关性研究 [J].中华新生儿科杂志(中英文),2022,37(3):245-249

  • 参考文献

    • [1] YANG T T,SHEN Q Q,WANG S Y,et al.Risk factors that affect the degree of bronchopulmonary dysplasia in very preterm infants:a 5 ⁃ year retrospective study[J].BMC Pediatr,2022,22(1):200

    • [2] 吴蝉桐,王维,王会芳,等.高氧肺损伤新生小鼠肺组织中GM15886和 HIPK1 的表达研究[J].南京医科大学学报(自然科学版),2020,40(7):969-974

    • [3] HAAGE V,ELMADANY N,ROLL L,et al.Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1[J].Brain Behav Immun,2019,81:470-483

    • [4] KAARTEENAHO⁃WIIK R,KINNULA V L,HERVA R,et al.Tenascin ⁃ C is highly expressed in respiratory dis⁃ tress syndrome and bronchopulmonary dysplasia[J].J Histochem Cytochem,2002,50(3):423-431

    • [5] BAO T P,WU R,CHENG H P,et al.Differential expres⁃ sion of long non⁃coding RNAs in hyperoxia⁃induced bron⁃chopulmonary dysplasia[J].Cell Biochem Funct,2016,34(5):299-309

    • [6] ZHU H,TIAN Y,CHENG H,et al.A clinical study on plasma biomarkers for deciding the use of adjuvant corti⁃ costeroid therapy in bronchopulmonary dysplasia of pre⁃ mature infants[J].Int J Med Sci,2021,18(12):2581-2588

    • [7] HIGGINS R D,JOBE A H,KOSO ⁃ THOMAS M,et al.Bronchopulmonary dysplasia:executive summary of a workshop[J].J Pediatr,2018,197:300-308

    • [8] 邵肖梅,叶鸿瑁,丘小汕.实用新生儿学[M].5 版.北京:人民卫生出版社,2019:577,596-597,608,744,856-859,861,1028

    • [9] JENSEN E A,DYSART K,GANTZ M G,et al.The diag⁃ nosis of bronchopulmonary dysplasia in very preterm in⁃ fants:an evidencebased approach[J].Am J Respir Crit Care Med,2019,200(6):751-759

    • [10] JOBE A H,BANCALARI E.Bronchopulmonary dysplasia [J].Am J Respir Crit Care Med,2001,163(7):1723-1729

    • [11] ANDREA S A,SONIA P D,REBECA S S,et al.Epidemi⁃ ology and risk factors for bronchopulmonary dysplasia in preterm infants born at or less than 32 weeks of gestation [J].Anales De Pediatría Engl Ed,2022,96(3):242-251

    • [12] TURGAY C,SULTAN K.Bronchopulmonary dysplasia frequency and risk factors in very low birth weight in⁃ fants:a 3⁃ year retrospective study[J].North Clin Istan⁃ bul,2020,7(2):124-130

    • [13] 黄昊,张兰,潘家华,等.极低出生体重儿支气管肺发育不良的危险因素分析[J].临床肺科杂志,2022,27(5):668-671

    • [14] YANG Y C,LI J,MAO J.Early diagnostic value of C⁃reac⁃ tive protein as an inflammatory marker for moderate⁃to⁃se⁃ vere bronchopulmonary dysplasia in premature infants with birth weight less than 1500 g[J].Int Immunopharma⁃ col,2022,103:108462

    • [15] KINDT A S D,FÖRSTER K M,COCHIUS⁃DEN OTTER S Z C M,et al.Validation of disease⁃specific biomarkers for the early detection of bronchopulmonary dysplasia[J].Pediatr Res,2023,93(3):625-632

    • [16] GREMLICH S,CREMONA T P,YAO E,et al.Tenascin⁃ C:friend or foe in lung aging?[J].Front Physiol,2021,12:749776

    • [17] CREMONA T P,ANDREA H,SCHITTNY J C.The devel⁃ opment of integrin alpha⁃8 deficient lungs shows reduced and altered branching and a correction of the phenotype during alveolarization[J].Front Physiol,2020,11:530635

    • [18] MUND S I,SCHITTNY J C.Tenascin ⁃ C deficiency im⁃ pairs alveolarization and microvascular maturation during postnatal lung development[J].J Appl Physiol(1985),2020,128(5):1287-1298

    • [19] LOFFREDO L F,CODEN M E,JEONG B M,et al.Eosin⁃ ophil accumulation in postnatal lung is specific to the pri⁃ mary septation phase of development[J].Sci Rep,2020,10(1):4425

    • [20] OLAVE N,LAL C V,HALLORAN B,et al.Regulation of alveolar septation by microRNA ⁃ 489[J].Am J Physiol Lung Cell Mol Physiol,2016,310(5):L476-L487

    • [21] ALEJANDRE ⁃ ALCÁZAR M A,KWAPISZEWSKA G,REISS I,et al.Hyperoxia modulates TGF ⁃beta/BMP sig⁃ naling in a mouse model of bronchopulmonary dysplasia [J].Am J Physiol Lung Cell Mol Physiol,2007,292(2):L537-L549

    • [22] 朱海艳,胡晶晶,郑亚斐,等.血清肌腱蛋白C水平与早产儿支气管肺发育不良伴肺动脉高压的相关性研究 [J].中华新生儿科杂志(中英文),2022,37(3):245-249

  • 通知关闭
    郑重声明